448 lines
13 KiB
C
Raw Normal View History

/*
* File : mips_asm.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2008 - 2012, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2016<EFBFBD><EFBFBD>9<EFBFBD><EFBFBD>7<EFBFBD><EFBFBD> Urey the first version
*/
#ifndef _MIPS_ASM_H_
#define _MIPS_ASM_H_
/* ********************************************************************* */
/* Interface macro & data definition */
#ifdef __ASSEMBLY__
/******** ASSEMBLER SPECIFIC DEFINITIONS ********/
#ifdef __ghs__
#define ALIGN(x) .##align (1 << (x))
#else
#define ALIGN(x) .##align (x)
#endif
#ifdef __ghs__
#define SET_MIPS3()
#define SET_MIPS0()
#define SET_PUSH()
#define SET_POP()
#else
#define SET_MIPS3() .##set mips3
#define SET_MIPS0() .##set mips0
#define SET_PUSH() .##set push
#define SET_POP() .##set pop
#endif
/* Different assemblers have different requirements for how to
* indicate that the next section is bss :
*
* Some use : .bss
* Others use : .section bss
*
* We select which to use based on _BSS_OLD_, which may be defined
* in makefile.
*/
#ifdef _BSS_OLD_
#define BSS .##section bss
#else
#define BSS .##bss
#endif
#define LEAF(name)\
.##text;\
.##globl name;\
.##ent name;\
name:
#define SLEAF(name)\
.##text;\
.##ent name;\
name:
#ifdef __ghs__
#define END(name)\
.##end name
#else
#define END(name)\
.##size name,.-name;\
.##end name
#endif
#define EXTERN(name)
#else
#define U64 unsigned long long
#define U32 unsigned int
#define U16 unsigned short
#define U8 unsigned char
#define S64 signed long long
#define S32 int
#define S16 short int
#define S8 signed char
//#define bool U8
#ifndef _SIZE_T_
#define _SIZE_T_
#ifdef __ghs__
typedef unsigned int size_t;
#else
typedef unsigned long size_t;
#endif
#endif
/* Sets the result on bPort */
#define BIT_SET(bPort,bBitMask) (bPort |= bBitMask)
#define BIT_CLR(bPort,bBitMask) (bPort &= ~bBitMask)
/* Returns the result */
#define GET_BIT_SET(bPort,bBitMask) (bPort | bBitMask)
#define GET_BIT_CLR(bPort,bBitMask) (bPort & ~bBitMask)
/* Returns 0 if the condition is False & a non-zero value if it is True */
#define TEST_BIT_SET(bPort,bBitMask) (bPort & bBitMask)
#define TEST_BIT_CLR(bPort,bBitMask) ((~bPort) & bBitMask)
/* Split union definitions */
typedef union tunSU16
{
U16 hwHW;
struct tst2U8
{
U8 bB0;
U8 bB1;
}st2U8;
}tunSU16;
typedef union tunSU32
{
U32 wW;
struct tst2U16
{
U16 hwHW0;
U16 hwHW1;
}st2U16;
struct tst4U8
{
U8 bB0;
U8 bB1;
U8 bB2;
U8 bB3;
}st4U8;
}tunSU32;
#endif /* #ifdef __ASSEMBLY__ */
/******** DEFINITIONS FOR BOTH ASSEMBLER AND C ********/
#define NO_ERR 0x00000000 /* operation completed successfully */
#define ERR 0xffffffff /* operation completed not successfully */
#define False 0
#define True !False
#ifndef NULL
#define NULL ((void *)0)
#endif//NULL
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif//MIN
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif//MAX
#define MAXUINT(w) (\
((w) == sizeof(U8)) ? 0xFFU :\
((w) == sizeof(U16)) ? 0xFFFFU :\
((w) == sizeof(U32)) ? 0xFFFFFFFFU : 0\
)
#define MAXINT(w) (\
((w) == sizeof(S8)) ? 0x7F :\
((w) == sizeof(S16)) ? 0x7FFF :\
((w) == sizeof(S32)) ? 0x7FFFFFFF : 0\
)
#define MSK(n) ((1 << (n)) - 1)
#define KUSEG_MSK 0x80000000
#define KSEG_MSK 0xE0000000
#define KUSEGBASE 0x00000000
#define KSEG0BASE 0x80000000
#define KSEG1BASE 0xA0000000
#define KSSEGBASE 0xC0000000
#define KSEG3BASE 0xE0000000
/* Below macros perform the following functions :
*
* KSEG0 : Converts KSEG0/1 or physical addr (below 0.5GB) to KSEG0.
* KSEG1 : Converts KSEG0/1 or physical addr (below 0.5GB) to KSEG1.
* PHYS : Converts KSEG0/1 or physical addr (below 0.5GB) to physical address.
* KSSEG : Not relevant for converting, but used for determining range.
* KSEG3 : Not relevant for converting, but used for determining range.
* KUSEG : Not relevant for converting, but used for determining range.
* KSEG0A : Same as KSEG0 but operates on register rather than constant.
* KSEG1A : Same as KSEG1 but operates on register rather than constant.
* PHYSA : Same as PHYS but operates on register rather than constant.
* CACHED : Alias for KSEG0 macro .
* (Note that KSEG0 cache attribute is determined by K0
* field of Config register, but this is typically cached).
* UNCACHED : Alias for KSEG1 macro .
*/
#ifdef __ASSEMBLY__
#define KSEG0(addr) (((addr) & ~KSEG_MSK) | KSEG0BASE)
#define KSEG1(addr) (((addr) & ~KSEG_MSK) | KSEG1BASE)
#define KSSEG(addr) (((addr) & ~KSEG_MSK) | KSSEGBASE)
#define KSEG3(addr) (((addr) & ~KSEG_MSK) | KSEG3BASE)
#define KUSEG(addr) (((addr) & ~KUSEG_MSK) | KUSEGBASE)
#define PHYS(addr) ( (addr) & ~KSEG_MSK)
#define KSEG0A(reg) and reg, ~KSEG_MSK; or reg, KSEG0BASE
#define KSEG1A(reg) and reg, ~KSEG_MSK; or reg, KSEG1BASE
#define PHYSA(reg) and reg, ~KSEG_MSK
#else
#define KSEG0(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG0BASE)
#define KSEG1(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG1BASE)
#define KSSEG(addr) (((U32)(addr) & ~KSEG_MSK) | KSSEGBASE)
#define KSEG3(addr) (((U32)(addr) & ~KSEG_MSK) | KSEG3BASE)
#define KUSEG(addr) (((U32)(addr) & ~KUSEG_MSK) | KUSEGBASE)
#define PHYS(addr) ((U32)(addr) & ~KSEG_MSK)
#endif
#define CACHED(addr) KSEG0(addr)
#define UNCACHED(addr) KSEG1(addr)
#ifdef __ASSEMBLY__
/* Macroes to access variables at constant addresses
* Compensates for signed 16 bit displacement
* Typical use: li a0, HIKSEG1(ATLAS_ASCIIWORD)
* sw v1, LO_OFFS(ATLAS_ASCIIWORD)(a0)
*/
#define HIKSEG0(addr) ((KSEG0(addr) + 0x8000) & 0xffff0000)
#define HIKSEG1(addr) ((KSEG1(addr) + 0x8000) & 0xffff0000)
#define HI_PART(addr) (((addr) + 0x8000) & 0xffff0000)
#define LO_OFFS(addr) ((addr) & 0xffff)
#endif
/* Most/Least significant 32 bit from 64 bit double word */
#define HI32(data64) ((U32)(data64 >> 32))
#define LO32(data64) ((U32)(data64 & 0xFFFFFFFF))
#if ((!defined(__ASSEMBLY__)) && (!defined(__LANGUAGE_ASSEMBLY)))
#define REG8( addr ) (*(volatile U8 *) (addr))
#define REG16( addr ) (*(volatile U16 *)(addr))
#define REG32( addr ) (*(volatile U32 *)(addr))
#define REG64( addr ) (*(volatile U64 *)(addr))
#endif
/* Register field mapping */
#define REGFIELD(reg, rfld) (((reg) & rfld##_MSK) >> rfld##_SHF)
/* absolute register address, access */
#define REGA(addr) REG32(addr)
/* physical register address, access: base address + offsett */
#define REGP(base,phys) REG32( (U32)(base) + (phys) )
/* relative register address, access: base address + offsett */
#define REG(base,offs) REG32( (U32)(base) + offs##_##OFS )
/* relative register address, access: base address + offsett */
#define REG_8(base,offs) REG8( (U32)(base) + offs##_##OFS )
/* relative register address, access: base address + offsett */
#define REG_16(base,offs) REG16( (U32)(base) + offs##_##OFS )
/* relative register address, access: base address + offsett */
#define REG_64(base,offs) REG64( (U32)(base) + offs##_##OFS )
/**************************************
* Macroes not used by YAMON any more
* (kept for backwards compatibility)
*/
/* register read field */
#define REGARD(addr,fld) ((REGA(addr) & addr##_##fld##_##MSK) \
>> addr##_##fld##_##SHF)
/* register write numeric field value */
#define REGAWRI(addr,fld,intval) ((REGA(addr) & ~(addr##_##fld##_##MSK))\
| ((intval) << addr##_##fld##_##SHF))
/* register write enumerated field value */
#define REGAWRE(addr,fld,enumval) ((REGA(addr) & ~(addr##_##fld##_##MSK))\
| ((addr##_##fld##_##enumval) << addr##_##fld##_##SHF))
/* Examples:
*
* exccode = REGARD(CPU_CAUSE,EXC);
*
* REGA(SDR_CONTROL) = REGAWRI(OSG_CONTROL,TMO,17)
* | REGAWRE(OSG_CONTROL,DTYPE,PC1);
*/
/* register read field */
#define REGRD(base,offs,fld) ((REG(base,offs) & offs##_##fld##_##MSK) \
>> offs##_##fld##_##SHF)
/* register write numeric field value */
#define REGWRI(base,offs,fld,intval)((REG(base,offs)& ~(offs##_##fld##_##MSK))\
| (((intval) << offs##_##fld##_##SHF) & offs##_##fld##_##MSK))
/* register write enumerated field value */
#define REGWRE(base,offs,fld,enumval)((REG(base,offs) & ~(offs##_##fld##_##MSK))\
| ((offs##_##fld##_##enumval) << offs##_##fld##_##SHF))
/* physical register read field */
#define REGPRD(base,phys,fld) ((REGP(base,phys) & phys##_##fld##_##MSK) \
>> phys##_##fld##_##SHF)
/* physical register write numeric field value */
#define REGPWRI(base,phys,fld,intval)((REGP(base,phys)& ~(phys##_##fld##_##MSK))\
| ((intval) << phys##_##fld##_##SHF))
/* physical register write enumerated field value */
#define REGPWRE(base,phys,fld,enumval)((REGP(base,phys) & ~(phys##_##fld##_##MSK))\
| ((phys##_##fld##_##enumval) << phys##_##fld##_##SHF))
/*
* End of macroes not used by YAMON any more
*********************************************/
/* Endian related macros */
#define SWAP_BYTEADDR32( addr ) ( (addr) ^ 0x3 )
#define SWAP_U16ADDR32( addr ) ( (addr) ^ 0x2 )
/* Set byte address to little endian format */
#ifdef EL
#define SWAP_BYTEADDR_EL(addr) addr
#else
#define SWAP_BYTEADDR_EL(addr) SWAP_BYTEADDR32( addr )
#endif
/* Set byte address to big endian format */
#ifdef EB
#define SWAP_BYTEADDR_EB(addr) addr
#else
#define SWAP_BYTEADDR_EB(addr) SWAP_BYTEADDR32( addr )
#endif
/* Set U16 address to little endian format */
#ifdef EL
#define SWAP_U16ADDR_EL(addr) addr
#else
#define SWAP_U16ADDR_EL(addr) SWAP_U16ADDR32( addr )
#endif
/* Set U16 address to big endian format */
#ifdef EB
#define SWAP_U16ADDR_EB(addr) addr
#else
#define SWAP_U16ADDR_EB(addr) SWAP_U16ADDR32( addr )
#endif
#ifdef EL
#define REGW32LE(addr, data) REG32(addr) = (data)
#define REGR32LE(addr, data) (data) = REG32(addr)
#else
#define REGW32LE(addr, data) REG32(addr) = SWAPEND32(data)
#define REGR32LE(addr, data) (data) = REG32(addr), (data) = SWAPEND32(data)
#endif
/* Set of 'LE'-macros, convert by BE: */
#ifdef EL
#define CPU_TO_LE32( value ) (value)
#define LE32_TO_CPU( value ) (value)
#define CPU_TO_LE16( value ) (value)
#define LE16_TO_CPU( value ) (value)
#else
#define CPU_TO_LE32( value ) ( ( ((U32)value) << 24) | \
((0x0000FF00UL & ((U32)value)) << 8) | \
((0x00FF0000UL & ((U32)value)) >> 8) | \
( ((U32)value) >> 24) )
#define LE32_TO_CPU( value ) CPU_TO_LE32( value )
#define CPU_TO_LE16( value ) ( ((U16)(((U16)value) << 8)) | \
((U16)(((U16)value) >> 8)) )
#define LE16_TO_CPU( value ) CPU_TO_LE16( value )
#endif
/* Set of 'BE'-macros, convert by LE: */
#ifdef EB
#define CPU_TO_BE32( value ) (value)
#define BE32_TO_CPU( value ) (value)
#define CPU_TO_BE16( value ) (value)
#define BE16_TO_CPU( value ) (value)
#else
#define CPU_TO_BE32( value ) ( ( ((U32)value) << 24) | \
((0x0000FF00UL & ((U32)value)) << 8) | \
((0x00FF0000UL & ((U32)value)) >> 8) | \
( ((U32)value) >> 24) )
#define BE32_TO_CPU( value ) CPU_TO_BE32( value )
#define CPU_TO_BE16( value ) ( ((U16)(((U16)value) << 8)) | \
((U16)(((U16)value) >> 8)) )
#define BE16_TO_CPU( value ) CPU_TO_BE16( value )
#endif
/* Control characters */
#define CTRL_A ('A'-0x40)
#define CTRL_B ('B'-0x40)
#define CTRL_C ('C'-0x40)
#define CTRL_D ('D'-0x40)
#define CTRL_E ('E'-0x40)
#define CTRL_F ('F'-0x40)
#define CTRL_H ('H'-0x40)
#define CTRL_K ('K'-0x40)
#define CTRL_N ('N'-0x40)
#define CTRL_P ('P'-0x40)
#define CTRL_U ('U'-0x40)
#define BACKSPACE 0x08
#define DEL 0x7F
#define TAB 0x09
#define CR 0x0D /* Enter Key */
#define LF 0x0A
#define ESC 0x1B
#define SP 0x20
#define CSI 0x9B
/* DEF2STR(x) converts #define symbol to string */
#define DEF2STR1(x) #x
#define DEF2STR(x) DEF2STR1(x)
#endif /* _MIPS_ASM_H_ */