569 lines
15 KiB
C
Raw Normal View History

2020-12-02 17:28:35 +08:00
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-31 Zero-Free first implementation
* 2020-07-02 thread-liu Porting for STM32MP1
*/
#include "board.h"
#ifdef BSP_USING_AUDIO
#include "drv_wm8994.h"
#include <dfs_posix.h>
#define DRV_DEBUG
#define LOG_TAG "drv.sound"
#include <drv_log.h>
#define SOUND_BUS_NAME "i2c2"
#define TX_FIFO_SIZE (4096)
#if defined(__CC_ARM) || defined(__CLANG_ARM)
__attribute__((at(0x2FFC2000))) static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE];
2020-12-02 17:28:35 +08:00
#elif defined ( __GNUC__ )
static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE] __attribute__((section(".AudioSection")));
2020-12-02 17:28:35 +08:00
#elif defined(__ICCARM__)
#pragma location = 0x2FFC2000
__no_init static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE];
2020-12-02 17:28:35 +08:00
#endif
struct sound_device
{
struct rt_audio_device audio;
struct rt_audio_configure replay_config;
rt_device_t decoder;
rt_uint8_t *tx_fifo;
rt_uint8_t volume;
};
static struct sound_device snd_dev = {0};
SAI_HandleTypeDef hsai_BlockA2 = {0};
extern DMA_HandleTypeDef hdma_sai2_a;
static void rt_hw_sai2a_init(void)
{
hsai_BlockA2.Instance = SAI2_Block_A;
hsai_BlockA2.Init.Protocol = SAI_FREE_PROTOCOL;
hsai_BlockA2.Init.AudioMode = SAI_MODEMASTER_TX;
hsai_BlockA2.Init.DataSize = SAI_DATASIZE_16;
hsai_BlockA2.Init.FirstBit = SAI_FIRSTBIT_MSB;
hsai_BlockA2.Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
hsai_BlockA2.Init.Synchro = SAI_ASYNCHRONOUS;
hsai_BlockA2.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
hsai_BlockA2.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
hsai_BlockA2.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF;
hsai_BlockA2.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_44K;
hsai_BlockA2.Init.SynchroExt = SAI_SYNCEXT_DISABLE;
hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE;
hsai_BlockA2.Init.CompandingMode = SAI_NOCOMPANDING;
hsai_BlockA2.Init.TriState = SAI_OUTPUT_NOTRELEASED;
hsai_BlockA2.Init.PdmInit.Activation = DISABLE;
hsai_BlockA2.Init.PdmInit.MicPairsNbr = 0;
hsai_BlockA2.Init.PdmInit.ClockEnable = SAI_PDM_CLOCK1_ENABLE;
hsai_BlockA2.FrameInit.FrameLength = 64;
hsai_BlockA2.FrameInit.ActiveFrameLength = 32;
hsai_BlockA2.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
hsai_BlockA2.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
hsai_BlockA2.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
hsai_BlockA2.SlotInit.FirstBitOffset = 0;
hsai_BlockA2.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE;
hsai_BlockA2.SlotInit.SlotNumber = 2;
hsai_BlockA2.SlotInit.SlotActive = (SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1 | SAI_SLOTACTIVE_2 | SAI_SLOTACTIVE_3);
if(HAL_OK != HAL_SAI_Init(&hsai_BlockA2))
{
Error_Handler();
}
/* Enable SAI to generate clock used by audio driver */
__HAL_SAI_ENABLE(&hsai_BlockA2);
}
void DMA1_Stream0_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_sai2_a);
}
void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
{
if (hsai == &hsai_BlockA2)
{
rt_audio_tx_complete(&snd_dev.audio);
}
}
void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
{
if (hsai == &hsai_BlockA2)
{
rt_audio_tx_complete(&snd_dev.audio);
}
}
void SAIA_Frequency_Set(uint32_t frequency)
{
/* Disable SAI peripheral to allow access to SAI internal registers */
__HAL_SAI_DISABLE(&hsai_BlockA2);
/* Update the SAI audio frequency configuration */
hsai_BlockA2.Init.AudioFrequency = frequency;
HAL_SAI_Init(&hsai_BlockA2);
/* Enable SAI peripheral to generate MCLK */
__HAL_SAI_ENABLE(&hsai_BlockA2);
}
void SAIA_Channels_Set(uint8_t channels)
{
if (channels == 1)
{
hsai_BlockA2.Init.MonoStereoMode = SAI_MONOMODE;
}
else
{
hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE;
}
__HAL_SAI_DISABLE(&hsai_BlockA2);
HAL_SAI_Init(&hsai_BlockA2);
__HAL_SAI_ENABLE(&hsai_BlockA2);
}
/**
* RT-Thread Audio Device Driver Interface
*/
static rt_err_t sound_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct sound_device *snd_dev;
RT_ASSERT(audio != RT_NULL);
snd_dev = (struct sound_device *)audio->parent.user_data;
switch (caps->main_type)
{
case AUDIO_TYPE_QUERY: /* qurey the types of hw_codec device */
{
switch (caps->sub_type)
{
case AUDIO_TYPE_QUERY:
caps->udata.mask = AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER;
break;
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_OUTPUT: /* Provide capabilities of OUTPUT unit */
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
caps->udata.config.samplerate = snd_dev->replay_config.samplerate;
caps->udata.config.channels = snd_dev->replay_config.channels;
caps->udata.config.samplebits = snd_dev->replay_config.samplebits;
break;
case AUDIO_DSP_SAMPLERATE:
caps->udata.config.samplerate = snd_dev->replay_config.samplerate;
break;
case AUDIO_DSP_CHANNELS:
caps->udata.config.channels = snd_dev->replay_config.channels;
break;
case AUDIO_DSP_SAMPLEBITS:
caps->udata.config.samplebits = snd_dev->replay_config.samplebits;
break;
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_MIXER: /* report the Mixer Units */
{
switch (caps->sub_type)
{
case AUDIO_MIXER_QUERY:
caps->udata.mask = AUDIO_MIXER_VOLUME;
break;
case AUDIO_MIXER_VOLUME:
rt_device_control(snd_dev->decoder, GET_VOLUME, &(caps->udata.value));
break;
default:
result = -RT_ERROR;
break;
}
break;
}
default:
result = -RT_ERROR;
break;
}
return result;
}
static rt_err_t sound_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct sound_device *snd_dev;
RT_ASSERT(audio != RT_NULL);
snd_dev = (struct sound_device *)audio->parent.user_data;
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
{
switch (caps->sub_type)
{
case AUDIO_MIXER_VOLUME:
{
rt_uint8_t volume = caps->udata.value;
rt_device_control(snd_dev->decoder, SET_VOLUME, &volume);
snd_dev->volume = volume;
LOG_D("set volume %d", volume);
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_OUTPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
/* set samplerate */
SAIA_Frequency_Set(caps->udata.config.samplerate);
/* set channels */
SAIA_Channels_Set(caps->udata.config.channels);
/* save configs */
snd_dev->replay_config.samplerate = caps->udata.config.samplerate;
snd_dev->replay_config.channels = caps->udata.config.channels;
snd_dev->replay_config.samplebits = caps->udata.config.samplebits;
LOG_D("set samplerate %d", snd_dev->replay_config.samplerate);
break;
}
case AUDIO_DSP_SAMPLERATE:
{
SAIA_Frequency_Set(caps->udata.config.samplerate);
snd_dev->replay_config.samplerate = caps->udata.config.samplerate;
LOG_D("set samplerate %d", snd_dev->replay_config.samplerate);
break;
}
case AUDIO_DSP_CHANNELS:
{
SAIA_Channels_Set(caps->udata.config.channels);
snd_dev->replay_config.channels = caps->udata.config.channels;
LOG_D("set channels %d", snd_dev->replay_config.channels);
break;
}
case AUDIO_DSP_SAMPLEBITS:
{
/* not support */
snd_dev->replay_config.samplebits = caps->udata.config.samplebits;
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
default:
break;
}
return result;
}
static rt_err_t sound_init(struct rt_audio_device *audio)
{
rt_err_t result = RT_EOK;
struct sound_device *snd_dev;
rt_uint16_t play_type = OUTPUT_DEVICE_HEADPHONE;
RT_ASSERT(audio != RT_NULL);
snd_dev = (struct sound_device *)audio->parent.user_data;
rt_hw_sai2a_init();
/* set default params */
SAIA_Frequency_Set(snd_dev->replay_config.samplerate);
SAIA_Channels_Set(snd_dev->replay_config.channels);
/* set audio play type */
rt_device_control(snd_dev->decoder, SET_PLAY_TYPE, &play_type);
/* open lowlevel audio device */
rt_device_open(snd_dev->decoder, RT_DEVICE_OFLAG_WRONLY);
rt_device_init(snd_dev->decoder);
/* check device id */
result = rt_device_control(snd_dev->decoder, GET_ID, RT_NULL);
if (result != RT_EOK)
{
LOG_E("can't find low level audio device!");
return RT_ERROR;
}
return result;
}
static rt_err_t sound_start(struct rt_audio_device *audio, int stream)
{
struct sound_device *snd_dev;
rt_uint16_t play_type = OUTPUT_DEVICE_HEADPHONE;
RT_ASSERT(audio != RT_NULL);
snd_dev = (struct sound_device *)audio->parent.user_data;
2020-12-02 17:28:35 +08:00
if (stream == AUDIO_STREAM_REPLAY)
{
LOG_D("open sound device");
rt_device_control(snd_dev->decoder, SET_PLAY_TYPE, &play_type);
rt_device_control(snd_dev->decoder, START_PLAY, RT_NULL);
if (HAL_SAI_Transmit_DMA(&hsai_BlockA2, snd_dev->tx_fifo, TX_FIFO_SIZE / 2) != HAL_OK)
{
return RT_ERROR;
}
}
return RT_EOK;
}
static rt_err_t sound_stop(struct rt_audio_device *audio, int stream)
{
RT_ASSERT(audio != RT_NULL);
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_SAI_DMAStop(&hsai_BlockA2);
LOG_D("close sound device");
}
return RT_EOK;
}
static void sound_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
{
struct sound_device *device;
RT_ASSERT(audio != RT_NULL);
device = (struct sound_device *)audio->parent.user_data;
info->buffer = device->tx_fifo;
info->total_size = TX_FIFO_SIZE;
info->block_size = TX_FIFO_SIZE / 2;
info->block_count = 2;
}
static struct rt_audio_ops snd_ops =
{
.getcaps = sound_getcaps,
.configure = sound_configure,
.init = sound_init,
.start = sound_start,
.stop = sound_stop,
.transmit = RT_NULL,
.buffer_info = sound_buffer_info,
};
int rt_hw_sound_init(void)
{
rt_err_t result = RT_EOK;
struct rt_device *device = RT_NULL;
rt_memset(AUDIO_TX_FIFO, 0, TX_FIFO_SIZE);
snd_dev.tx_fifo = AUDIO_TX_FIFO;
/* init default configuration */
snd_dev.replay_config.samplerate = 44100;
snd_dev.replay_config.channels = 2;
snd_dev.replay_config.samplebits = 16;
snd_dev.volume = 55;
/* find lowlevel decoder device*/
snd_dev.decoder = rt_device_find("decoder");
if (snd_dev.decoder == RT_NULL)
{
LOG_E("cant't find lowlevel decoder deivce!");
return RT_ERROR;
}
/* register sound device */
snd_dev.audio.ops = &snd_ops;
result = rt_audio_register(&snd_dev.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &snd_dev);
/* check sound device register success or not */
if (result != RT_EOK)
{
device = &(snd_dev.audio.parent);
rt_device_unregister(device);
LOG_E("sound device init error!");
return RT_ERROR;
}
return RT_EOK;
}
INIT_APP_EXPORT(rt_hw_sound_init);
struct RIFF_HEADER_DEF
{
char riff_id[4]; // 'R','I','F','F'
uint32_t riff_size;
char riff_format[4]; // 'W','A','V','E'
};
struct WAVE_FORMAT_DEF
{
uint16_t FormatTag;
uint16_t Channels;
uint32_t SamplesPerSec;
uint32_t AvgBytesPerSec;
uint16_t BlockAlign;
uint16_t BitsPerSample;
};
struct FMT_BLOCK_DEF
{
char fmt_id[4]; // 'f','m','t',' '
uint32_t fmt_size;
struct WAVE_FORMAT_DEF wav_format;
};
struct DATA_BLOCK_DEF
{
char data_id[4]; // 'R','I','F','F'
uint32_t data_size;
};
struct wav_info
{
struct RIFF_HEADER_DEF header;
struct FMT_BLOCK_DEF fmt_block;
struct DATA_BLOCK_DEF data_block;
};
int wavplay_sample(int argc, char **argv)
{
#define BUFSZ 1024
#define SOUND_DEVICE_NAME "sound0"
static rt_device_t sound_dev;
int fd = -1;
uint8_t *buffer = NULL;
struct wav_info *info = NULL;
struct rt_audio_caps caps = {0};
if (argc != 2)
{
rt_kprintf("Usage:\n");
rt_kprintf("wavplay_sample song.wav\n");
return 0;
}
fd = open(argv[1], O_WRONLY);
if (fd < 0)
{
rt_kprintf("open file failed!\n");
goto __exit;
}
buffer = rt_malloc(BUFSZ);
if (buffer == RT_NULL)
goto __exit;
info = (struct wav_info *) rt_malloc(sizeof * info);
if (info == RT_NULL)
goto __exit;
if (read(fd, &(info->header), sizeof(struct RIFF_HEADER_DEF)) <= 0)
goto __exit;
if (read(fd, &(info->fmt_block), sizeof(struct FMT_BLOCK_DEF)) <= 0)
goto __exit;
if (read(fd, &(info->data_block), sizeof(struct DATA_BLOCK_DEF)) <= 0)
goto __exit;
rt_kprintf("wav information:\n");
rt_kprintf("samplerate %d\n", info->fmt_block.wav_format.SamplesPerSec);
rt_kprintf("channel %d\n", info->fmt_block.wav_format.Channels);
sound_dev = rt_device_find(SOUND_DEVICE_NAME);
rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY);
caps.main_type = AUDIO_TYPE_OUTPUT;
caps.sub_type = AUDIO_DSP_PARAM;
caps.udata.config.samplerate = info->fmt_block.wav_format.SamplesPerSec;
caps.udata.config.channels = info->fmt_block.wav_format.Channels;
caps.udata.config.samplebits = 16;
rt_device_control(sound_dev, AUDIO_CTL_CONFIGURE, &caps);
while (1)
{
int length;
length = read(fd, buffer, BUFSZ);
if (length <= 0)
break;
rt_device_write(sound_dev, 0, buffer, length);
}
rt_device_close(sound_dev);
__exit:
if (fd >= 0)
close(fd);
if (buffer)
rt_free(buffer);
if (info)
rt_free(info);
return 0;
}
MSH_CMD_EXPORT(wavplay_sample, play wav file);
#endif