1. 抽象了PHY的设备模型,在components中增加了PHY设备的相关代码以及KCONFIG配置和SConscript脚本

2. 在IMXRT的Libraries中增加了peripherals目录,用于具体型号的设备驱动相关的代码的实现,不应与MCU的平台相关,实现PHY的设备对象中的相关接口。
3. 修改了BSP中的Sconstruct文件,增加了peripherals目录的构建
4. 修改了KEIL环境的SCT文件,用于实现以太网功能
This commit is contained in:
WangQiang 2020-10-12 18:15:01 +08:00
parent d6ff0fc0c3
commit 502378cf93
23 changed files with 903 additions and 565 deletions

View File

@ -66,5 +66,8 @@ objs.extend(SConscript(os.path.join(libraries_path_prefix, imxrt_library, 'SCons
# include drivers # include drivers
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'drivers', 'SConscript'))) objs.extend(SConscript(os.path.join(libraries_path_prefix, 'drivers', 'SConscript')))
# include peripherals
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'peripherals', 'SConscript')))
# make a building # make a building
DoBuilding(TARGET, objs) DoBuilding(TARGET, objs)

View File

@ -44,21 +44,42 @@ menu "Onboard Peripheral Drivers"
menuconfig BSP_USING_ETH menuconfig BSP_USING_ETH
bool "Enable Ethernet" bool "Enable Ethernet"
select PHY_USING_KSZ8081
select RT_USING_NETDEV select RT_USING_NETDEV
default n default n
if BSP_USING_ETH if BSP_USING_ETH
config BSP_USING_PHY
select RT_USING_PHY
bool "Enable ethernet phy"
default y
if BSP_USING_PHY
config PHY_DEVICE_ADDRESS
int "Specify address of phy device"
default 2
config PHY_USING_KSZ8081 config PHY_USING_KSZ8081
bool "i.MX RT1064EVK uses ksz8081 phy" bool "i.MX RT1064EVK uses ksz8081 phy"
default y default y
if PHY_USING_KSZ8081
config PHY_RESET_PORT
int "indicate port of reset"
default 1
config PHY_RESET_PIN
int "indicate pin of reset"
default 9
config FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE config FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE
bool "Enable the PHY ksz8081 RMII50M mode" bool "Enable the PHY ksz8081 RMII50M mode"
depends on PHY_USING_KSZ8081 depends on PHY_USING_KSZ8081
default y default y
endif endif
endif
endif
endmenu endmenu
menu "Board extended module Drivers" menu "Board extended module Drivers"

View File

@ -15,10 +15,6 @@ CPPPATH = [cwd,cwd + '/MCUX_Config',cwd + '/ports']
CPPDEFINES = ['CPU_MIMXRT1064DVL6A', 'SKIP_SYSCLK_INIT', 'EVK_MCIMXRM', 'FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL=1','XIP_EXTERNAL_FLASH=1', 'XIP_BOOT_HEADER_ENABLE=1', 'XIP_BOOT_HEADER_DCD_ENABLE=1'] CPPDEFINES = ['CPU_MIMXRT1064DVL6A', 'SKIP_SYSCLK_INIT', 'EVK_MCIMXRM', 'FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL=1','XIP_EXTERNAL_FLASH=1', 'XIP_BOOT_HEADER_ENABLE=1', 'XIP_BOOT_HEADER_DCD_ENABLE=1']
if GetDepend(['PHY_USING_KSZ8081']):
src += Glob('ports/phyksz8081/fsl_phy.c')
CPPPATH += [cwd + '/ports/phyksz8081']
if rtconfig.CROSS_TOOL == 'keil': if rtconfig.CROSS_TOOL == 'keil':
CPPDEFINES.append('__FPU_PRESENT=1') CPPDEFINES.append('__FPU_PRESENT=1')

View File

@ -416,6 +416,7 @@ void imxrt_enet_pins_init(void)
Hyst. Enable Field: Hysteresis Disabled */ Hyst. Enable Field: Hysteresis Disabled */
} }
#ifndef BSP_USING_PHY
void imxrt_enet_phy_reset_by_gpio(void) void imxrt_enet_phy_reset_by_gpio(void)
{ {
gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode}; gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode};
@ -428,8 +429,29 @@ void imxrt_enet_phy_reset_by_gpio(void)
rt_thread_delay(100); rt_thread_delay(100);
GPIO_WritePinOutput(GPIO1, 9, 1); GPIO_WritePinOutput(GPIO1, 9, 1);
} }
#endif /* BSP_USING_PHY */
#endif /* BSP_USING_ETH */ #endif /* BSP_USING_ETH */
#ifdef BSP_USING_PHY
void imxrt_phy_pins_init( void )
{
IOMUXC_SetPinMux(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 is configured as GPIO1_IO09 */
0U); /* Software Input On Field: Input Path is determined by functionality */
IOMUXC_SetPinConfig(
IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_B0_00 PAD functional properties : */
0x10B0u); /* Slew Rate Field: Slow Slew Rate
Drive Strength Field: R0/6
Speed Field: medium(100MHz)
Open Drain Enable Field: Open Drain Disabled
Pull / Keep Enable Field: Pull/Keeper Enabled
Pull / Keep Select Field: Keeper
Pull Up / Down Config. Field: 100K Ohm Pull Down
Hyst. Enable Field: Hysteresis Disabled */
}
#endif /* BSP_USING_PHY */
/** /**
* This function will initial rt1050 board. * This function will initial rt1050 board.
*/ */
@ -450,6 +472,10 @@ void rt_hw_board_init()
imxrt_enet_pins_init(); imxrt_enet_pins_init();
#endif #endif
#ifdef BSP_USING_PHY
imxrt_phy_pins_init();
#endif
#ifdef BSP_USING_DMA #ifdef BSP_USING_DMA
imxrt_dma_init(); imxrt_dma_init();
#endif #endif

View File

@ -48,7 +48,7 @@ void rt_hw_board_init(void);
#ifdef BSP_USING_ETH #ifdef BSP_USING_ETH
void imxrt_enet_pins_init(void); void imxrt_enet_pins_init(void);
void imxrt_enet_phy_reset_by_gpio(void); void imxrt_enet_phy_reset_by_gpio(void);
#define PHY_ADDRESS 0x02u
#endif #endif
#endif #endif

View File

@ -66,6 +66,8 @@
#define m_data3_start 0x00000000 ; ITCM 128KB #define m_data3_start 0x00000000 ; ITCM 128KB
#define m_data3_size 0x00020000 #define m_data3_size 0x00020000
#define m_ncache_start 0x81E00000
#define m_ncache_size 0x00200000
/* Sizes */ /* Sizes */
#if (defined(__stack_size__)) #if (defined(__stack_size__))
@ -124,7 +126,7 @@ LR_IROM1 m_text_start m_text_size
RTT_HEAP +0 EMPTY RTT_HEAP_SIZE{} RTT_HEAP +0 EMPTY RTT_HEAP_SIZE{}
; ncache RW data ; ncache RW data
RW_m_ncache m_data2_start m_data2_size RW_m_ncache m_ncache_start m_ncache_size
{ {
* (NonCacheable.init) * (NonCacheable.init)
* (NonCacheable) * (NonCacheable)

View File

@ -1,315 +0,0 @@
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_phy.h"
#include <rtthread.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
{
uint32_t bssReg;
uint32_t counter = PHY_TIMEOUT_COUNT;
uint32_t idReg = 0;
status_t result = kStatus_Success;
uint32_t instance = ENET_GetInstance(base);
uint32_t timeDelay;
uint32_t ctlReg = 0;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
ENET_SetSMI(base, srcClock_Hz, false);
/* Initialization after PHY stars to work. */
while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
{
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
counter --;
}
if (!counter)
{
return kStatus_Fail;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (result == kStatus_Success)
{
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
uint32_t data = 0;
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if ( result != kStatus_Success)
{
return result;
}
result = PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
if (result != kStatus_Success)
{
return result;
}
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
/* Set the negotiation. */
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (result == kStatus_Success)
{
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (result == kStatus_Success)
{
/* Check auto negotiation complete. */
while (counter --)
{
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
if ( result == kStatus_Success)
{
PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctlReg & PHY_LINK_READY_MASK))
{
/* Wait a moment for Phy status stable. */
for (timeDelay = 0; timeDelay < PHY_TIMEOUT_COUNT; timeDelay ++)
{
__ASM("nop");
}
break;
}
}
if (!counter)
{
return kStatus_PHY_AutoNegotiateFail;
}
}
}
}
}
return result;
}
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t counter;
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
{
assert(dataPtr);
uint32_t counter;
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return kStatus_PHY_SMIVisitTimeout;
}
/* Get data from MII register. */
*dataPtr = ENET_ReadSMIData(base);
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
return kStatus_Success;
}
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
{
status_t result;
uint32_t data = 0;
/* Set the loop mode. */
if (enable)
{
if (mode == kPHY_LocalLoop)
{
if (speed == kPHY_Speed100M)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (mode == kPHY_LocalLoop)
{
/* First read the current status in control register. */
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
if (result == kStatus_Success)
{
data &= ~PHY_BCTL_LOOP_MASK;
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
if (result == kStatus_Success)
{
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
{
assert(status);
status_t result = kStatus_Success;
uint32_t data;
/* Read the basic status register. */
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
if (result == kStatus_Success)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = false;
}
else
{
/* link up. */
*status = true;
}
}
return result;
}
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
{
assert(duplex);
status_t result = kStatus_Success;
uint32_t data, ctlReg;
/* Read the control two register. */
result = PHY_Read(base, phyAddr, PHY_CONTROL1_REG, &ctlReg);
if (result == kStatus_Success)
{
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = kPHY_FullDuplex;
}
else
{
/* Half duplex. */
*duplex = kPHY_HalfDuplex;
}
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = kPHY_Speed100M;
}
else
{ /* 10M speed. */
*speed = kPHY_Speed10M;
}
}
return result;
}

View File

@ -1,200 +0,0 @@
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef _FSL_PHY_H_
#define _FSL_PHY_H_
#include "fsl_enet.h"
/*!
* @addtogroup phy_driver
* @{
*/
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief PHY driver version */
#define FSL_PHY_DRIVER_VERSION (MAKE_VERSION(2, 0, 0)) /*!< Version 2.0.0. */
/*! @brief Defines the PHY registers. */
#define PHY_BASICCONTROL_REG 0x00U /*!< The PHY basic control register. */
#define PHY_BASICSTATUS_REG 0x01U /*!< The PHY basic status register. */
#define PHY_ID1_REG 0x02U /*!< The PHY ID one register. */
#define PHY_ID2_REG 0x03U /*!< The PHY ID two register. */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U /*!< The PHY auto-negotiate advertise register. */
#define PHY_CONTROL1_REG 0x1EU /*!< The PHY control one register. */
#define PHY_CONTROL2_REG 0x1FU /*!< The PHY control two register. */
#define PHY_CONTROL_ID1 0x22U /*!< The PHY ID1*/
/*! @brief Defines the mask flag in basic control register. */
#define PHY_BCTL_DUPLEX_MASK 0x0100U /*!< The PHY duplex bit mask. */
#define PHY_BCTL_RESTART_AUTONEG_MASK 0x0200U /*!< The PHY restart auto negotiation mask. */
#define PHY_BCTL_AUTONEG_MASK 0x1000U /*!< The PHY auto negotiation bit mask. */
#define PHY_BCTL_SPEED_MASK 0x2000U /*!< The PHY speed bit mask. */
#define PHY_BCTL_LOOP_MASK 0x4000U /*!< The PHY loop bit mask. */
#define PHY_BCTL_RESET_MASK 0x8000U /*!< The PHY reset bit mask. */
#define PHY_BCTL_SPEED_100M_MASK 0x2000U /*!< The PHY 100M speed mask. */
/*!@brief Defines the mask flag of operation mode in control two register*/
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /*!< The PHY remote loopback mask. */
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /*!< The PHY RMII reference clock select. */
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /*!< The PHY 10M half duplex mask. */
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /*!< The PHY 100M half duplex mask. */
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /*!< The PHY 10M full duplex mask. */
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /*!< The PHY 100M full duplex mask. */
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /*!< The PHY speed and duplex mask. */
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /*!< The PHY signal present on rx differential pair. */
#define PHY_CTL1_LINKUP_MASK 0x100U /*!< The PHY link up. */
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
/*! @brief Defines the mask flag in basic status register. */
#define PHY_BSTATUS_LINKSTATUS_MASK 0x0004U /*!< The PHY link status mask. */
#define PHY_BSTATUS_AUTONEGABLE_MASK 0x0008U /*!< The PHY auto-negotiation ability mask. */
#define PHY_BSTATUS_AUTONEGCOMP_MASK 0x0020U /*!< The PHY auto-negotiation complete mask. */
/*! @brief Defines the mask flag in PHY auto-negotiation advertise register. */
#define PHY_100BaseT4_ABILITY_MASK 0x200U /*!< The PHY have the T4 ability. */
#define PHY_100BASETX_FULLDUPLEX_MASK 0x100U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_100BASETX_HALFDUPLEX_MASK 0x080U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_10BASETX_FULLDUPLEX_MASK 0x040U /*!< The PHY has the 10M full duplex ability.*/
#define PHY_10BASETX_HALFDUPLEX_MASK 0x020U /*!< The PHY has the 10M full duplex ability.*/
/*! @brief Defines the PHY status. */
enum _phy_status
{
kStatus_PHY_SMIVisitTimeout = MAKE_STATUS(kStatusGroup_PHY, 1), /*!< ENET PHY SMI visit timeout. */
kStatus_PHY_AutoNegotiateFail = MAKE_STATUS(kStatusGroup_PHY, 2) /*!< ENET PHY AutoNegotiate Fail. */
};
/*! @brief Defines the PHY link speed. This is align with the speed for ENET MAC. */
typedef enum _phy_speed
{
kPHY_Speed10M = 0U, /*!< ENET PHY 10M speed. */
kPHY_Speed100M /*!< ENET PHY 100M speed. */
} phy_speed_t;
/*! @brief Defines the PHY link duplex. */
typedef enum _phy_duplex
{
kPHY_HalfDuplex = 0U, /*!< ENET PHY half duplex. */
kPHY_FullDuplex /*!< ENET PHY full duplex. */
} phy_duplex_t;
/*! @brief Defines the PHY loopback mode. */
typedef enum _phy_loop
{
kPHY_LocalLoop = 0U, /*!< ENET PHY local loopback. */
kPHY_RemoteLoop /*!< ENET PHY remote loopback. */
} phy_loop_t;
/*******************************************************************************
* API
******************************************************************************/
#if defined(__cplusplus)
extern "C" {
#endif
/*!
* @name PHY Driver
* @{
*/
/*!
* @brief Initializes PHY.
*
* This function initialize the SMI interface and initialize PHY.
* The SMI is the MII management interface between PHY and MAC, which should be
* firstly initialized before any other operation for PHY. The PHY initialize with auto-negotiation.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param srcClock_Hz The module clock frequency - system clock for MII management interface - SMI.
* @retval kStatus_Success PHY initialize success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
* @retval kStatus_PHY_AutoNegotiateFail PHY auto negotiate fail
*/
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz);
/*!
* @brief PHY Write function. This function write data over the SMI to
* the specified PHY register. This function is called by all PHY interfaces.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param phyReg The PHY register.
* @param data The data written to the PHY register.
* @retval kStatus_Success PHY write success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data);
/*!
* @brief PHY Read function. This interface read data over the SMI from the
* specified PHY register. This function is called by all PHY interfaces.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param phyReg The PHY register.
* @param dataPtr The address to store the data read from the PHY register.
* @retval kStatus_Success PHY read success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr);
/*!
* @brief Enables/disables PHY loopback.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param mode The loopback mode to be enabled, please see "phy_loop_t".
* the two loopback mode should not be both set. when one loopback mode is set
* the other one should be disabled.
* @param speed PHY speed for loopback mode.
* @param enable True to enable, false to disable.
* @retval kStatus_Success PHY loopback success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable);
/*!
* @brief Gets the PHY link status.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param status The link up or down status of the PHY.
* - true the link is up.
* - false the link is down.
* @retval kStatus_Success PHY get link status success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status);
/*!
* @brief Gets the PHY link speed and duplex.
*
* @param base ENET peripheral base address.
* @param phyAddr The PHY address.
* @param speed The address of PHY link speed.
* @param duplex The link duplex of PHY.
* @retval kStatus_Success PHY get link speed and duplex success
* @retval kStatus_PHY_SMIVisitTimeout PHY SMI visit time out
*/
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex);
/* @} */
#if defined(__cplusplus)
}
#endif
/*! @}*/
#endif /* _FSL_PHY_H_ */

View File

@ -45,6 +45,9 @@ if GetDepend('BSP_USING_LCD'):
if GetDepend('BSP_USING_ETH'): if GetDepend('BSP_USING_ETH'):
src += ['drv_eth.c'] src += ['drv_eth.c']
if GetDepend('BSP_USING_PHY'):
src += ['drv_mdio.c']
if GetDepend('BSP_USING_USB_DEVICE'): if GetDepend('BSP_USING_USB_DEVICE'):
src += ['drv_usbd.c'] src += ['drv_usbd.c']
src += Glob('usb/device/*.c') src += Glob('usb/device/*.c')

View File

@ -19,7 +19,6 @@
#include "fsl_enet.h" #include "fsl_enet.h"
#include "fsl_gpio.h" #include "fsl_gpio.h"
#include "fsl_phy.h"
#include "fsl_cache.h" #include "fsl_cache.h"
#include "fsl_iomuxc.h" #include "fsl_iomuxc.h"
#include "fsl_common.h" #include "fsl_common.h"
@ -537,31 +536,52 @@ struct pbuf *rt_imxrt_eth_rx(rt_device_t dev)
return NULL; return NULL;
} }
#ifdef BSP_USING_PHY
static struct rt_phy_device *phy_dev = RT_NULL;
static void phy_monitor_thread_entry(void *parameter) static void phy_monitor_thread_entry(void *parameter)
{ {
phy_speed_t speed; rt_uint32_t speed;
phy_duplex_t duplex; rt_uint32_t duplex;
bool link = false; rt_bool_t link = RT_FALSE;
imxrt_enet_phy_reset_by_gpio(); phy_dev = (struct rt_phy_device *)rt_device_find("rtt-phy");
if ((RT_NULL == phy_dev) || (RT_NULL == phy_dev->ops))
PHY_Init(imxrt_eth_device.enet_base, PHY_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk)); {
// TODO print warning information
LOG_E("Can not find phy device called \"rtt-phy\"");
return ;
}
LOG_I("start to initialize phy device!");
if (RT_NULL == phy_dev->ops->init)
{
LOG_E("phy driver error!");
return ;
}
rt_phy_status status = phy_dev->ops->init(imxrt_eth_device.enet_base, PHY_DEVICE_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk));
if (PHY_STATUS_OK != status)
{
LOG_E("Phy device initialize unsuccessful!\n");
return ;
}
else
{
LOG_I("Phy device initialize successful!\n");
}
while (1) while (1)
{ {
bool new_link = false; rt_bool_t new_link = RT_FALSE;
status_t status = PHY_GetLinkStatus(imxrt_eth_device.enet_base, PHY_ADDRESS, &new_link); rt_phy_status status = phy_dev->ops->get_link_status(&new_link);
if ((status == kStatus_Success) && (link != new_link)) if ((PHY_STATUS_OK == status) && (link != new_link))
{ {
link = new_link; link = new_link;
if (link) // link up if (link) // link up
{ {
PHY_GetLinkSpeedDuplex(imxrt_eth_device.enet_base, phy_dev->ops->get_link_speed_duplex(&speed, &duplex);
PHY_ADDRESS, &speed, &duplex);
if (kPHY_Speed10M == speed) if (PHY_SPEED_10M == speed)
{ {
dbg_log(DBG_LOG, "10M\n"); dbg_log(DBG_LOG, "10M\n");
} }
@ -570,7 +590,7 @@ static void phy_monitor_thread_entry(void *parameter)
dbg_log(DBG_LOG, "100M\n"); dbg_log(DBG_LOG, "100M\n");
} }
if (kPHY_HalfDuplex == duplex) if (PHY_HALF_DUPLEX == duplex)
{ {
dbg_log(DBG_LOG, "half dumplex\n"); dbg_log(DBG_LOG, "half dumplex\n");
} }
@ -579,8 +599,7 @@ static void phy_monitor_thread_entry(void *parameter)
dbg_log(DBG_LOG, "full dumplex\n"); dbg_log(DBG_LOG, "full dumplex\n");
} }
if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed) if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed) || (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
|| (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
{ {
imxrt_eth_device.speed = (enet_mii_speed_t)speed; imxrt_eth_device.speed = (enet_mii_speed_t)speed;
imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex; imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex;
@ -605,6 +624,7 @@ static void phy_monitor_thread_entry(void *parameter)
rt_thread_delay(RT_TICK_PER_SECOND * 2); rt_thread_delay(RT_TICK_PER_SECOND * 2);
} }
} }
#endif
static int rt_hw_imxrt_eth_init(void) static int rt_hw_imxrt_eth_init(void)
{ {
@ -657,6 +677,7 @@ static int rt_hw_imxrt_eth_init(void)
/* start phy monitor */ /* start phy monitor */
{ {
#ifdef BSP_USING_PHY
rt_thread_t tid; rt_thread_t tid;
tid = rt_thread_create("phy", tid = rt_thread_create("phy",
phy_monitor_thread_entry, phy_monitor_thread_entry,
@ -666,6 +687,7 @@ static int rt_hw_imxrt_eth_init(void)
2); 2);
if (tid != RT_NULL) if (tid != RT_NULL)
rt_thread_startup(tid); rt_thread_startup(tid);
#endif
} }
return state; return state;
@ -673,50 +695,47 @@ static int rt_hw_imxrt_eth_init(void)
INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init); INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init);
#endif #endif
#ifdef RT_USING_FINSH #if defined(RT_USING_FINSH) && defined(RT_USING_PHY)
#include <finsh.h> #include <finsh.h>
void phy_read(uint32_t phyReg) void phy_read(rt_uint32_t phy_reg)
{ {
uint32_t data; rt_uint32_t data;
status_t status;
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, &data); rt_phy_status status = phy_dev->ops->read(phy_reg, &data);
if (kStatus_Success == status) if (PHY_STATUS_OK == status)
{ {
rt_kprintf("PHY_Read: %02X --> %08X", phyReg, data); rt_kprintf("PHY_Read: %02X --> %08X", phy_reg, data);
} }
else else
{ {
rt_kprintf("PHY_Read: %02X --> faild", phyReg); rt_kprintf("PHY_Read: %02X --> faild", phy_reg);
} }
} }
void phy_write(uint32_t phyReg, uint32_t data) void phy_write(rt_uint32_t phy_reg, rt_uint32_t data)
{ {
status_t status; rt_phy_status status = phy_dev->ops->write(phy_reg, data);
if (PHY_STATUS_OK == status)
status = PHY_Write(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, data);
if (kStatus_Success == status)
{ {
rt_kprintf("PHY_Write: %02X --> %08X\n", phyReg, data); rt_kprintf("PHY_Write: %02X --> %08X\n", phy_reg, data);
} }
else else
{ {
rt_kprintf("PHY_Write: %02X --> faild\n", phyReg); rt_kprintf("PHY_Write: %02X --> faild\n", phy_reg);
} }
} }
void phy_dump(void) void phy_dump(void)
{ {
uint32_t data; rt_uint32_t data;
status_t status; rt_phy_status status;
int i; int i;
for (i = 0; i < 32; i++) for (i = 0; i < 32; i++)
{ {
status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, i, &data); status = phy_dev->ops->read(i, &data);
if (kStatus_Success != status) if (PHY_STATUS_OK != status)
{ {
rt_kprintf("phy_dump: %02X --> faild", i); rt_kprintf("phy_dump: %02X --> faild", i);
break; break;
@ -730,10 +749,11 @@ void phy_dump(void)
{ {
rt_kprintf("%02X --> %08X\n", i, data); rt_kprintf("%02X --> %08X\n", i, data);
} }
} }
} }
#endif
#if defined(RT_USING_FINSH) && defined(RT_USING_LWIP)
void enet_reg_dump(void) void enet_reg_dump(void)
{ {
ENET_Type *enet_base = imxrt_eth_device.enet_base; ENET_Type *enet_base = imxrt_eth_device.enet_base;

View File

@ -0,0 +1,160 @@
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-29 WangQiang the first version
*
*/
#include <rtthread.h>
#ifdef BSP_USING_PHY
#define LOG_TAG "drv.mdio"
#include <drv_log.h>
#include <rtdevice.h>
#include "drv_mdio.h"
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
extern uint32_t ENET_GetInstance(ENET_Type *base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to enet clocks for each instance. */
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
static rt_bool_t rt_hw_mdio_init(void *bus, rt_uint32_t src_clock_hz)
{
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
uint32_t instance = ENET_GetInstance((ENET_Type *)(bus_obj->hw_obj));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Set SMI first. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
ENET_SetSMI((ENET_Type *)(bus_obj->hw_obj), src_clock_hz, RT_FALSE);
return RT_TRUE;
}
static rt_size_t rt_hw_mdio_read(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
RT_ASSERT(data);
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
rt_uint32_t counter;
rt_uint32_t *data_ptr = (rt_uint32_t *)data;
if (4 != size)
{
return 0;
}
/* Clear the MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
/* Starts a SMI read command operation. */
ENET_StartSMIRead((ENET_Type *)(bus_obj->hw_obj), addr, reg, kENET_MiiReadValidFrame);
/* Wait for MII complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus((ENET_Type *)(bus_obj->hw_obj)) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
// return kStatus_PHY_SMIVisitTimeout;
return 0;
}
/* Get data from MII register. */
*data_ptr = ENET_ReadSMIData((ENET_Type *)(bus_obj->hw_obj));
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)bus_obj->hw_obj, ENET_EIR_MII_MASK);
return 4;
}
static rt_size_t rt_hw_mdio_write(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size)
{
struct rt_mdio_bus *bus_obj = (struct rt_mdio_bus *)bus;
uint32_t counter;
rt_uint32_t *data_ptr = (rt_uint32_t *)data;
if (4 != size)
{
return 0;
}
/* Clear the SMI interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
/* Starts a SMI write command. */
ENET_StartSMIWrite((ENET_Type *)(bus_obj->hw_obj), addr, reg, kENET_MiiWriteValidFrame, *data_ptr);
/* Wait for SMI complete. */
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
{
if (ENET_GetInterruptStatus((ENET_Type *)(bus_obj->hw_obj)) & ENET_EIR_MII_MASK)
{
break;
}
}
/* Check for timeout. */
if (!counter)
{
return 0;
}
/* Clear MII interrupt event. */
ENET_ClearInterruptStatus((ENET_Type *)(bus_obj->hw_obj), ENET_EIR_MII_MASK);
return size;
}
static struct rt_mdio_bus_ops imxrt_mdio_ops =
{
.init = rt_hw_mdio_init,
.read = rt_hw_mdio_read,
.write = rt_hw_mdio_write,
.uninit = RT_NULL,
};
static rt_mdio_t mdio_bus;
rt_mdio_t *rt_hw_mdio_register(void *hw_obj, char *name)
{
mdio_bus.hw_obj = hw_obj;
mdio_bus.name = name;
mdio_bus.ops = &imxrt_mdio_ops;
return &mdio_bus;
}
rt_mdio_t *rt_hw_mdio_get(void)
{
return &mdio_bus;
}
#endif

View File

@ -0,0 +1,25 @@
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-29 WangQiang the first version
*
*/
#ifndef DRV_MDIO_H__
#define DRV_MDIO_H__
#include <rtdevice.h>
#include "fsl_enet.h"
rt_mdio_t *rt_hw_mdio_register(void *hw_obj, char *name);
rt_mdio_t *rt_hw_mdio_get(void);
#endif /*DRV_MDIO_H__*/

View File

@ -0,0 +1,16 @@
from building import *
src = []
cwd = []
CPPDEFINES = []
cwd = GetCurrentDir()
if GetDepend('BSP_USING_PHY') and GetDepend('PHY_USING_KSZ8081'):
src += ['phyksz8081.c']
path = [cwd]
group = DefineGroup('Peripherals', src, depend = [''], CPPPATH = path, CPPDEFINES=CPPDEFINES)
Return('group')

View File

@ -0,0 +1,367 @@
/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <rtthread.h>
#ifdef PHY_USING_KSZ8081
#include <rtdevice.h>
#include "drv_gpio.h"
#include "drv_mdio.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief Defines the PHY registers. */
#define PHY_BASICCONTROL_REG 0x00U /*!< The PHY basic control register. */
#define PHY_BASICSTATUS_REG 0x01U /*!< The PHY basic status register. */
#define PHY_ID1_REG 0x02U /*!< The PHY ID one register. */
#define PHY_ID2_REG 0x03U /*!< The PHY ID two register. */
#define PHY_AUTONEG_ADVERTISE_REG 0x04U /*!< The PHY auto-negotiate advertise register. */
#define PHY_CONTROL1_REG 0x1EU /*!< The PHY control one register. */
#define PHY_CONTROL2_REG 0x1FU /*!< The PHY control two register. */
#define PHY_CONTROL_ID1 0x22U /*!< The PHY ID1*/
/*! @brief Defines the mask flag in basic control register. */
#define PHY_BCTL_DUPLEX_MASK 0x0100U /*!< The PHY duplex bit mask. */
#define PHY_BCTL_RESTART_AUTONEG_MASK 0x0200U /*!< The PHY restart auto negotiation mask. */
#define PHY_BCTL_AUTONEG_MASK 0x1000U /*!< The PHY auto negotiation bit mask. */
#define PHY_BCTL_SPEED_MASK 0x2000U /*!< The PHY speed bit mask. */
#define PHY_BCTL_LOOP_MASK 0x4000U /*!< The PHY loop bit mask. */
#define PHY_BCTL_RESET_MASK 0x8000U /*!< The PHY reset bit mask. */
#define PHY_BCTL_SPEED_100M_MASK 0x2000U /*!< The PHY 100M speed mask. */
/*!@brief Defines the mask flag of operation mode in control two register*/
#define PHY_CTL2_REMOTELOOP_MASK 0x0004U /*!< The PHY remote loopback mask. */
#define PHY_CTL2_REFCLK_SELECT_MASK 0x0080U /*!< The PHY RMII reference clock select. */
#define PHY_CTL1_10HALFDUPLEX_MASK 0x0001U /*!< The PHY 10M half duplex mask. */
#define PHY_CTL1_100HALFDUPLEX_MASK 0x0002U /*!< The PHY 100M half duplex mask. */
#define PHY_CTL1_10FULLDUPLEX_MASK 0x0005U /*!< The PHY 10M full duplex mask. */
#define PHY_CTL1_100FULLDUPLEX_MASK 0x0006U /*!< The PHY 100M full duplex mask. */
#define PHY_CTL1_SPEEDUPLX_MASK 0x0007U /*!< The PHY speed and duplex mask. */
#define PHY_CTL1_ENERGYDETECT_MASK 0x10U /*!< The PHY signal present on rx differential pair. */
#define PHY_CTL1_LINKUP_MASK 0x100U /*!< The PHY link up. */
#define PHY_LINK_READY_MASK (PHY_CTL1_ENERGYDETECT_MASK | PHY_CTL1_LINKUP_MASK)
/*! @brief Defines the mask flag in basic status register. */
#define PHY_BSTATUS_LINKSTATUS_MASK 0x0004U /*!< The PHY link status mask. */
#define PHY_BSTATUS_AUTONEGABLE_MASK 0x0008U /*!< The PHY auto-negotiation ability mask. */
#define PHY_BSTATUS_AUTONEGCOMP_MASK 0x0020U /*!< The PHY auto-negotiation complete mask. */
/*! @brief Defines the mask flag in PHY auto-negotiation advertise register. */
#define PHY_100BaseT4_ABILITY_MASK 0x200U /*!< The PHY have the T4 ability. */
#define PHY_100BASETX_FULLDUPLEX_MASK 0x100U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_100BASETX_HALFDUPLEX_MASK 0x080U /*!< The PHY has the 100M full duplex ability.*/
#define PHY_10BASETX_FULLDUPLEX_MASK 0x040U /*!< The PHY has the 10M full duplex ability.*/
#define PHY_10BASETX_HALFDUPLEX_MASK 0x020U /*!< The PHY has the 10M full duplex ability.*/
/*! @brief Defines the timeout macro. */
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
/* defined the Reset pin, PORT and PIN config by menuconfig */
#define RESET_PIN GET_PIN(PHY_RESET_PORT, PHY_RESET_PIN)
/*******************************************************************************
* Prototypes
******************************************************************************/
/*******************************************************************************
* Variables
******************************************************************************/
static struct rt_phy_device phy_ksz8081;
/*******************************************************************************
* Code
******************************************************************************/
static inline rt_bool_t read_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t *value)
{
if (4 != bus->ops->read(bus, addr, reg_id, value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static inline rt_bool_t write_reg(rt_mdio_t *bus, rt_uint32_t addr, rt_uint32_t reg_id, rt_uint32_t value)
{
if (4 != bus->ops->write(bus, addr, reg_id, &value, 4))
{
return RT_FALSE;
}
return RT_TRUE;
}
static rt_phy_status rt_phy_init(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz)
{
rt_bool_t ret;
rt_phy_status result;
rt_uint32_t counter = PHY_TIMEOUT_COUNT;
rt_uint32_t id_reg = 0;
rt_uint32_t time_delay;
rt_uint32_t bss_reg;
rt_uint32_t ctl_reg = 0;
// reset phy device by gpio
rt_pin_mode(RESET_PIN, PIN_MODE_OUTPUT);
rt_pin_write(RESET_PIN, PIN_LOW);
rt_thread_mdelay(100);
rt_pin_write(RESET_PIN, PIN_HIGH);
rt_mdio_t *mdio_bus = rt_hw_mdio_register(object, "phy_mdio");
if (RT_NULL == mdio_bus)
{
return PHY_STATUS_FAIL;
}
phy_ksz8081.bus = mdio_bus;
phy_ksz8081.addr = phy_addr;
ret = mdio_bus->ops->init(mdio_bus, src_clock_hz);
if ( !ret )
{
return PHY_STATUS_FAIL;
}
/* Initialization after PHY stars to work. */
while ((id_reg != PHY_CONTROL_ID1) && (counter != 0))
{
phy_ksz8081.ops->read(PHY_ID1_REG, &id_reg);
counter--;
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
/* Reset PHY. */
counter = PHY_TIMEOUT_COUNT;
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
if (PHY_STATUS_OK == result)
{
#if defined(FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE)
rt_uint32_t data = 0;
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
result = phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REFCLK_SELECT_MASK));
if (PHY_STATUS_FAIL == result)
{
return PHY_STATUS_FAIL;
}
#endif /* FSL_FEATURE_PHYKSZ8081_USE_RMII50M_MODE */
/* Set the negotiation. */
result = phy_ksz8081.ops->write(PHY_AUTONEG_ADVERTISE_REG,
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
if (PHY_STATUS_OK == result)
{
result = phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
if (PHY_STATUS_OK == result)
{
/* Check auto negotiation complete. */
while (counter--)
{
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &bss_reg);
if (PHY_STATUS_OK == result)
{
phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (((bss_reg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0) && (ctl_reg & PHY_LINK_READY_MASK))
{
/* Wait a moment for Phy status stable. */
for (time_delay = 0; time_delay < PHY_TIMEOUT_COUNT; time_delay++)
{
__ASM("nop");
}
break;
}
}
if (!counter)
{
return PHY_STATUS_FAIL;
}
}
}
}
}
return PHY_STATUS_OK;
}
static rt_phy_status rt_phy_read(rt_uint32_t reg, rt_uint32_t *data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (read_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_write(rt_uint32_t reg, rt_uint32_t data)
{
rt_mdio_t *mdio_bus = phy_ksz8081.bus;
rt_uint32_t device_id = phy_ksz8081.addr;
if (write_reg(mdio_bus, device_id, reg, data))
{
return PHY_STATUS_OK;
}
return PHY_STATUS_FAIL;
}
static rt_phy_status rt_phy_loopback(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable)
{
rt_uint32_t data = 0;
rt_phy_status result;
/* Set the loop mode. */
if (enable)
{
if (PHY_LOCAL_LOOP == mode)
{
if (PHY_SPEED_100M == speed)
{
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
else
{
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
}
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, data);
}
else
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
}
}
}
else
{
/* Disable the loop mode. */
if (PHY_LOCAL_LOOP == mode)
{
/* First read the current status in control register. */
result = phy_ksz8081.ops->read(PHY_BASICCONTROL_REG, &data);
if (PHY_STATUS_OK == result)
{
data &= ~PHY_BCTL_LOOP_MASK;
return phy_ksz8081.ops->write(PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
}
}
else
{
/* First read the current status in control one register. */
result = phy_ksz8081.ops->read(PHY_CONTROL2_REG, &data);
if (PHY_STATUS_OK == result)
{
return phy_ksz8081.ops->write(PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
}
}
}
return result;
}
static rt_phy_status get_link_status(rt_bool_t *status)
{
rt_phy_status result;
rt_uint32_t data;
/* Read the basic status register. */
result = phy_ksz8081.ops->read(PHY_BASICSTATUS_REG, &data);
if (PHY_STATUS_OK == result)
{
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
{
/* link down. */
*status = RT_FALSE;
}
else
{
/* link up. */
*status = RT_TRUE;
}
}
return result;
}
static rt_phy_status get_link_speed_duplex(rt_uint32_t *speed, rt_uint32_t *duplex)
{
rt_phy_status result = PHY_STATUS_OK;
rt_uint32_t data, ctl_reg;
/* Read the control two register. */
result = phy_ksz8081.ops->read(PHY_CONTROL1_REG, &ctl_reg);
if (PHY_STATUS_OK == result)
{
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* Full duplex. */
*duplex = PHY_FULL_DUPLEX;
}
else
{
/* Half duplex. */
*duplex = PHY_HALF_DUPLEX;
}
data = ctl_reg & PHY_CTL1_SPEEDUPLX_MASK;
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
{
/* 100M speed. */
*speed = PHY_SPEED_100M;
}
else
{ /* 10M speed. */
*speed = PHY_SPEED_10M;
}
}
return result;
}
static struct rt_phy_ops phy_ops =
{
.init = rt_phy_init,
.read = rt_phy_read,
.write = rt_phy_write,
.loopback = rt_phy_loopback,
.get_link_status = get_link_status,
.get_link_speed_duplex = get_link_speed_duplex,
};
static int rt_phy_ksz8081_register( void )
{
phy_ksz8081.ops = &phy_ops;
rt_hw_phy_register(&phy_ksz8081, "rtt-phy");
return 1;
}
INIT_DEVICE_EXPORT(rt_phy_ksz8081_register);
#endif /* PHY_USING_KSZ8081 */

View File

@ -21,3 +21,6 @@ def dist_do_building(BSP_ROOT, dist_dir=None):
print("=> copy bsp drivers") print("=> copy bsp drivers")
bsp_copy_files(os.path.join(library_path, 'drivers'), os.path.join(library_dir, 'drivers')) bsp_copy_files(os.path.join(library_path, 'drivers'), os.path.join(library_dir, 'drivers'))
shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig')) shutil.copyfile(os.path.join(library_path, 'Kconfig'), os.path.join(library_dir, 'Kconfig'))
print("=> copy bsp peripherals")
bsp_copy_files(os.path.join(library_path, 'peripherals'), os.path.join(library_dir, 'peripherals'))

View File

@ -103,6 +103,10 @@ if RT_USING_I2C
endif endif
endif endif
config RT_USING_PHY
bool "Using ethernet phy device drivers"
default n
config RT_USING_PIN config RT_USING_PIN
bool "Using generic GPIO device drivers" bool "Using generic GPIO device drivers"
default y default y

View File

@ -0,0 +1,79 @@
#ifndef __PHY_H___
#define __PHY_H___
#include <rtthread.h>
#ifdef __cplusplus
extern "C"
{
#endif
/* Defines the PHY link speed. This is align with the speed for MAC. */
enum phy_speed
{
PHY_SPEED_10M = 0U, /* PHY 10M speed. */
PHY_SPEED_100M /* PHY 100M speed. */
};
/* Defines the PHY link duplex. */
enum phy_duplex
{
PHY_HALF_DUPLEX = 0U, /* PHY half duplex. */
PHY_FULL_DUPLEX /* PHY full duplex. */
};
/*! @brief Defines the PHY loopback mode. */
enum phy_loop
{
PHY_LOCAL_LOOP = 0U, /* PHY local loopback. */
PHY_REMOTE_LOOP /* PHY remote loopback. */
};
struct rt_phy_msg
{
rt_uint32_t reg;
rt_uint32_t value;
};
typedef struct rt_phy_msg rt_phy_msg_t;
struct rt_phy_device
{
struct rt_device parent;
struct rt_mdio_bus *bus;
rt_uint32_t addr;
struct rt_phy_ops *ops;
};
typedef struct rt_phy_device rt_phy_t;
enum {
PHY_STATUS_OK = 0,
PHY_STATUS_FAIL,
PHY_STATUS_TIMEOUT,
};
typedef rt_int32_t rt_phy_status;
struct rt_phy_ops
{
rt_phy_status (*init)(void *object, rt_uint32_t phy_addr, rt_uint32_t src_clock_hz);
rt_phy_status (*read)(rt_uint32_t reg, rt_uint32_t *data);
rt_phy_status (*write)(rt_uint32_t reg, rt_uint32_t data);
rt_phy_status (*loopback)(rt_uint32_t mode, rt_uint32_t speed, rt_bool_t enable);
rt_phy_status (*get_link_status)(rt_bool_t *status);
rt_phy_status (*get_link_speed_duplex)(rt_uint32_t *speed, rt_uint32_t *duplex);
};
rt_err_t rt_hw_phy_register(struct rt_phy_device *phy, const char *name);
#ifdef __cplusplus
}
#endif
#endif /* __PHY_H__*/

View File

@ -0,0 +1,35 @@
#ifndef __MDIO_H___
#define __MDIO_H___
#include <rtthread.h>
#ifdef __cplusplus
extern "C"
{
#endif
struct rt_mdio_bus_ops
{
rt_bool_t (*init)(void *bus, rt_uint32_t src_clock_hz);
rt_size_t (*read)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);
rt_size_t (*write)(void *bus, rt_uint32_t addr, rt_uint32_t reg, void *data, rt_uint32_t size);
rt_bool_t (*uninit)(void *bus);
};
struct rt_mdio_bus
{
void *hw_obj;
char *name;
struct rt_mdio_bus_ops *ops;
};
typedef struct rt_mdio_bus rt_mdio_t;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -69,6 +69,11 @@ extern "C" {
#endif /* RT_USING_I2C_BITOPS */ #endif /* RT_USING_I2C_BITOPS */
#endif /* RT_USING_I2C */ #endif /* RT_USING_I2C */
#ifdef RT_USING_PHY
#include "drivers/phy.h"
#include "drivers/phy_mdio.h"
#endif /* RT_USING_PHY */
#ifdef RT_USING_SDIO #ifdef RT_USING_SDIO
#include "drivers/mmcsd_core.h" #include "drivers/mmcsd_core.h"
#include "drivers/sd.h" #include "drivers/sd.h"

View File

@ -0,0 +1,8 @@
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
CPPPATH = [cwd + '/../include']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_PHY'], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,78 @@
/*
* Copyright (c) 2006-2020, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-09-27 wangqiang first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define DBG_TAG "PHY"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
static rt_size_t phy_device_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t count)
{
struct rt_phy_device *phy = (struct rt_phy_device *)dev->user_data;
struct rt_phy_msg *msg = (struct rt_phy_msg *)buffer;
return phy->bus->ops->read(phy->bus, phy->addr, msg->reg, &(msg->value), 4);
}
static rt_size_t phy_device_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t count)
{
struct rt_phy_device *phy = (struct rt_phy_device *)dev->user_data;
struct rt_phy_msg *msg = (struct rt_phy_msg *)buffer;
return phy->bus->ops->write(phy->bus, phy->addr, msg->reg, &(msg->value), 4);
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops phy_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
phy_device_read,
phy_device_write,
RT_NULL,
};
#endif
/*
* phy device register
*/
rt_err_t rt_hw_phy_register(struct rt_phy_device *phy, const char *name)
{
rt_err_t ret;
struct rt_device *device;
device = &(phy->parent);
device->type = RT_Device_Class_PHY;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = phy_ops;
#else
device->init = NULL;
device->open = NULL;
device->close = NULL;
device->read = phy_device_read;
device->write = phy_device_write;
device->control = NULL;
#endif
device->user_data = phy;
/* register a character device */
ret = rt_device_register(device, name, RT_DEVICE_FLAG_RDWR);
return ret;
}

View File

@ -821,6 +821,7 @@ static char *const device_type_str[] =
"Miscellaneous Device", "Miscellaneous Device",
"Sensor Device", "Sensor Device",
"Touch Device", "Touch Device",
"Phy Device",
"Unknown" "Unknown"
}; };

View File

@ -863,6 +863,7 @@ enum rt_device_class_type
RT_Device_Class_Miscellaneous, /**< Miscellaneous device */ RT_Device_Class_Miscellaneous, /**< Miscellaneous device */
RT_Device_Class_Sensor, /**< Sensor device */ RT_Device_Class_Sensor, /**< Sensor device */
RT_Device_Class_Touch, /**< Touch device */ RT_Device_Class_Touch, /**< Touch device */
RT_Device_Class_PHY, /**< PHY device */
RT_Device_Class_Unknown /**< unknown device */ RT_Device_Class_Unknown /**< unknown device */
}; };