rt-thread/bsp/nuvoton/libraries/ma35/rtt_port/drv_sys.c

369 lines
9.3 KiB
C
Raw Normal View History

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-11-11 Wayne First version
*
******************************************************************************/
#include <rthw.h>
#include <rtthread.h>
#include "drv_sys.h"
#include <stdio.h>
#define LOG_TAG "drv.sys"
#undef DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL LOG_LVL_DBG
#define DBG_COLOR
#include <rtdbg.h>
#define DEF_RAISING_CPU_FREQUENCY
//Dont enable #define DEF_RAISING_CPU_VOLTAGE
void machine_shutdown(void)
{
rt_kprintf("machine_shutdown...\n");
rt_hw_interrupt_disable();
/* Unlock */
SYS_UnlockReg();
while (1);
}
void machine_reset(void)
{
rt_kprintf("machine_reset...\n");
rt_hw_interrupt_disable();
/* Unlock */
SYS_UnlockReg();
SYS->IPRST0 = SYS_IPRST0_CHIPRST_Msk;
SYS->IPRST0 = 0;
while (1);
}
int reboot(int argc, char **argv)
{
machine_reset();
return 0;
}
MSH_CMD_EXPORT(reboot, Reboot System);
void nu_sys_ip_reset(uint32_t u32ModuleIndex)
{
SYS_ResetModule(u32ModuleIndex);
}
E_SYS_USB0_ID nu_sys_usb0_role(void)
{
#if 0
/* Check Role on USB0 dual-role port. */
/*
[17] USB0_IDS
USB0_ID Status
0 = USB port 0 used as a USB device port.
1 = USB port 0 used as a USB host port.
*/
return ((inpw(REG_SYS_MISCISR) & (1 << 17)) > 0) ? USB0_ID_HOST : USB0_ID_DEVICE;
#else
return USB0_ID_DEVICE;
#endif
}
void nu_sys_check_register(S_NU_REG *psNuReg)
{
if (psNuReg == RT_NULL)
return;
while (psNuReg->vu32RegAddr != 0)
{
vu32 vc32RegValue = *((vu32 *)psNuReg->vu32RegAddr);
vu32 vc32BMValue = vc32RegValue & psNuReg->vu32BitMask;
LOG_I("[%3s] %32s(0x%08x) %24s(0x%08x): 0x%08x(AndBitMask:0x%08x)\n",
(psNuReg->vu32Value == vc32BMValue) ? "Ok" : "!OK",
psNuReg->szVName,
psNuReg->vu32Value,
psNuReg->szRegName,
psNuReg->vu32RegAddr,
vc32RegValue,
vc32BMValue);
psNuReg++;
}
}
static int nu_tempsen_init()
{
SYS->TSENSRFCR &= ~SYS_TSENSRFCR_PD_Msk; // Disable power down, don't wait, takes double conv time (350ms * 2)
return 0;
}
static int nu_tempsen_get_value()
{
char sztmp[32];
double temp;
static rt_tick_t _old_tick = 0;
static int32_t count = 0;
_old_tick = rt_tick_get();
// Wait valid bit set
while ((SYS->TSENSRFCR & SYS_TSENSRFCR_DATAVALID_Msk) == 0)
{
// 700 ms after clear pd bit. other conversion takes 350 ms
if (rt_tick_get() > (500 + _old_tick))
{
return -1;
}
}
if (++count == 8)
{
count = 0;
temp = (double)((SYS->TSENSRFCR & 0x0FFF0000) >> 16) * 274.3531 / 4096.0 - 93.3332;
snprintf(sztmp, sizeof(sztmp), "Temperature: %.1f\n", temp);
LOG_I("%s", sztmp);
}
// Clear Valid bit
SYS->TSENSRFCR = SYS_TSENSRFCR_DATAVALID_Msk;
return 0;
}
void nu_tempsen_hook(void)
{
nu_tempsen_get_value();
}
static int nu_tempsen_go(void)
{
rt_err_t err = rt_thread_idle_sethook(nu_tempsen_hook);
if (err != RT_EOK)
{
LOG_E("set %s idle hook failed!\n", __func__);
return -1;
}
nu_tempsen_init();
return 0;
}
//INIT_APP_EXPORT(nu_tempsen_go);
MSH_CMD_EXPORT(nu_tempsen_go, go tempsen);
#define REG_SYS_CHIPCFG (SYS_BASE + 0x1F4)
uint32_t nu_chipcfg_ddrsize(void)
{
uint32_t u32ChipCfg = *((vu32 *)REG_SYS_CHIPCFG);
return ((u32ChipCfg & 0xF0000) != 0) ? (1 << ((u32ChipCfg & 0xF0000) >> 16)) << 20 : 0;
}
void nu_chipcfg_dump(void)
{
uint32_t u32ChipCfg = *((vu32 *)REG_SYS_CHIPCFG);
uint32_t u32ChipCfg_DDRSize = ((u32ChipCfg & 0xF0000) != 0) ? 1 << ((u32ChipCfg & 0xF0000) >> 16) : 0;
uint32_t u32ChipCfg_DDRType = ((u32ChipCfg & 0x8000) >> 15);
LOG_I("CHIPCFG: 0x%08x ", u32ChipCfg);
LOG_I("DDR SDRAM Size: %d MB", u32ChipCfg_DDRSize);
LOG_I("MCP DDR TYPE: %s", u32ChipCfg_DDRSize ? (u32ChipCfg_DDRType ? "DDR2" : "DDR3/3L") : "Unknown");
}
void nu_clock_dump(void)
{
LOG_I("HXT: %d Hz", CLK_GetHXTFreq());
LOG_I("LXT: %d Hz", CLK_GetLXTFreq());
LOG_I("CAPLL: %d Hz(OpMode=%d)", CLK_GetPLLClockFreq(CAPLL), CLK_GetPLLOpMode(CAPLL));
LOG_I("DDRPLL: %d Hz(OpMode=%d)", CLK_GetPLLClockFreq(DDRPLL), CLK_GetPLLOpMode(DDRPLL));
LOG_I("APLL: %d Hz(OpMode=%d)", CLK_GetPLLClockFreq(APLL), CLK_GetPLLOpMode(APLL));
LOG_I("EPLL: %d Hz(OpMode=%d)", CLK_GetPLLClockFreq(EPLL), CLK_GetPLLOpMode(EPLL));
LOG_I("VPLL: %d Hz(OpMode=%d)", CLK_GetPLLClockFreq(VPLL), CLK_GetPLLOpMode(VPLL));
LOG_I("M4-CPU: %d Hz", CLK_GetCPUFreq());
LOG_I("SYSCLK0: %d Hz", CLK_GetSYSCLK0Freq());
LOG_I("SYSCLK1: %d Hz", CLK_GetSYSCLK1Freq());
LOG_I("HCLK0: %d Hz", CLK_GetHCLK0Freq());
LOG_I("HCLK1: %d Hz", CLK_GetHCLK1Freq());
LOG_I("HCLK2: %d Hz", CLK_GetHCLK2Freq());
LOG_I("HCLK3: %d Hz", CLK_GetHCLK3Freq());
LOG_I("PCLK0: %d Hz", CLK_GetPCLK0Freq());
LOG_I("PCLK1: %d Hz", CLK_GetPCLK1Freq());
LOG_I("PCLK2: %d Hz", CLK_GetPCLK2Freq());
LOG_I("PCLK3: %d Hz", CLK_GetPCLK3Freq());
LOG_I("PCLK4: %d Hz", CLK_GetPCLK4Freq());
}
static const char *szClockName [] =
{
"HXT",
"LXT",
"N/A",
"LIRC",
"HIRC",
"N/A",
"CAPLL",
"N/A",
"DDRPLL",
"EPLL",
"APLL",
"VPLL"
};
#define CLOCKNAME_SIZE (sizeof(szClockName)/sizeof(char*))
void nu_clock_isready(void)
{
uint32_t u32IsReady, i;
for (i = 0; i < CLOCKNAME_SIZE; i++)
{
if (i == 5 || i == 7 || i == 2) continue;
u32IsReady = CLK_WaitClockReady(1 << i);
LOG_I("%s: %s\n", szClockName[i], (u32IsReady == 1) ? "[Stable]" : "[Unstable]");
}
}
extern uint32_t ma35d1_set_cpu_voltage(uint32_t sys_clk, uint32_t u32Vol);
void nu_clock_raise(void)
{
uint32_t u32PllRefClk;
/* Unlock protected registers */
SYS_UnlockReg();
/* Enable HXT, LXT */
CLK->PWRCTL |= (CLK_PWRCTL_HXTEN_Msk | CLK_PWRCTL_HIRCEN_Msk);
if (CLK->STATUS & CLK_STATUS_HXTSTB_Msk) // Check Ready
{
u32PllRefClk = __HXT;
}
else if (CLK->STATUS & CLK_STATUS_HIRCSTB_Msk) // Check Ready
{
u32PllRefClk = __HIRC; // HXT_CHECK_FAIL
}
else
{
return;
}
CLK_SetPLLFreq(VPLL, PLL_OPMODE_INTEGER, u32PllRefClk, 102000000ul);
CLK_SetPLLFreq(APLL, PLL_OPMODE_INTEGER, u32PllRefClk, 144000000ul);
CLK_SetPLLFreq(EPLL, PLL_OPMODE_INTEGER, u32PllRefClk, 500000000ul);
/* Waiting clock ready */
CLK_WaitClockReady(CLK_STATUS_VPLLSTB_Msk | CLK_STATUS_APLLSTB_Msk | CLK_STATUS_EPLLSTB_Msk);
#if defined(DEF_RAISING_CPU_FREQUENCY)
/* Switch clock source of CA35 to DDRPLL before raising CA-PLL */
CLK->CLKSEL0 = (CLK->CLKSEL0 & (~CLK_CLKSEL0_CA35CKSEL_Msk)) | CLK_CLKSEL0_CA35CKSEL_DDRPLL;
#if defined(DEF_RAISING_CPU_VOLTAGE)
if (ma35d1_set_cpu_voltage(CLK_GetPLLClockFreq(SYSPLL), 0x68))
{
CLK_SetPLLFreq(CAPLL, PLL_OPMODE_INTEGER, u32PllRefClk, 1000000000ul);
}
else
#endif
{
#if defined(DEF_RAISING_CPU_VOLTAGE)
ma35d1_set_cpu_voltage(CLK_GetPLLClockFreq(SYSPLL), 0x5F);
#endif
CLK_SetPLLFreq(CAPLL, PLL_OPMODE_INTEGER, u32PllRefClk, 800000000ul);
}
/* Waiting clock ready */
CLK_WaitClockReady(CLK_STATUS_CAPLLSTB_Msk);
/* Switch clock source of CA35 to CA-PLL after raising */
CLK->CLKSEL0 = (CLK->CLKSEL0 & (~CLK_CLKSEL0_CA35CKSEL_Msk)) | CLK_CLKSEL0_CA35CKSEL_CAPLL;
#endif
}
#ifdef FINSH_USING_MSH
MSH_CMD_EXPORT(nu_clock_dump, Dump all clocks);
MSH_CMD_EXPORT(nu_clock_raise, Raise clock);
MSH_CMD_EXPORT(nu_clock_isready, Check PLL clocks);
#endif
void devmem(int argc, char *argv[])
{
volatile unsigned int u32Addr;
unsigned int value = 0, mode = 0;
if (argc < 2 || argc > 3)
{
goto exit_devmem;
}
if (argc == 3)
{
if (sscanf(argv[2], "0x%x", &value) != 1)
goto exit_devmem;
mode = 1; //Write
}
if (sscanf(argv[1], "0x%x", &u32Addr) != 1)
goto exit_devmem;
else if (u32Addr & (4 - 1))
goto exit_devmem;
if (mode)
{
*((volatile uint32_t *)u32Addr) = value;
}
LOG_I("0x%08x\n", *((volatile uint32_t *)u32Addr));
return;
exit_devmem:
rt_kprintf("Read: devmem <physical address in hex>\n");
rt_kprintf("Write: devmem <physical address in hex> <value in hex format>\n");
return;
}
MSH_CMD_EXPORT(devmem, dump device registers);
void devmem2(int argc, char *argv[])
{
volatile unsigned int u32Addr;
unsigned int value = 0, word_count = 1;
if (argc < 2 || argc > 3)
{
goto exit_devmem;
}
if (argc == 3)
{
if (sscanf(argv[2], "%d", &value) != 1)
goto exit_devmem;
word_count = value;
}
if (sscanf(argv[1], "0x%x", &u32Addr) != 1)
goto exit_devmem;
else if (u32Addr & (4 - 1))
goto exit_devmem;
if (word_count > 0)
{
LOG_HEX("devmem", 16, (void *)u32Addr, word_count * sizeof(rt_base_t));
}
return;
exit_devmem:
rt_kprintf("devmem2: <physical address in hex> <count in dec>\n");
return;
}
MSH_CMD_EXPORT(devmem2, dump device registers);