rt-thread/bsp/stm32f429-apollo/drivers/audio/drv_sound.c

595 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-14 ZeroFree first implementation
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <rthw.h>
#include <stdint.h>
#include <string.h>
#include "drv_audio.h"
#include "drv_wm8978.h"
#include <stm32f4xx.h>
#define DBG_ENABLE
#define DBG_LEVEL DBG_LOG
#define DBG_COLOR
#define DBG_SECTION_NAME "Sound"
#include <rtdbg.h>
/**
* Audio Memory Node Manage
*/
struct rt_data_node
{
char *data_ptr;
rt_uint32_t data_size;
};
struct rt_data_node_list
{
struct rt_data_node *node;
rt_uint32_t size;
rt_uint32_t read_index, write_index;
rt_uint32_t data_offset;
void (*read_complete)(struct rt_data_node *node, void *user_data);
void *user_data;
};
int rt_data_node_init(struct rt_data_node_list **node_list, rt_uint32_t size)
{
int result = RT_EOK;
struct rt_data_node_list *list = RT_NULL;
struct rt_data_node *node = RT_NULL;
list = rt_malloc(sizeof(struct rt_data_node_list));
if (list == RT_NULL)
{
result = -RT_ENOMEM;
goto __exit;
}
memset(list, 0, sizeof(struct rt_data_node_list));
node = rt_malloc(sizeof(struct rt_data_node) * size);
if (size == RT_NULL)
{
result = -RT_ENOMEM;
goto __exit;
}
memset(node, 0, sizeof(struct rt_data_node));
list->node = node;
list->size = size;
list->read_index = 0;
list->write_index = 0;
list->data_offset = 0;
list->read_complete = RT_NULL;
list->user_data = 0;
*node_list = list;
return result;
__exit:
if (list)
rt_free(list);
if (node)
rt_free(node);
return result;
}
int rt_data_node_is_empty(struct rt_data_node_list *node_list)
{
rt_uint32_t read_index, write_index;
rt_base_t level;
level = rt_hw_interrupt_disable();
read_index = node_list->read_index;
write_index = node_list->write_index;
rt_hw_interrupt_enable(level);
if (read_index == write_index)
{
return RT_TRUE;
}
else
{
return RT_FALSE;
}
}
void wait_node_free(struct rt_data_node_list *node_list)
{
while (node_list->read_index != node_list->write_index)
rt_thread_mdelay(5);
}
int rt_data_node_write(struct rt_data_node_list *node_list, void *buffer, rt_uint32_t size)
{
struct rt_data_node *node = RT_NULL;
rt_uint32_t read_index, write_index, next_index;
rt_base_t level;
level = rt_hw_interrupt_disable();
read_index = node_list->read_index;
write_index = node_list->write_index;
rt_hw_interrupt_enable(level);
next_index = write_index + 1;
if (next_index >= node_list->size)
next_index = 0;
if (next_index == read_index)
{
rt_kprintf("[node]:node list full, write index = %d, read index = %d \n", write_index, read_index);
return -RT_ERROR;
}
level = rt_hw_interrupt_disable();
/* set node attribute */
node = &node_list->node[write_index];
node->data_ptr = (char *) buffer;
node->data_size = size;
node_list->write_index = next_index;
rt_hw_interrupt_enable(level);
return size;
}
int rt_data_node_read(struct rt_data_node_list *node_list, void *buffer, rt_uint32_t size)
{
struct rt_data_node *node = RT_NULL;
rt_uint32_t read_index, write_index, next_index;
rt_int32_t remain_len, copy_size;
rt_uint32_t read_offset, data_offset;
rt_base_t level;
rt_uint32_t result = size;
level = rt_hw_interrupt_disable();
read_index = node_list->read_index;
write_index = node_list->write_index;
rt_hw_interrupt_enable(level);
read_offset = 0;
if (read_index == write_index)
{
result = 0;
}
else
{
do
{
node = &node_list->node[node_list->read_index];
data_offset = node_list->data_offset;
remain_len = node->data_size - data_offset;
if (size - read_offset > remain_len)
{
/* Full*/
copy_size = remain_len;
}
else
{
/* reamain buffer */
copy_size = size - read_offset;
}
memcpy((char *)buffer + read_offset, node->data_ptr + data_offset, copy_size);
read_offset += copy_size;
data_offset += copy_size;
node_list->data_offset = data_offset;
if (data_offset >= node->data_size)
{
/* notify transmitted complete. */
if (node_list->read_complete != RT_NULL)
{
node_list->read_complete(node, node_list->user_data);
}
level = rt_hw_interrupt_disable();
read_index = node_list->read_index;
write_index = node_list->write_index;
rt_hw_interrupt_enable(level);
next_index = read_index + 1;
if (next_index >= node_list->size)
next_index = 0;
level = rt_hw_interrupt_disable();
node_list->read_index = next_index;
node_list->data_offset = 0;
rt_hw_interrupt_enable(level);
if (next_index == write_index)
{
result = read_offset;
break;
}
}
}
while (read_offset < size);
}
return result;
}
static void data_node_read_complete(struct rt_data_node *node, void *user_data)
{
struct rt_device *dev = RT_NULL;
dev = (struct rt_device *)user_data;
if (dev->tx_complete != RT_NULL)
{
dev->tx_complete(dev, node->data_ptr);
}
}
/**
* RT-Thread Audio Device Driver
*/
struct sound_device
{
struct rt_device parent;
struct rt_data_node_list *node_list;
/* i2c mode */
struct rt_i2c_bus_device *i2c_device;
char *send_fifo;
};
#define AUDIO_SEND_BUFFER_SIZE (2048 * 2)
SAI_HandleTypeDef SAI1B_Handler;
DMA_HandleTypeDef SAI1_RXDMA_Handler;
SAI_HandleTypeDef SAI1A_Handler;
DMA_HandleTypeDef SAI1_TXDMA_Handler;
static struct sound_device *sound;
static void SAIA_Init(void)
{
HAL_SAI_DeInit(&SAI1A_Handler);
// SAI1A_Handler.Init.AudioFrequency = 44100;
SAI1A_Handler.Instance = SAI1_Block_A;
SAI1A_Handler.Init.AudioMode = SAI_MODEMASTER_TX;
SAI1A_Handler.Init.Synchro = SAI_ASYNCHRONOUS;
SAI1A_Handler.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE;
SAI1A_Handler.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE;
SAI1A_Handler.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_EMPTY;
SAI1A_Handler.Init.ClockSource = SAI_CLKSOURCE_PLLI2S;
SAI1A_Handler.Init.MonoStereoMode = SAI_STEREOMODE;
SAI1A_Handler.Init.Protocol = SAI_FREE_PROTOCOL;
SAI1A_Handler.Init.DataSize = SAI_DATASIZE_16;
SAI1A_Handler.Init.FirstBit = SAI_FIRSTBIT_MSB;
SAI1A_Handler.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
SAI1A_Handler.FrameInit.FrameLength = 64;
SAI1A_Handler.FrameInit.ActiveFrameLength = 32;
SAI1A_Handler.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
SAI1A_Handler.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
SAI1A_Handler.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
SAI1A_Handler.SlotInit.FirstBitOffset = 0;
SAI1A_Handler.SlotInit.SlotSize = SAI_SLOTSIZE_32B;
SAI1A_Handler.SlotInit.SlotNumber = 2;
SAI1A_Handler.SlotInit.SlotActive = SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1;
HAL_SAI_Init(&SAI1A_Handler);
__HAL_SAI_ENABLE(&SAI1A_Handler);
/* DMA Configuration */
SAIA_TX_DMAx_CLK_ENABLE();
__HAL_LINKDMA(&SAI1A_Handler, hdmatx, SAI1_TXDMA_Handler);
SAI1_TXDMA_Handler.Instance = SAIA_TX_DMAx_STREAM;
SAI1_TXDMA_Handler.Init.Channel = SAIA_TX_DMAx_CHANNEL;
SAI1_TXDMA_Handler.Init.Direction = DMA_MEMORY_TO_PERIPH;
SAI1_TXDMA_Handler.Init.PeriphInc = DMA_PINC_DISABLE;
SAI1_TXDMA_Handler.Init.MemInc = DMA_MINC_ENABLE;
SAI1_TXDMA_Handler.Init.PeriphDataAlignment = SAIA_TX_DMAx_PERIPH_DATA_SIZE;
SAI1_TXDMA_Handler.Init.MemDataAlignment = SAIA_TX_DMAx_MEM_DATA_SIZE;
SAI1_TXDMA_Handler.Init.Mode = DMA_CIRCULAR;
SAI1_TXDMA_Handler.Init.Priority = DMA_PRIORITY_HIGH;
SAI1_TXDMA_Handler.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
SAI1_TXDMA_Handler.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL;
SAI1_TXDMA_Handler.Init.MemBurst = DMA_MBURST_SINGLE;
SAI1_TXDMA_Handler.Init.PeriphBurst = DMA_PBURST_SINGLE;
HAL_DMA_DeInit(&SAI1_TXDMA_Handler);
HAL_DMA_Init(&SAI1_TXDMA_Handler);
HAL_NVIC_SetPriority(SAIA_TX_DMAx_IRQ, 0, 0);
HAL_NVIC_EnableIRQ(SAIA_TX_DMAx_IRQ);
}
const uint16_t SAI_PSC_TBL[][5] =
{
{800, 344, 7, 0, 12},
{1102, 429, 2, 18, 2},
{1600, 344, 7, 0, 6},
{2205, 429, 2, 18, 1},
{3200, 344, 7, 0, 3},
{4410, 429, 2, 18, 0},
{4800, 344, 7, 0, 2},
{8820, 271, 2, 2, 1},
{9600, 344, 7, 0, 1},
{17640, 271, 2, 2, 0},
{19200, 344, 7, 0, 0},
};
void SAIA_DMA_Enable(void)
{
SAI1_Block_A->CR1 |= SAI_xCR1_DMAEN;
}
void SAIA_DMA_Disable(void)
{
SAI1_Block_A->CR1 &= ~SAI_xCR1_DMAEN;
}
int SAIA_SampleRate_Set(uint32_t samplerate)
{
uint16_t i = 0;
RCC_PeriphCLKInitTypeDef RCCSAI1_Sture;
for (i = 0; i < (sizeof(SAI_PSC_TBL) / 10); i++)
{
if ((samplerate / 10) == SAI_PSC_TBL[i][0])
break;
}
if (i == (sizeof(SAI_PSC_TBL) / 10))
return -RT_ERROR;
RCCSAI1_Sture.PeriphClockSelection = RCC_PERIPHCLK_SAI_PLLI2S;
RCCSAI1_Sture.PLLI2S.PLLI2SN = (uint32_t)SAI_PSC_TBL[i][1];
RCCSAI1_Sture.PLLI2S.PLLI2SQ = (uint32_t)SAI_PSC_TBL[i][2];
RCCSAI1_Sture.PLLI2SDivQ = SAI_PSC_TBL[i][3] + 1;
HAL_RCCEx_PeriphCLKConfig(&RCCSAI1_Sture);
__HAL_RCC_SAI_BLOCKACLKSOURCE_CONFIG(RCC_SAIACLKSOURCE_PLLI2S);
__HAL_SAI_DISABLE(&SAI1A_Handler);
SAIA_DMA_Disable();
SAI1A_Handler.Init.AudioFrequency = samplerate;
HAL_SAI_Init(&SAI1A_Handler);
SAIA_DMA_Enable();
__HAL_SAI_ENABLE(&SAI1A_Handler);
return RT_EOK;
}
void HAL_SAI_MspInit(SAI_HandleTypeDef *hsai)
{
GPIO_InitTypeDef GPIO_Initure;
__HAL_RCC_SAI1_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
GPIO_Initure.Pin = GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6;
GPIO_Initure.Mode = GPIO_MODE_AF_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Speed = GPIO_SPEED_HIGH;
GPIO_Initure.Alternate = GPIO_AF6_SAI1;
HAL_GPIO_Init(GPIOE, &GPIO_Initure);
}
void SAIA_TX_DMAx_IRQHandler(void)
{
HAL_DMA_IRQHandler(&SAI1_TXDMA_Handler);
}
void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
{
int result;
struct sound_device *snd = sound;
if (hsai == &SAI1A_Handler)
{
result = rt_data_node_is_empty(snd->node_list);
if (result)
{
rt_kprintf("# ");
memset(snd->send_fifo, 0, AUDIO_SEND_BUFFER_SIZE / 2);
}
else
{
memset(snd->send_fifo, 0, AUDIO_SEND_BUFFER_SIZE / 2);
rt_data_node_read(snd->node_list, snd->send_fifo, AUDIO_SEND_BUFFER_SIZE / 2);
}
}
}
void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
{
int result;
struct sound_device *snd = sound;
if (hsai == &SAI1A_Handler)
{
result = rt_data_node_is_empty(snd->node_list);
if (result)
{
rt_kprintf("* ");
memset(snd->send_fifo + (AUDIO_SEND_BUFFER_SIZE / 2), 0, AUDIO_SEND_BUFFER_SIZE / 2);
}
else
{
memset(snd->send_fifo + (AUDIO_SEND_BUFFER_SIZE / 2), 0, AUDIO_SEND_BUFFER_SIZE / 2);
rt_data_node_read(snd->node_list, snd->send_fifo + (AUDIO_SEND_BUFFER_SIZE / 2), AUDIO_SEND_BUFFER_SIZE / 2);
}
}
}
void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai)
{
rt_kprintf("x ");
}
static rt_err_t sound_init(rt_device_t dev)
{
int result;
struct sound_device *snd = (struct sound_device *)dev;
SAIA_Init();
result = wm8978_init(snd->i2c_device);
return result;
}
static rt_err_t sound_open(rt_device_t dev, rt_uint16_t oflag)
{
int result = RT_EOK;
struct sound_device *snd = (struct sound_device *)dev;
LOG_I("Open Sound Device!");
/* Configure DMA transmit */
result = HAL_SAI_Transmit_DMA(&SAI1A_Handler, (uint8_t *)(snd->send_fifo), AUDIO_SEND_BUFFER_SIZE / 2);
if (result != HAL_OK)
{
LOG_E("Start DMA Transmit Failed!");
result = -RT_ERROR;
}
return result;
}
static rt_err_t sound_control(rt_device_t dev, int cmd, void *args)
{
int value, result = RT_EOK;
struct sound_device *snd = (struct sound_device *)dev;
switch (cmd)
{
case CODEC_CMD_SET_VOLUME:
value = *(int *)args;
if (value < 0 || value > 99)
{
LOG_W("Please volume level 0 ~ 99");
result = -RT_EINVAL;
}
else
{
LOG_I("Set volume level to %d", value);
wm8978_set_volume(snd->i2c_device, value);
result = RT_EOK;
}
break;
case CODEC_CMD_SAMPLERATE:
value = *(int *)args;
LOG_I("Set Samplerate %d", value);
SAIA_SampleRate_Set(value);
break;
default:
result = RT_EOK;
}
return result;
}
static rt_size_t sound_write(rt_device_t dev, rt_off_t pos,
const void *buffer, rt_size_t size)
{
int result = RT_EOK;
struct sound_device *snd = (struct sound_device *)dev;
result = rt_data_node_write(snd->node_list, (void *)buffer, size);
return result;
}
static rt_err_t sound_close(rt_device_t dev)
{
HAL_SAI_DMAStop(&SAI1A_Handler);
LOG_I("Close Sound Device!");
return RT_EOK;
}
int rt_hw_sound_hw_init(char *i2c_bus_name)
{
int result = RT_EOK;
if (sound != RT_NULL)
return RT_EOK;
HAL_SAI_MspInit(NULL);
sound = rt_malloc(sizeof(struct sound_device));
if (sound == RT_NULL)
{
LOG_E("malloc memory for sound device failed!");
result = -RT_ENOMEM;
goto __exit;
}
memset(sound, 0, sizeof(struct sound_device));
sound->i2c_device = rt_i2c_bus_device_find(i2c_bus_name);
if (sound->i2c_device == RT_NULL)
{
LOG_E("i2c bus device %s not found!", i2c_bus_name);
result = -RT_ENOSYS;
goto __exit;
}
sound->send_fifo = rt_malloc(AUDIO_SEND_BUFFER_SIZE);
if (sound->send_fifo == RT_NULL)
{
result = -RT_ENOMEM;
goto __exit;
}
memset(sound->send_fifo, 0, AUDIO_SEND_BUFFER_SIZE);
rt_data_node_init(&sound->node_list, 10);
sound->node_list->read_complete = data_node_read_complete;
sound->node_list->user_data = sound;
sound->parent.type = RT_Device_Class_Sound;
sound->parent.init = sound_init;
sound->parent.open = sound_open;
sound->parent.control = sound_control;
sound->parent.write = sound_write;
sound->parent.read = RT_NULL;
sound->parent.close = sound_close;
sound->parent.user_data = sound;
/* register the device */
rt_device_register(&sound->parent, "sound", RT_DEVICE_FLAG_WRONLY | RT_DEVICE_FLAG_DMA_TX);
rt_device_init(&sound->parent);
return RT_EOK;
__exit:
if (sound->send_fifo != RT_NULL)
{
rt_free(sound->send_fifo);
sound->send_fifo = RT_NULL;
}
if (sound != RT_NULL)
{
rt_free(sound);
sound = RT_NULL;
}
return result;
}
extern int rt_hw_micphone_init(char *i2c_bus_name);
int rt_hw_audio_init(char *i2c_bus_name)
{
rt_hw_sound_hw_init(i2c_bus_name);
rt_hw_micphone_init(i2c_bus_name);
return RT_EOK;
}