rt-thread/bsp/nuvoton/numaker-pfm-m487/board/board_dev.c

293 lines
7.7 KiB
C
Raw Normal View History

/**************************************************************************//**
*
* @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-1-16 Wayne First version
*
******************************************************************************/
#include <rtdevice.h>
#include <drv_gpio.h>
#if defined(BOARD_USING_STORAGE_SPIFLASH)
#if defined(RT_USING_SFUD)
#include "spi_flash.h"
#include "spi_flash_sfud.h"
#endif
#include "drv_qspi.h"
#define W25X_REG_READSTATUS (0x05)
#define W25X_REG_READSTATUS2 (0x35)
#define W25X_REG_WRITEENABLE (0x06)
#define W25X_REG_WRITESTATUS (0x01)
#define W25X_REG_QUADENABLE (0x02)
static rt_uint8_t SpiFlash_ReadStatusReg(struct rt_qspi_device *qspi_device)
{
rt_uint8_t u8Val;
rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS;
rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
return u8Val;
}
static rt_uint8_t SpiFlash_ReadStatusReg2(struct rt_qspi_device *qspi_device)
{
rt_uint8_t u8Val;
rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS2;
rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1);
return u8Val;
}
static void SpiFlash_WriteStatusReg(struct rt_qspi_device *qspi_device, uint8_t u8Value1, uint8_t u8Value2)
{
rt_uint8_t w25x_txCMD1;
rt_uint8_t u8Val[3];
w25x_txCMD1 = W25X_REG_WRITEENABLE;
rt_qspi_send(qspi_device, &w25x_txCMD1, 1);
u8Val[0] = W25X_REG_WRITESTATUS;
u8Val[1] = u8Value1;
u8Val[2] = u8Value2;
rt_qspi_send(qspi_device, &u8Val, 3);
}
static void SpiFlash_WaitReady(struct rt_qspi_device *qspi_device)
{
volatile uint8_t u8ReturnValue;
do
{
u8ReturnValue = SpiFlash_ReadStatusReg(qspi_device);
u8ReturnValue = u8ReturnValue & 1;
}
while (u8ReturnValue != 0); // check the BUSY bit
}
static void SpiFlash_EnterQspiMode(struct rt_qspi_device *qspi_device)
{
uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
u8Status2 |= W25X_REG_QUADENABLE;
SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
SpiFlash_WaitReady(qspi_device);
}
static void SpiFlash_ExitQspiMode(struct rt_qspi_device *qspi_device)
{
uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device);
uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device);
u8Status2 &= ~W25X_REG_QUADENABLE;
SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2);
SpiFlash_WaitReady(qspi_device);
}
static int rt_hw_spiflash_init(void)
{
/* Here, we use Dual I/O to drive the SPI flash by default. */
/* If you want to use Quad I/O, you can modify to 4 from 2 and crossover D2/D3 pin of SPI flash. */
if (nu_qspi_bus_attach_device("qspi0", "qspi01", 2, SpiFlash_EnterQspiMode, SpiFlash_ExitQspiMode) != RT_EOK)
return -1;
#if defined(RT_USING_SFUD)
if (rt_sfud_flash_probe("flash0", "qspi01") == RT_NULL)
{
return -(RT_ERROR);
}
#endif
return 0;
}
INIT_COMPONENT_EXPORT(rt_hw_spiflash_init);
#endif /* BOARD_USING_STORAGE_SPIFLASH */
#if defined(BOARD_USING_SRAM0_AS_MEMHEAP)
/*
In Advance board design, SRAM address bus A16/A17/A18 are GPIO-controlled by SW, not EBI.
So we just remap 128KB only to RTT memory heap, due to it is out of controll.
AD0~AD15: 2^16*16bit = 128KB
*/
#include <drv_ebi.h>
#include "NuMicro.h"
static struct rt_memheap system_heap;
int nu_use_exsram_as_heap(void)
{
rt_err_t ret;
/* Open ebi bank1 */
ret = nu_ebi_init(EBI_BANK1, EBI_BUSWIDTH_16BIT, EBI_TIMING_SLOWEST, EBI_OPMODE_NORMAL, EBI_CS_ACTIVE_LOW);
if (ret != RT_EOK)
return ret;
/* Initial sram as heap */
return rt_memheap_init(&system_heap, "nu_sram_heap", (void *)EBI_BANK1_BASE_ADDR, 128 * 1024);
}
INIT_BOARD_EXPORT(nu_use_exsram_as_heap);
#endif /* BOARD_USING_SRAM0_AS_MEMHEAP */
#if defined(BOARD_USING_MAX31875)
#include <sensor_max31875.h>
int rt_hw_max31875_port(void)
{
struct rt_sensor_config cfg;
cfg.intf.dev_name = "i2c1";
cfg.intf.user_data = (void *)MAX31875_I2C_SLAVE_ADR_R0;
cfg.irq_pin.pin = RT_PIN_NONE;
rt_hw_max31875_init("max31875", &cfg);
return 0;
}
INIT_APP_EXPORT(rt_hw_max31875_port);
#endif /* BOARD_USING_MAX31875 */
#if defined(BOARD_USING_MPU6500)
#include <sensor_inven_mpu6xxx.h>
int rt_hw_mpu6500_port(void)
{
struct rt_sensor_config cfg;
cfg.intf.dev_name = "i2c2";
cfg.intf.user_data = (void *)MPU6XXX_ADDR_DEFAULT;
cfg.irq_pin.pin = RT_PIN_NONE;
rt_hw_mpu6xxx_init("mpu", &cfg);
return 0;
}
INIT_APP_EXPORT(rt_hw_mpu6500_port);
#endif /* BOARD_USING_MPU6500 */
#if defined(BOARD_USING_LCD_ILI9341) && defined(NU_PKG_USING_ILI9341_EBI)
#include <lcd_ili9341.h>
#if defined(PKG_USING_GUIENGINE)
#include <rtgui/driver.h>
#endif
int rt_hw_ili9341_port(void)
{
rt_err_t ret = RT_EOK;
/* Open ebi BOARD_USING_ILI9341_EBI_PORT */
ret = nu_ebi_init(BOARD_USING_ILI9341_EBI_PORT, EBI_BUSWIDTH_16BIT, EBI_TIMING_NORMAL, EBI_OPMODE_NORMAL, EBI_CS_ACTIVE_LOW);
if (ret != RT_EOK)
return ret;
switch (BOARD_USING_ILI9341_EBI_PORT)
{
case 0:
EBI->CTL0 |= EBI_CTL0_CACCESS_Msk;
EBI->TCTL0 |= (EBI_TCTL0_WAHDOFF_Msk | EBI_TCTL0_RAHDOFF_Msk);
break;
case 1:
EBI->CTL1 |= EBI_CTL1_CACCESS_Msk;
EBI->TCTL1 |= (EBI_TCTL1_WAHDOFF_Msk | EBI_TCTL1_RAHDOFF_Msk);
break;
case 2:
EBI->CTL2 |= EBI_CTL2_CACCESS_Msk;
EBI->TCTL2 |= (EBI_TCTL2_WAHDOFF_Msk | EBI_TCTL2_RAHDOFF_Msk);
break;
default:
return -1;
}
if (rt_hw_lcd_ili9341_ebi_init(EBI_BANK0_BASE_ADDR + BOARD_USING_ILI9341_EBI_PORT * EBI_MAX_SIZE) != RT_EOK)
return -1;
rt_hw_lcd_ili9341_init();
#if defined(PKG_USING_GUIENGINE)
rt_device_t lcd_ili9341;
lcd_ili9341 = rt_device_find("lcd");
if (lcd_ili9341)
{
rtgui_graphic_set_device(lcd_ili9341);
}
#endif
return 0;
}
INIT_COMPONENT_EXPORT(rt_hw_ili9341_port);
#endif /* BOARD_USING_LCD_ILI9341 */
#if defined(BOARD_USING_NAU88L25) && defined(NU_PKG_USING_NAU88L25)
#include <acodec_nau88l25.h>
S_NU_NAU88L25_CONFIG sCodecConfig =
{
.i2c_bus_name = "i2c2",
.i2s_bus_name = "sound0",
.pin_phonejack_en = NU_GET_PININDEX(NU_PE, 13),
.pin_phonejack_det = 0,
};
int rt_hw_nau88l25_port(void)
{
if (nu_hw_nau88l25_init(&sCodecConfig) != RT_EOK)
return -1;
return 0;
}
INIT_COMPONENT_EXPORT(rt_hw_nau88l25_port);
#endif /* BOARD_USING_NAU88L25 */
#if defined(BOARD_USING_BUZZER)
#define BPWM_DEV_NAME "bpwm0"
#define BPWM_DEV_CHANNEL (5)
static void PlayRingTone(void)
{
struct rt_device_pwm *bpwm_dev;
rt_uint32_t period;
int i, j;
period = 1000;
if ((bpwm_dev = (struct rt_device_pwm *)rt_device_find(BPWM_DEV_NAME)) != RT_NULL)
{
rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period);
rt_pwm_enable(bpwm_dev, BPWM_DEV_CHANNEL);
for (j = 0; j < 5; j++)
{
for (i = 0; i < 10; i++)
{
rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period);
rt_thread_mdelay(50);
rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period/2);
rt_thread_mdelay(50);
}
/* Mute 2 seconds */
rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period);
rt_thread_mdelay(2000);
}
rt_pwm_disable(bpwm_dev, BPWM_DEV_CHANNEL);
}
else
{
rt_kprintf("Can't find %s\n", BPWM_DEV_NAME);
}
}
int buzzer_test(void)
{
PlayRingTone();
return 0;
}
#ifdef FINSH_USING_MSH
MSH_CMD_EXPORT(buzzer_test, Buzzer - Play ring tone);
#endif
#endif /* BOARD_USING_BUZZER */