rt-thread/bsp/cvitek/drivers/libraries/eth/cvi_eth_phy.c

640 lines
15 KiB
C
Raw Normal View History

2024-04-30 05:47:50 +08:00
/*
* Copyright (C) Cvitek Co., Ltd. 2019-2020. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
2024-04-30 05:47:50 +08:00
#include <rtthread.h>
#include "cvi_eth_phy.h"
#define CSI_ETH_AUTONEG_DISABLE (0) ///< Disable auto-negotiation
#define CSI_ETH_AUTONEG_ENABLE (1) ///< Enable auto-negotiation
#define CONFIG_ETH_PHY_NUM 2
eth_phy_priv_t phy_priv_list[CONFIG_ETH_PHY_NUM];
extern eth_phy_dev_t cv181x_device;
/* registered phy devices */
static eth_phy_dev_t *const eth_phy_devices[] = {
&cv181x_device,
NULL /* Must be the last item */
};
int32_t eth_phy_read(eth_phy_priv_t *priv, uint8_t phy_addr, uint8_t reg_addr, uint16_t *data)
{
RT_ASSERT(priv);
RT_ASSERT(priv->phy_read);
return priv->phy_read(phy_addr, reg_addr, data);
}
int32_t eth_phy_write(eth_phy_priv_t *priv, uint8_t phy_addr, uint8_t reg_addr, uint16_t data)
{
RT_ASSERT(priv);
RT_ASSERT(priv->phy_write);
return priv->phy_write(phy_addr, reg_addr, data);
}
static eth_phy_dev_t *eth_get_phy_device(eth_phy_priv_t *priv, uint8_t phy_addr, uint32_t phy_id)
{
eth_phy_dev_t *p = eth_phy_devices[0];
int32_t i = 0;
while (p != NULL)
{
if ((p->phy_id & p->mask) == (phy_id & p->mask))
{
p->phy_addr = phy_addr;
p->advertising = p->supported = p->features;
return p;
}
i ++;
p = eth_phy_devices[i];
}
return NULL;
}
static int32_t eth_read_phy_id(eth_phy_priv_t *priv, uint8_t phy_addr, uint32_t *phy_id)
{
int32_t ret;
uint16_t data;
uint32_t id;
ret = eth_phy_read(priv, phy_addr, CVI_MII_PHYSID1, &data);
if (ret != 0)
{
return ret;
}
id = data;
id = (id & 0xffff) << 16;
ret = eth_phy_read(priv, phy_addr, CVI_MII_PHYSID2, &data);
if (ret != 0)
{
return ret;
}
id |= (data & 0xffff);
if (phy_id != NULL)
{
*phy_id = id;
}
return 0;
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int32_t ffs(int32_t x)
{
int32_t r = 1;
if (!x)
return 0;
if (!(x & 0xffff))
{
x >>= 16;
r += 16;
}
if (!(x & 0xff))
{
x >>= 8;
r += 8;
}
if (!(x & 0xf))
{
x >>= 4;
r += 4;
}
if (!(x & 3))
{
x >>= 2;
r += 2;
}
if (!(x & 1))
{
x >>= 1;
r += 1;
}
return r;
}
2024-04-30 05:47:50 +08:00
static eth_phy_dev_t * eth_get_phy_by_mask(eth_phy_priv_t *priv, uint32_t phy_mask, phy_if_mode_t interface)
{
uint32_t phy_id = 0xffffffff;
while (phy_mask)
{
int32_t addr = ffs(phy_mask) - 1;
int32_t r = eth_read_phy_id(priv, addr, &phy_id);
/* If the PHY ID is mostly f's, we didn't find anything */
if (r == 0 && (phy_id & 0x1fffffff) != 0x1fffffff)
return eth_get_phy_device(priv, addr, phy_id);
phy_mask &= ~(1 << addr);
}
return NULL;
}
static void eth_config(void)
{
unsigned int val;
val = mmio_read_32(ETH_PHY_BASE) & ETH_PHY_INIT_MASK;
mmio_write_32(ETH_PHY_BASE, (val | ETH_PHY_SHUTDOWN) & ETH_PHY_RESET);
rt_thread_mdelay(1);
mmio_write_32(ETH_PHY_BASE, val & ETH_PHY_POWERUP & ETH_PHY_RESET);
rt_thread_mdelay(20);
mmio_write_32(ETH_PHY_BASE, (val & ETH_PHY_POWERUP) | ETH_PHY_RESET_N);
rt_thread_mdelay(1);
}
static eth_phy_dev_t *eth_connect_phy(eth_phy_priv_t *priv, uint32_t phy_mask, phy_if_mode_t interface)
{
int32_t i;
eth_phy_dev_t *phydev = NULL;
/* config eth internal phy on ASIC board */
eth_config();
#ifdef CONFIG_PHY_ADDR
phy_mask = 1 << CONFIG_PHY_ADDR;
#endif
for (i = 0; i < 5; i++)
{
phydev = eth_get_phy_by_mask(priv, phy_mask, interface);
if (phydev)
return phydev;
}
rt_kprintf("\n PHY: ");
while (phy_mask)
{
int32_t addr = ffs(phy_mask) - 1;
rt_kprintf("%d ", addr);
phy_mask &= ~(1 << addr);
}
rt_kprintf("not found\n");
return NULL;
}
int32_t eth_phy_reset(eth_phy_handle_t handle)
{
RT_ASSERT(handle);
eth_phy_dev_t *dev = (eth_phy_dev_t *)handle;
RT_ASSERT(dev->priv);
uint16_t data;
int32_t ret;
int32_t timeout = 600; /* in ms */
eth_phy_priv_t *priv = dev->priv;
uint32_t phy_addr = dev->phy_addr;
/* Soft reset */
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMCR, &data);
if (ret != 0)
{
rt_kprintf("eth phy read failed\n");
return ret;
}
ret = eth_phy_write(priv, phy_addr, CVI_MII_BMCR, data | CVI_BMCR_RESET);
if (ret != 0)
{
rt_kprintf("eth phy write failed\n");
return ret;
}
#ifdef CONFIG_PHY_RESET_DELAY
rt_hw_us_delay(CONFIG_PHY_RESET_DELAY); /* Intel LXT971A needs this */
#endif
/*
* Wait up to 0.6s for the reset sequence to finish. According to
* IEEE 802.3, Section 2, Subsection 22.2.4.1.1 a PHY reset may take
* up to 0.5 s.
*/
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMCR, &data);
while ((data & CVI_BMCR_RESET) && timeout--)
{
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMCR, &data);
if (ret != 0) {
return ret;
}
rt_thread_mdelay(1);
}
if (data & CVI_BMCR_RESET)
{
rt_kprintf("eth phy reset timed out\n");
return -1;
}
return 0;
}
int32_t eth_phy_config(eth_phy_handle_t handle)
{
RT_ASSERT(handle);
eth_phy_dev_t *dev = (eth_phy_dev_t *)handle;
if (dev->config)
{
return dev->config(handle);
}
return 0;
}
int32_t eth_phy_start(eth_phy_handle_t handle)
{
RT_ASSERT(handle);
eth_phy_dev_t *dev = (eth_phy_dev_t *)handle;
if (dev->start)
{
return dev->start(handle);
}
return 0;
}
int32_t eth_phy_stop(eth_phy_handle_t handle)
{
RT_ASSERT(handle);
eth_phy_dev_t *dev = (eth_phy_dev_t *)handle;
if (dev->start) {
return dev->stop(handle);
}
return 0;
}
int32_t cvi_eth_phy_power_control(eth_phy_handle_t handle, eth_power_state_t state)
{
if (state == CSI_ETH_POWER_FULL)
{
return eth_phy_start(handle);
}
else if (state == CSI_ETH_POWER_OFF)
{
return eth_phy_stop(handle);
}
return 0;
}
int32_t genphy_update_link(eth_phy_dev_t *phy_dev)
{
uint8_t phy_addr = phy_dev->phy_addr;
uint16_t mii_reg;
int32_t ret;
/*
* Wait if the link is up, and autonegotiation is in progress
* (ie - we're capable and it's not done)
*/
ret = eth_phy_read(phy_dev->priv, phy_addr, CVI_MII_BMSR, &mii_reg);
if (ret != 0) {
return ret;
}
/*
* If we already saw the link up, and it hasn't gone down, then
* we don't need to wait for autoneg again
*/
if (phy_dev->link_state && mii_reg & CVI_BMSR_LSTATUS)
return 0;
if ((phy_dev->priv->link_info.autoneg == CSI_ETH_AUTONEG_ENABLE) &&
!(mii_reg & CVI_BMSR_ANEGCOMPLETE)) {
phy_dev->link_state = ETH_LINK_DOWN;
return -1;
2024-04-30 05:47:50 +08:00
} else {
/* Read the link a second time to clear the latched state */
ret = eth_phy_read(phy_dev->priv, phy_addr, CVI_MII_BMSR, &mii_reg);
if (ret != 0) {
return ret;
}
if (mii_reg & CVI_BMSR_LSTATUS)
phy_dev->link_state = ETH_LINK_UP;
else
phy_dev->link_state = ETH_LINK_DOWN;
}
return 0;
}
int32_t eth_phy_update_link(eth_phy_handle_t handle)
{
RT_ASSERT(handle);
eth_phy_dev_t *dev = (eth_phy_dev_t *)handle;
if (dev->update_link) {
return dev->update_link(handle);
} else {
return genphy_update_link(dev);
}
}
static int32_t genphy_config_advert(eth_phy_dev_t *phy_dev)
{
RT_ASSERT(phy_dev->priv);
eth_phy_priv_t *priv = phy_dev->priv;
uint8_t phy_addr = phy_dev->phy_addr;
uint32_t advertise;
uint16_t oldadv, adv, bmsr;
int32_t changed = 0;
int32_t ret;
/* Only allow advertising what this PHY supports */
phy_dev->advertising &= phy_dev->supported;
advertise = phy_dev->advertising;
/* Setup standard advertisement */
ret = eth_phy_read(priv, phy_addr, CVI_MII_ADVERTISE, &adv);
if (ret != 0) {
return ret;
}
oldadv = adv;
if (adv < 0)
return adv;
adv &= ~(CVI_ADVERTISE_ALL | CVI_ADVERTISE_100BASE4 | CVI_ADVERTISE_PAUSE_CAP |
CVI_ADVERTISE_PAUSE_ASYM);
if (advertise & CVI_ADVERTISED_10baseT_Half)
adv |= CVI_ADVERTISE_10HALF;
if (advertise & CVI_ADVERTISED_10baseT_Full)
adv |= CVI_ADVERTISE_10FULL;
if (advertise & CVI_ADVERTISED_100baseT_Half)
adv |= CVI_ADVERTISE_100HALF;
if (advertise & CVI_ADVERTISED_100baseT_Full)
adv |= CVI_ADVERTISE_100FULL;
if (advertise & CVI_ADVERTISED_Pause)
adv |= CVI_ADVERTISE_PAUSE_CAP;
if (advertise & CVI_ADVERTISED_Asym_Pause)
adv |= CVI_ADVERTISE_PAUSE_ASYM;
if (advertise & CVI_ADVERTISED_1000baseX_Half)
adv |= CVI_ADVERTISE_1000XHALF;
if (advertise & CVI_ADVERTISED_1000baseX_Full)
adv |= CVI_ADVERTISE_1000XFULL;
if (adv != oldadv) {
ret = eth_phy_write(priv, phy_addr, CVI_MII_ADVERTISE, adv);
if (ret != 0) {
return ret;
}
changed = 1;
}
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMSR, &bmsr);
if (ret != 0 || bmsr < 0) {
return ret;
}
/* Per 802.3-2008, Section 22.2.4.2.16 Extended status all
* 1000Mbits/sec capable PHYs shall have the CVI_BMSR_ESTATEN bit set to a
* logical 1.
*/
if (!(bmsr & CVI_BMSR_ESTATEN))
return changed;
/* Configure gigabit if it's supported */
ret = eth_phy_read(priv, phy_addr, CVI_MII_CTRL1000, &adv);
if (ret != 0 || adv < 0) {
return ret;
}
oldadv = adv;
adv &= ~(CVI_ADVERTISE_1000FULL | CVI_ADVERTISE_1000HALF);
if (phy_dev->supported & (CVI_SUPPORTED_1000baseT_Half |
CVI_SUPPORTED_1000baseT_Full)) {
if (advertise & CVI_SUPPORTED_1000baseT_Half)
adv |= CVI_ADVERTISE_1000HALF;
if (advertise & CVI_SUPPORTED_1000baseT_Full)
adv |= CVI_ADVERTISE_1000FULL;
}
if (adv != oldadv)
changed = 1;
ret = eth_phy_write(priv, phy_addr, CVI_MII_CTRL1000, adv);
if (ret != 0) {
return ret;
}
return changed;
}
static int32_t genphy_setup_forced(eth_phy_dev_t *phy_dev)
{
RT_ASSERT(phy_dev->priv);
eth_phy_priv_t *priv = phy_dev->priv;
uint8_t phy_addr = phy_dev->phy_addr;
int32_t ctl = CVI_BMCR_ANRESTART;
int32_t ret;
if (CSI_ETH_SPEED_1G == priv->link_info.speed)
ctl |= CVI_BMCR_SPEED1000;
else if (CSI_ETH_SPEED_100M == priv->link_info.speed)
ctl |= CVI_BMCR_SPEED100;
else//CSI_ETH_SPEED_10M == priv->link_info.speed
ctl |= CVI_BMCR_SPEED100;
if (CSI_ETH_DUPLEX_FULL == priv->link_info.duplex)
ctl |= CVI_BMCR_FULLDPLX;
ret = eth_phy_write(priv, phy_addr, CVI_MII_BMCR, ctl);
return ret;
}
int genphy_restart_aneg(eth_phy_dev_t *phy_dev)
{
int32_t ret;
uint16_t ctl;
ret = eth_phy_read(phy_dev->priv, phy_dev->phy_addr, CVI_MII_BMCR, &ctl);
if (ret != 0 || ctl < 0)
return ret;
ctl |= (CVI_BMCR_ANENABLE | CVI_BMCR_ANRESTART);
/* Don't isolate the PHY if we're negotiating */
ctl &= ~(CVI_BMCR_ISOLATE);
ret = eth_phy_write(phy_dev->priv, phy_dev->phy_addr, CVI_MII_BMCR, ctl);
return ret;
}
int32_t genphy_config_aneg(eth_phy_dev_t *phy_dev)
{
RT_ASSERT(phy_dev->priv);
eth_phy_priv_t *priv = phy_dev->priv;
uint8_t phy_addr = phy_dev->phy_addr;
int32_t result;
uint16_t ctl;
int32_t ret;
if (CSI_ETH_AUTONEG_ENABLE != priv->link_info.autoneg)
return genphy_setup_forced(phy_dev);
result = genphy_config_advert(phy_dev);
if (result < 0) /* error */
return result;
if (result == 0) {
/* Advertisment hasn't changed, but maybe aneg was never on to
* begin with? Or maybe phy was isolated? */
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMCR, &ctl);
if (ret != 0 || ctl < 0)
return ret;
if (!(ctl & CVI_BMCR_ANENABLE) || (ctl & CVI_BMCR_ISOLATE))
result = 1; /* do restart aneg */
}
/* Only restart aneg if we are advertising something different
* than we were before. */
if (result > 0)
result = genphy_restart_aneg(phy_dev);
return result;
}
int32_t genphy_config(eth_phy_dev_t *phy_dev)
{
RT_ASSERT(phy_dev->priv);
eth_phy_priv_t *priv = phy_dev->priv;
uint8_t phy_addr = phy_dev->phy_addr;
int32_t ret;
uint16_t val;
uint32_t features;
features = (CVI_SUPPORTED_TP | CVI_SUPPORTED_MII
| CVI_SUPPORTED_AUI | CVI_SUPPORTED_FIBRE |
CVI_SUPPORTED_BNC);
/* Do we support autonegotiation? */
ret = eth_phy_read(priv, phy_addr, CVI_MII_BMSR, &val);
if (ret != 0 || val < 0)
return ret;
if (val & CVI_BMSR_ANEGCAPABLE)
features |= CVI_SUPPORTED_Autoneg;
if (val & CVI_BMSR_100FULL)
features |= CVI_SUPPORTED_100baseT_Full;
if (val & CVI_BMSR_100HALF)
features |= CVI_SUPPORTED_100baseT_Half;
if (val & CVI_BMSR_10FULL)
features |= CVI_SUPPORTED_10baseT_Full;
if (val & CVI_BMSR_10HALF)
features |= CVI_SUPPORTED_10baseT_Half;
if (val & CVI_BMSR_ESTATEN) {
ret = eth_phy_read(priv, phy_addr, CVI_MII_ESTATUS, &val);
if (ret != 0 || val < 0)
return val;
if (val & CVI_ESTATUS_1000_TFULL)
features |= CVI_SUPPORTED_1000baseT_Full;
if (val & CVI_ESTATUS_1000_THALF)
features |= CVI_SUPPORTED_1000baseT_Half;
if (val & CVI_ESTATUS_1000_XFULL)
features |= CVI_SUPPORTED_1000baseX_Full;
if (val & CVI_ESTATUS_1000_XHALF)
features |= CVI_SUPPORTED_1000baseX_Half;
}
phy_dev->supported &= features;
phy_dev->advertising &= features;
genphy_config_aneg(phy_dev);
return 0;
}
eth_phy_handle_t cvi_eth_phy_init(csi_eth_phy_read_t fn_read, csi_eth_phy_write_t fn_write)
{
eth_phy_dev_t *phy_dev;
eth_phy_priv_t *priv;
uint32_t phy_mask = 0xffffffff;
phy_if_mode_t interface = 0;
RT_ASSERT(fn_read != RT_NULL);
RT_ASSERT(fn_write != RT_NULL);
priv = &phy_priv_list[0];
priv->phy_read = fn_read;
priv->phy_write = fn_write;
priv->link_info.autoneg = CSI_ETH_AUTONEG_ENABLE;
phy_dev = eth_connect_phy(priv, phy_mask, interface);
if (phy_dev == NULL) {
rt_kprintf("No phy device found!\n");
return NULL;
2024-04-30 05:47:50 +08:00
}
rt_kprintf("connect phy id: 0x%X\n", phy_dev->phy_id);
phy_dev->priv = priv;
/* Reset PHY */
eth_phy_reset(phy_dev);
/* Config PHY */
eth_phy_config(phy_dev);
return phy_dev;
}