新增对MDK5的编译支持

This commit is contained in:
FuChao 2021-09-08 13:02:13 +08:00
parent e1de520885
commit 60c6a878bf
5 changed files with 1765 additions and 2 deletions

View File

@ -0,0 +1,35 @@
/**
******************************************************************************
* @file lib_CodeRAM.c
* @author Application Team
* @version V4.4.0
* @date 2019-01-18
* @brief Codes executed in SRAM.
******************************************************************************
* @attention
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "lib_CodeRAM.h"
#ifndef __GNUC__
/**
* @brief Flash deep standby, enter idle mode.
* @note This function is executed in RAM.
* @param None
* @retval None
*/
__RAM_FUNC void PMU_EnterIdle_FlashDSTB(void)
{
/* Flash deep standby */
FLASH->PASS = 0x55AAAA55;
FLASH->DSTB = 0xAA5555AA;
/* Enter Idle mode */
SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
__WFI();
}
#endif
/*********************************** END OF FILE ******************************/

View File

@ -0,0 +1,648 @@
/**
******************************************************************************
* @file lib_LoadNVR.c
* @author Application Team
* @version V4.7.0
* @date 2019-12-12
* @brief Load information from NVR.
******************************************************************************
* @attention
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "lib_LoadNVR.h"
/**
* @breif Load Analog trim data from NVR manually.
* @note Successful Operation:
* - Load [0x40DC0] or [0x40DD0] to ANA registers(B C D E), return 0.
* Operation failed:
* - return 1.
* @param None
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_LoadANADataManual(void)
{
uint32_t checksum;
uint32_t op_reg;
uint32_t ana_data;
uint32_t key_reg = 0xFFFFFFFF;
/* Get Analog data1 */
ana_data = *NVR_ANA_TRIMDATA1;
op_reg = *NVR_ANA_OPREG1;
/* Calculate checksum1 */
checksum = ~(ana_data + op_reg + key_reg);
/* Compare checksum1 */
if (checksum == (*NVR_ANA_CHECKSUM1))
{
ANA->REGB = (uint8_t)(ana_data);
ANA->REGC = (uint8_t)(ana_data >> 8);
ANA->REGD = (uint8_t)(ana_data >> 16);
ANA->REGE = (uint8_t)(ana_data >> 24);
return 0;
}
/* Get Analog data2 */
ana_data = *NVR_ANA_TRIMDATA2;
op_reg = *NVR_ANA_OPREG2;
/* Calculate checksum2 */
checksum = ~(ana_data + op_reg + key_reg);
/* Compare checksum2 */
if (checksum == (*NVR_ANA_CHECKSUM2))
{
ANA->REGB = (uint8_t)(ana_data);
ANA->REGC = (uint8_t)(ana_data >> 8);
ANA->REGD = (uint8_t)(ana_data >> 16);
ANA->REGE = (uint8_t)(ana_data >> 24);
return 0;
}
else
{
return 1;
}
}
/**
* @breif Get the parameters of ADC voltage measuring.
* @note Voltage(unit:V) = aParameter*ADC_DATA + bParameter
* ADC_DATA: ADC channel original data
* aParameter/bParameter: Get from this function
* @param [in]Mode:
* NVR_3V_EXTERNAL_NODIV
* NVR_3V_EXTERNAL_RESDIV
* NVR_3V_EXTERNAL_CAPDIV
* NVR_3V_VDD_RESDIV
* NVR_3V_VDD_CAPDIV
* NVR_3V_BATRTC_RESDIV
* NVR_3V_BATRTC_CAPDIV
* NVR_5V_EXTERNAL_NODIV
* NVR_5V_EXTERNAL_RESDIV
* NVR_5V_EXTERNAL_CAPDIV
* NVR_5V_VDD_RESDIV
* NVR_5V_VDD_CAPDIV
* NVR_5V_BATRTC_RESDIV
* NVR_5V_BATRTC_CAPDIV
* @param [out]Parameter: The parameters get from NVR
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_GetADCVoltageParameter(uint32_t Mode, NVR_ADCVOLPARA *Parameter)
{
uint32_t checksum;
uint32_t i;
int32_t tmp_int;
/* Check the parameters */
assert_parameters(IS_NVR_ADCVOL_MODE(Mode));
/*----- Power supply: 5V -----*/
if (0x100UL & Mode)
{
checksum = 0UL;
for (i=0; i<14; i++)
checksum += *(NVR_5VPARA_BASEADDR1+i);
checksum = ~(checksum);
if (checksum != *(NVR_5VPARA_BASEADDR1+i)) /* Checksum1 error */
{
checksum = 0UL;
for (i=0; i<14; i++)
checksum += *(NVR_5VPARA_BASEADDR2+i);
checksum = ~(checksum);
if (checksum != *(NVR_5VPARA_BASEADDR2+i)) /* Checksum2 error */
{
return 1;
}
else
{
tmp_int = (int32_t)*(NVR_5VPARA_BASEADDR2+2*(Mode-0x100UL));
Parameter->aParameter = (float)(tmp_int / 100000000.0);
tmp_int = (int32_t)*(NVR_5VPARA_BASEADDR2+2*(Mode-0x100UL)+1);
Parameter->bParameter = (float)(tmp_int / 100000000.0);
return 0;
}
}
else
{
tmp_int = (int32_t)*(NVR_5VPARA_BASEADDR1+2*(Mode-0x100UL));
Parameter->aParameter = (float)(tmp_int / 100000000.0);
tmp_int = (int32_t)*(NVR_5VPARA_BASEADDR1+2*(Mode-0x100UL)+1);
Parameter->bParameter = (float)(tmp_int / 100000000.0);
return 0;
}
}
/*----- Power supply: 3.3V -----*/
else
{
checksum = 0UL;
for (i=0; i<14; i++)
checksum += *(NVR_3VPARA_BASEADDR1+i);
checksum = ~(checksum);
if (checksum != *(NVR_3VPARA_BASEADDR1+i)) /* Checksum1 error */
{
checksum = 0UL;
for (i=0; i<14; i++)
checksum += *(NVR_3VPARA_BASEADDR2+i);
checksum = ~(checksum);
if (checksum != *(NVR_3VPARA_BASEADDR2+i)) /* Checksum2 error */
{
return 1;
}
else
{
tmp_int = (int32_t)*(NVR_3VPARA_BASEADDR2+2*(Mode));
Parameter->aParameter = (float)(tmp_int / 100000000.0);
tmp_int = (int32_t)*(NVR_3VPARA_BASEADDR2+2*(Mode)+1);
Parameter->bParameter = (float)(tmp_int / 100000000.0);
return 0;
}
}
else
{
tmp_int = (int32_t)*(NVR_3VPARA_BASEADDR1+2*(Mode));
Parameter->aParameter = (float)(tmp_int / 100000000.0);
tmp_int = (int32_t)*(NVR_3VPARA_BASEADDR1+2*(Mode)+1);
Parameter->bParameter = (float)(tmp_int / 100000000.0);
return 0;
}
}
}
/**
* @breif Get BAT Measure result.
* @param [out]MEAResult The pointer to struct NVR_BATMEARES.
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_GetBATOffset(NVR_BATMEARES *MEAResult)
{
uint32_t bat_r;
uint32_t bat_c;
uint32_t checksum;
bat_r = *NVR_BAT_R1;
bat_c = *NVR_BAT_C1;
/* Calculate checksum1 */
checksum = ~(bat_r + bat_c);
if (checksum == (*NVR_BATMEA_CHECHSUM1))
{
MEAResult->BATRESResult = (float)((int32_t)bat_r / 1000.0);
MEAResult->BATCAPResult = (float)((int32_t)bat_c / 1000.0);
return 0;
}
bat_r = *NVR_BAT_R2;
bat_c = *NVR_BAT_C2;
/* Calculate checksum2 */
checksum = ~(bat_r + bat_c);
if (checksum == (*NVR_BATMEA_CHECHSUM2))
{
MEAResult->BATRESResult = (float)((int32_t)bat_r / 1000.0);
MEAResult->BATCAPResult = (float)((int32_t)bat_c / 1000.0);
return 0;
}
else
{
return 1;
}
}
/**
* @breif Load RTC ACPx pramameters from NVR to RTC registers.
Get RTC pramameters.
* @param [out]RTCTempData The pointer to struct NVR_RTCINFO.
* @retval 0: Function succeeded.
!0: Function not succeeded, load default value to registers.
bit[0]=1: Temperature Measure delta information checksum error, default value is 0.
bit[1]=1: P paramters checksum error, default value as follows
[P0]-214, [P1]1060, [P2]-19746971, [P5]6444, [P6]1342, [P7]0
bit[2]=1: P4 checksum error, default value is 0
bit[3]=1: ACKx checksum error, default value as follows
[K1]20827, [K2]21496, [K3]22020, [K4]24517, [K5]25257
bit[4]=1: ACTI checksum error, default value is 0x1800(24.0)
bit[5]=1: ACKTEMP checksum error, defalut value is 0x3C2800EC
*/
uint32_t NVR_GetInfo_LoadRTCData(NVR_RTCINFO *RTCTempData)
{
uint32_t real_temp, mea_temp;
uint32_t rtc_data1, rtc_data2, rtc_data3, rtc_data4;
uint32_t rtc_p4;
uint32_t rtc_ack[5];
uint32_t rtc_acti;
uint32_t rtc_acktemp;
uint32_t checksum;
float pclk_mul;
int16_t TempDelta;
uint32_t retval = 0;
/*------------------------ Temperature Measure delta -------------------------*/
real_temp = *NVR_REALTEMP1;
mea_temp = *NVR_MEATEMP1;
/* Calculate checksum1 */
checksum = ~(real_temp + mea_temp);
if (checksum == (*NVR_TEMP_CHECKSUM1)) //checksum1 true
{
TempDelta = (int16_t)real_temp - (int16_t)mea_temp;
}
else
{
real_temp = *NVR_REALTEMP2;
mea_temp = *NVR_MEATEMP2;
/* Calculate checksum2 */
checksum = ~(real_temp + mea_temp);
if (checksum == (*NVR_TEMP_CHECKSUM2)) //checksum2 true
{
TempDelta = (int16_t)real_temp - (int16_t)mea_temp;
}
else
{
TempDelta = 0;
retval |= BIT0;
}
}
/* Get Measure delta information */
RTCTempData->RTCTempDelta = TempDelta;
/*------------------------------ P parameters --------------------------------*/
/* Wait until the RTC registers be synchronized */
RTC_WaitForSynchro();
/* Disable RTC Registers write-protection */
RTC_WriteProtection(DISABLE);
/* Get PCLK */
RTCTempData->APBClock = CLK_GetPCLKFreq();
pclk_mul = RTCTempData->APBClock / 6553600.0;
rtc_data1 = *NVR_RTC1_P1_P0;
rtc_data2 = *NVR_RTC1_P2;
rtc_data3 = *NVR_RTC1_P5_P4;
rtc_data4 = *NVR_RTC1_P7_P6;
/* Calculate checksum1 */
checksum = ~(rtc_data1 + rtc_data2 + rtc_data3 + rtc_data4);
if (checksum == (*NVR_RTC1_PCHECHSUM)) //checksum1 true
{
/* Get information */
RTCTempData->RTCTempP0 = (int16_t)(rtc_data1);
RTCTempData->RTCTempP1 = (int16_t)(rtc_data1 >> 16);
RTCTempData->RTCTempP2 = (int32_t)((int32_t)rtc_data2 + (((int32_t)TempDelta)*256));
RTCTempData->RTCTempP5 = (int16_t)(rtc_data3 >> 16);
RTCTempData->RTCTempP6 = (int16_t)(rtc_data4 * pclk_mul);
RTCTempData->RTCTempP7 = (int16_t)(rtc_data4 >> 16);
/* Load data to ACPx register */
RTC->ACP0 = (uint16_t)(rtc_data1 & 0xFFFF);
RTC->ACP1 = (uint16_t)((rtc_data1 >> 16) & 0xFFFF);
RTC->ACP2 = (uint32_t)((int32_t)rtc_data2 + (((int32_t)TempDelta)*256));
RTC->ACP5 = (uint16_t)((rtc_data3 >> 16) & 0xFFFF);
RTC->ACP6 = (uint16_t)((int16_t)(rtc_data4 * pclk_mul));
RTC->ACP7 = (uint16_t)((rtc_data4 >> 16) & 0xFFFF);
}
else
{
rtc_data1 = *NVR_RTC2_P1_P0;
rtc_data2 = *NVR_RTC2_P2;
rtc_data3 = *NVR_RTC2_P5_P4;
rtc_data4 = *NVR_RTC2_P7_P6;
/* Calculate checksum2 */
checksum = ~(rtc_data1 + rtc_data2 + rtc_data3 + rtc_data4);
if (checksum == (*NVR_RTC2_PCHECHSUM)) //checksum2 true
{
/* Get information */
RTCTempData->RTCTempP0 = (int16_t)(rtc_data1);
RTCTempData->RTCTempP1 = (int16_t)(rtc_data1 >> 16);
RTCTempData->RTCTempP2 = (int32_t)((int32_t)rtc_data2 + (((int32_t)TempDelta)*256));
RTCTempData->RTCTempP5 = (int16_t)(rtc_data3 >> 16);
RTCTempData->RTCTempP6 = (int16_t)(rtc_data4 * pclk_mul);
RTCTempData->RTCTempP7 = (int16_t)(rtc_data4 >> 16);
/* Load data to ACPx register */
RTC->ACP0 = (uint16_t)(rtc_data1 & 0xFFFF);
RTC->ACP1 = (uint16_t)((rtc_data1 >> 16) & 0xFFFF);
RTC->ACP2 = (uint32_t)((int32_t)rtc_data2 + (((int32_t)TempDelta)*256));
RTC->ACP5 = (uint16_t)((rtc_data3 >> 16) & 0xFFFF);
RTC->ACP6 = (uint16_t)((int16_t)(rtc_data4 * pclk_mul));
RTC->ACP7 = (uint16_t)((rtc_data4 >> 16) & 0xFFFF);
}
else
{
/* Get information */
RTCTempData->RTCTempP0 = -214;
RTCTempData->RTCTempP1 = 1060;
RTCTempData->RTCTempP2 = -19746971 + (TempDelta*256);
RTCTempData->RTCTempP5 = 6444;
RTCTempData->RTCTempP6 = (uint32_t)((int32_t)(1342*pclk_mul));
RTCTempData->RTCTempP7 = 0;
/* Load data to ACPx register */
RTC->ACP0 = (uint16_t)(-214);
RTC->ACP1 = (uint16_t)(1060);
RTC->ACP2 = (uint32_t)(-19746971 + (TempDelta*256));
RTC->ACP5 = (uint16_t)(6444);
RTC->ACP6 = (uint16_t)((int32_t)(1342*pclk_mul));
RTC->ACP7 = (uint16_t)(0);
retval |= BIT1;
}
}
/*----------------------------------- P4 -------------------------------------*/
/* Calculate checksum1 */
rtc_p4 = *NVR_RTC1_P4;
checksum = ~rtc_p4;
if (checksum == (*NVR_RTC1_P4_CHKSUM))//checksum1 true
{
/* Get information */
RTCTempData->RTCTempP4 = (int16_t)(*NVR_RTC1_P4);
RTC->ACP4 = *NVR_RTC1_P4;
}
else
{
rtc_p4 = *NVR_RTC2_P4;
checksum = ~rtc_p4;
if (checksum == (*NVR_RTC2_P4_CHKSUM))//checksum2 true
{
/* Get information */
RTCTempData->RTCTempP4 = (int16_t)(*NVR_RTC1_P4);
RTC->ACP4 = *NVR_RTC1_P4;
}
else
{
RTCTempData->RTCTempP4 = 0;
RTC->ACP4 = 0;
retval |= BIT2;
}
}
/*-------------------------- RTC ACKx parameters -----------------------------*/
rtc_ack[0] = *NVR_RTC1_ACK1;
rtc_ack[1] = *NVR_RTC1_ACK2;
rtc_ack[2] = *NVR_RTC1_ACK3;
rtc_ack[3] = *NVR_RTC1_ACK4;
rtc_ack[4] = *NVR_RTC1_ACK5;
checksum = ~(rtc_ack[0] + rtc_ack[1] + rtc_ack[2] + rtc_ack[3] + rtc_ack[4]);
if (checksum == (*NVR_RTC1_ACK_CHKSUM))//checksum1 true
{
/* Get information */
RTCTempData->RTCTempK1 = rtc_ack[0];
RTCTempData->RTCTempK2 = rtc_ack[1];
RTCTempData->RTCTempK3 = rtc_ack[2];
RTCTempData->RTCTempK4 = rtc_ack[3];
RTCTempData->RTCTempK5 = rtc_ack[4];
/* Load data to ACKx register */
RTC->ACK1 = rtc_ack[0];
RTC->ACK2 = rtc_ack[1];
RTC->ACK3 = rtc_ack[2];
RTC->ACK4 = rtc_ack[3];
RTC->ACK5 = rtc_ack[4];
}
else
{
rtc_ack[0] = *NVR_RTC2_ACK1;
rtc_ack[1] = *NVR_RTC2_ACK2;
rtc_ack[2] = *NVR_RTC2_ACK3;
rtc_ack[3] = *NVR_RTC2_ACK4;
rtc_ack[4] = *NVR_RTC2_ACK5;
checksum = ~(rtc_ack[0] + rtc_ack[1] + rtc_ack[2] + rtc_ack[3] + rtc_ack[4]);
if (checksum == (*NVR_RTC2_ACK_CHKSUM))//checksum2 true
{
/* Get information */
RTCTempData->RTCTempK1 = rtc_ack[0];
RTCTempData->RTCTempK2 = rtc_ack[1];
RTCTempData->RTCTempK3 = rtc_ack[2];
RTCTempData->RTCTempK4 = rtc_ack[3];
RTCTempData->RTCTempK5 = rtc_ack[4];
/* Load data to ACKx register */
RTC->ACK1 = rtc_ack[0];
RTC->ACK2 = rtc_ack[1];
RTC->ACK3 = rtc_ack[2];
RTC->ACK4 = rtc_ack[3];
RTC->ACK5 = rtc_ack[4];
}
else
{
/* Get information */
RTCTempData->RTCTempK1 = 20827;
RTCTempData->RTCTempK2 = 21496;
RTCTempData->RTCTempK3 = 22020;
RTCTempData->RTCTempK4 = 24517;
RTCTempData->RTCTempK5 = 25257;
/* Load data to ACKx register */
RTC->ACK1 = 20827;
RTC->ACK2 = 21496;
RTC->ACK3 = 22020;
RTC->ACK4 = 24517;
RTC->ACK5 = 25257;
retval |= BIT3;
}
}
/*-------------------------- RTC ACTI parameters -----------------------------*/
rtc_acti = *NVR_RTC1_ACTI;
checksum = ~rtc_acti;
if (checksum == (*NVR_RTC1_ACTI_CHKSUM))
{
/* Get information */
RTCTempData->RTCACTI = rtc_acti;
/* Load data to ACKx register */
RTC->ACTI = rtc_acti;
}
else
{
rtc_acti = *NVR_RTC2_ACTI;
checksum = ~rtc_acti;
if (checksum == (*NVR_RTC2_ACTI_CHKSUM))
{
/* Get information */
RTCTempData->RTCACTI = rtc_acti;
/* Load data to ACKx register */
RTC->ACTI = rtc_acti;
}
else
{
/* Get information */
RTCTempData->RTCACTI = 0x1800;
RTC->ACTI = 0x1800;
retval |= BIT4;
}
}
/*------------------------- RTC ACKTemp parameters ---------------------------*/
rtc_acktemp = *NVR_RTC1_ACKTEMP;
checksum = ~rtc_acktemp;
if (checksum == (*NVR_RTC1_ACKTEMP_CHKSUM))
{
/* Get information */
RTCTempData->RTCACKTemp = rtc_acktemp;
/* Load data to ACKx register */
RTC->ACKTEMP = rtc_acktemp;
}
else
{
rtc_acktemp = *NVR_RTC2_ACKTEMP;
checksum = ~rtc_acktemp;
if (checksum == (*NVR_RTC2_ACKTEMP_CHKSUM))
{
/* Get information */
RTCTempData->RTCACKTemp = rtc_acktemp;
/* Load data to ACKx register */
RTC->ACKTEMP = rtc_acktemp;
}
else
{
/* Get information */
RTCTempData->RTCACKTemp = 0x3C2800EC;
RTC->ACKTEMP = 0x3C2800EC;
retval |= BIT5;
}
}
/*--------------------------------- ACF200 -----------------------------------*/
RTCTempData->RTCACF200 = (uint32_t)((int32_t)(pclk_mul*0x320000));
RTC->ACF200 = (uint32_t)((int32_t)(pclk_mul*0x320000));
/* Enable RTC Registers write-protection */
RTC_WriteProtection(ENABLE);
/* Wait until the RTC registers be synchronized */
RTC_WaitForSynchro();
return retval;
}
/**
* @breif Get Power/Clock Measure result.
* @param [out]MEAResult The pointer to struct NVR_PWRMEARES.
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_GetMISCGain(NVR_MISCGain *MEAResult)
{
uint32_t avcc_data, dvcc_data, bgp_data, rcl_data, rch_data;
uint32_t checksum;
avcc_data = *NVR_AVCC_MEA1;
dvcc_data = *NVR_DVCC_MEA1;
bgp_data = *NVR_BGP_MEA1;
rcl_data = *NVR_RCL_MEA1;
rch_data = *NVR_RCH_MEA1;
/* Calculate checksum1 */
checksum = ~(avcc_data + dvcc_data + bgp_data + rcl_data + rch_data);
if (checksum == (*NVR_PWR_CHECKSUM1))
{
MEAResult->AVCCMEAResult = avcc_data;
MEAResult->DVCCMEAResult = dvcc_data;
MEAResult->BGPMEAResult = bgp_data;
MEAResult->RCLMEAResult = rcl_data;
MEAResult->RCHMEAResult = rch_data;
return 0;
}
avcc_data = *NVR_AVCC_MEA2;
dvcc_data = *NVR_DVCC_MEA2;
bgp_data = *NVR_BGP_MEA2;
rcl_data = *NVR_RCL_MEA2;
rch_data = *NVR_RCH_MEA2;
/* Calculate checksum2 */
checksum = ~(avcc_data + dvcc_data + bgp_data + rcl_data + rch_data);
if (checksum == (*NVR_PWR_CHECKSUM2))
{
MEAResult->AVCCMEAResult = avcc_data;
MEAResult->DVCCMEAResult = dvcc_data;
MEAResult->BGPMEAResult = bgp_data;
MEAResult->RCLMEAResult = rcl_data;
MEAResult->RCHMEAResult = rch_data;
return 0;
}
else
{
return 1;
}
}
/**
* @breif Get Chip ID.
* @param [out]ChipID The pointer to struct NVR_CHIPID.
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_GetChipID(NVR_CHIPID *ChipID)
{
uint32_t id0, id1;
uint32_t checksum;
id0 = *NVR_CHIP1_ID0;
id1 = *NVR_CHIP1_ID1;
/* Calculate checksum1 */
checksum = ~(id0 + id1);
if (checksum == (*NVR_CHIP1_CHECKSUM))
{
ChipID->ChipID0 = id0;
ChipID->ChipID1 = id1;
return 0;
}
id0 = *NVR_CHIP2_ID0;
id1 = *NVR_CHIP2_ID1;
/* Calculate checksum2 */
checksum = ~(id0 + id1);
if (checksum == (*NVR_CHIP2_CHECKSUM))
{
ChipID->ChipID0 = id0;
ChipID->ChipID1 = id1;
return 0;
}
else
{
return 1;
}
}
/**
* @breif Get LCD information.
* @param [out]LCDInfo The pointer to struct NVR_LCDINFO.
* @retval 0: Function succeeded.
1: Function failed(Checksum error).
*/
uint32_t NVR_GetLCDInfo(NVR_LCDINFO *LCDInfo)
{
uint32_t lcd_ldo, lcd_vol;
uint32_t checksum;
lcd_ldo = *NVR_LCD_LDO1;
lcd_vol = *NVR_LCD_VOL1;
/* Calculate checksum1 */
checksum = ~(lcd_ldo + lcd_vol);
if (checksum == (*NVR_LCD_CHECKSUM1))
{
LCDInfo->MEALCDLDO = lcd_ldo;
LCDInfo->MEALCDVol = lcd_vol;
return 0;
}
lcd_ldo = *NVR_LCD_LDO2;
lcd_vol = *NVR_LCD_VOL2;
/* Calculate checksum2 */
checksum = ~(lcd_ldo + lcd_vol);
if (checksum == (*NVR_LCD_CHECKSUM2))
{
LCDInfo->MEALCDLDO = lcd_ldo;
LCDInfo->MEALCDVol = lcd_vol;
return 0;
}
else
{
return 1;
}
}
/*********************************** END OF FILE ******************************/

View File

@ -0,0 +1,175 @@
/**
******************************************************************************
* @file lib_cortex.c
* @author Application Team
* @version V4.4.0
* @date 2018-09-27
* @brief Cortex module driver.
******************************************************************************
* @attention
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "lib_cortex.h"
#include "core_cm0.h"
/**
* @brief 1. Clears Pending of a device specific External Interrupt.
* 2. Sets Priority of a device specific External Interrupt.
* 3. Enables a device specific External Interrupt.
* @param IRQn: External interrupt number .
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to target.h file)
* @param Priority: The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 3.
* A lower priority value indicates a higher priority
* @retval None
*/
void CORTEX_SetPriority_ClearPending_EnableIRQ(IRQn_Type IRQn, uint32_t Priority)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
assert_parameters(IS_CORTEX_NVIC_PREEMPTION_PRIORITY(Priority));
/* Clear Pending Interrupt */
NVIC_ClearPendingIRQ(IRQn);
/* Set Interrupt Priority */
NVIC_SetPriority(IRQn, Priority);
/* Enable Interrupt in NVIC */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Enables a device specific interrupt in the NVIC interrupt controller.
* @note To configure interrupts priority correctly before calling it.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval None
*/
void CORTEX_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt in NVIC */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disables a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval None
*/
void CORTEX_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt in NVIC */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiates a system reset request to reset the MCU.
* @retval None
*/
void CORTEX_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Gets the Pending bit of an interrupt.
* @param IRQn: External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval 0 Interrupt status is not pending.
1 Interrupt status is pending.
*/
uint32_t CORTEX_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
/* Get priority for Cortex-M0 system or device specific interrupts */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Sets Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval None
*/
void CORTEX_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Clears the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval None
*/
void CORTEX_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_DEVICE_IRQ(IRQn));
/* Clear interrupt pending */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Gets the priority of an interrupt.
* @param IRQn: External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to the appropriate CMSIS device file (target.h))
* @retval Interrupt Priority. Value is aligned automatically to the implemented
* priority bits of the microcontroller.
*/
uint32_t CORTEX_NVIC_GetPriority(IRQn_Type IRQn)
{
/* Get priority for Cortex-M0 system or device specific interrupts */
return NVIC_GetPriority(IRQn);
}
/**
* @brief Sets the priority of an interrupt.
* @param IRQn: External interrupt number .
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete target Devices IRQ Channels list, please refer to target.h file)
* @param Priority: The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 3.
* A lower priority value indicates a higher priority
* @retval None
*/
void CORTEX_NVIC_SetPriority(IRQn_Type IRQn, uint32_t Priority)
{
/* Check parameters */
assert_parameters(IS_CORTEX_NVIC_PREEMPTION_PRIORITY(Priority));
/* Get priority for Cortex-M0 system or device specific interrupts */
NVIC_SetPriority(IRQn, Priority);
}
/**
* @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer.
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb: Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t CORTEX_SystemTick_Config(uint32_t TicksNum)
{
return SysTick_Config(TicksNum);
}
/*********************************** END OF FILE ******************************/

View File

@ -0,0 +1,894 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.1.0
* @date 08. May 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* CMSIS compiler control DSP macros */
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __ARM_FEATURE_DSP 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
#define __PROGRAM_START __main
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET")))
#endif
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() do {\
__schedule_barrier();\
__isb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() do {\
__schedule_barrier();\
__dsb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() do {\
__schedule_barrier();\
__dmb(0xF);\
__schedule_barrier();\
} while (0U)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

View File

@ -6,6 +6,7 @@
* Change Logs:
* Date Author Notes
* 2021-01-04 iysheng first version
* 2021-09-07 FuC Suit for Vango V85xx
*/
#ifndef __BOARD_H__
@ -15,11 +16,21 @@
#include "drv_gpio.h"
#define V85XX_SRAM_SIZE 48
/* Internal SRAM memory size[Kbytes] <8-64>, Default: 32*/
#define V85XX_SRAM_SIZE 32
#define V85XX_SRAM_END (0x20000000 + V85XX_SRAM_SIZE * 1024)
#if defined(__CC_ARM) || defined(__CLANG_ARM)
extern int Image$$RW_IRAM1$$ZI$$Limit;
#define HEAP_BEGIN ((void *)&Image$$RW_IRAM1$$ZI$$Limit)
#elif __ICCARM__
#pragma section="CSTACK"
#define HEAP_BEGIN (__segment_end("CSTACK"))
#else
extern int __bss_end;
#define HEAP_BEGIN (&__bss_end)
#define HEAP_BEGIN ((void *)&__bss_end)
#endif
#define HEAP_END V85XX_SRAM_END