diff --git a/components/libc/newlib/math.c b/components/libc/newlib/math.c deleted file mode 100644 index 61418f25f3..0000000000 --- a/components/libc/newlib/math.c +++ /dev/null @@ -1,260 +0,0 @@ -#include - -/* - * COPYRIGHT: See COPYING in the top level directory - * PROJECT: ReactOS CRT - * FILE: lib/crt/math/cos.c - * PURPOSE: Generic C Implementation of cos - * PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org) - */ - -#define PRECISION 9 - -static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.}; -static double cos_sign_tbl[] = {1,-1,-1,1}; - -static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.}; -static double sin_sign_tbl[] = {1,-1,-1,1}; - -double sin(double x) -{ - int quadrant; - double x2, result; - - /* Calculate the quadrant */ - quadrant = x * (2./M_PI); - - /* Get offset inside quadrant */ - x = x - quadrant * (M_PI/2.); - - /* Normalize quadrant to [0..3] */ - quadrant = (quadrant - 1) & 0x3; - - /* Fixup value for the generic function */ - x += sin_off_tbl[quadrant]; - - /* Calculate the negative of the square of x */ - x2 = - (x * x); - - /* This is an unrolled taylor series using iterations - * Example with 4 iterations: - * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - * To save multiplications and to keep the precision high, it's performed - * like this: - * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!)))) - */ - - /* Start with 0, compiler will optimize this away */ - result = 0; - -#if (PRECISION >= 10) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20); - result *= x2; -#endif -#if (PRECISION >= 9) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18); - result *= x2; -#endif -#if (PRECISION >= 8) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16); - result *= x2; -#endif -#if (PRECISION >= 7) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14); - result *= x2; -#endif -#if (PRECISION >= 6) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12); - result *= x2; -#endif -#if (PRECISION >= 5) - result += 1./(1.*2*3*4*5*6*7*8*9*10); - result *= x2; -#endif - result += 1./(1.*2*3*4*5*6*7*8); - result *= x2; - - result += 1./(1.*2*3*4*5*6); - result *= x2; - - result += 1./(1.*2*3*4); - result *= x2; - - result += 1./(1.*2); - result *= x2; - - result += 1; - - /* Apply correct sign */ - result *= sin_sign_tbl[quadrant]; - - return result; -} - -double cos(double x) -{ - int quadrant; - double x2, result; - - /* Calculate the quadrant */ - quadrant = x * (2./M_PI); - - /* Get offset inside quadrant */ - x = x - quadrant * (M_PI/2.); - - /* Normalize quadrant to [0..3] */ - quadrant = quadrant & 0x3; - - /* Fixup value for the generic function */ - x += cos_off_tbl[quadrant]; - - /* Calculate the negative of the square of x */ - x2 = - (x * x); - - /* This is an unrolled taylor series using iterations - * Example with 4 iterations: - * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - * To save multiplications and to keep the precision high, it's performed - * like this: - * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!)))) - */ - - /* Start with 0, compiler will optimize this away */ - result = 0; - -#if (PRECISION >= 10) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20); - result *= x2; -#endif -#if (PRECISION >= 9) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18); - result *= x2; -#endif -#if (PRECISION >= 8) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16); - result *= x2; -#endif -#if (PRECISION >= 7) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14); - result *= x2; -#endif -#if (PRECISION >= 6) - result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12); - result *= x2; -#endif -#if (PRECISION >= 5) - result += 1./(1.*2*3*4*5*6*7*8*9*10); - result *= x2; -#endif - result += 1./(1.*2*3*4*5*6*7*8); - result *= x2; - - result += 1./(1.*2*3*4*5*6); - result *= x2; - - result += 1./(1.*2*3*4); - result *= x2; - - result += 1./(1.*2); - result *= x2; - - result += 1; - - /* Apply correct sign */ - result *= cos_sign_tbl[quadrant]; - - return result; -} - -static const int N = 100; - -double coef(int n) -{ - double t; - - if (n == 0) - { - return 0; - } - - t = 1.0/n; - - if (n%2 == 0) - { - t = -t; - } - - return t; -} - -double horner(double x) -{ - double u = coef(N); - int i; - - for(i=N-1; i>=0; i--) - { - u = u*x + coef(i); - } - - return u; -} - -double sqrt(double b) -{ - double x = 1; - int step = 0; - - while ((x*x-b<-0.000000000000001 || x*x-b>0.000000000000001) && step<50) - { - x = (b/x+x)/2.0; - step++; - } - return x; -} - -double ln(double x) -{ - int i; - - if (x > 1.5) - { - for(i=0; x>1.25; i++) - { - x = sqrt(x); - } - return (1<0) - { - for(i=0; x<0.7; i++) - { - x = sqrt(x); - } - return (1< 0) - { - return horner(x-1); - } -} - -double exp(double x) -{ - double sum = 1; - int i; - - for(i=N; i>0; i--) - { - sum /= i; - sum *= x; - sum += 1; - } - return sum; -} - -double pow(double m, double n) -{ - return exp(n*ln(m)); -} -