rt-thread/bsp/hc32/libraries/hc32_drivers/drv_hwtimer.c

552 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (C) 2022, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
*/
#include <rtdevice.h>
#include <rtdbg.h>
#if defined(RT_USING_HWTIMER)
#if defined(BSP_USING_TIMER1) || defined(BSP_USING_TIMER2) || defined(BSP_USING_TIMER3) || \
defined(BSP_USING_TIMER4) || defined(BSP_USING_TIMER5) || defined(BSP_USING_TIMER6) || \
defined(BSP_USING_TIMER7) || defined(BSP_USING_TIMER8) || defined(BSP_USING_TIMER9) || \
defined(BSP_USING_TIMER10) || defined(BSP_USING_TIMER11) || defined(BSP_USING_TIMER12)
#include "drv_hwtimer.h"
#include "drv_irq.h"
enum
{
#ifdef BSP_USING_TIMER1
TIMER1_INDEX,
#endif
#ifdef BSP_USING_TIMER2
TIMER2_INDEX,
#endif
#ifdef BSP_USING_TIMER3
TIMER3_INDEX,
#endif
#ifdef BSP_USING_TIMER4
TIMER4_INDEX,
#endif
#ifdef BSP_USING_TIMER5
TIMER5_INDEX,
#endif
#ifdef BSP_USING_TIMER6
TIMER6_INDEX,
#endif
#ifdef BSP_USING_TIMER7
TIMER7_INDEX,
#endif
#ifdef BSP_USING_TIMER8
TIMER8_INDEX,
#endif
#ifdef BSP_USING_TIMER9
TIMER9_INDEX,
#endif
#ifdef BSP_USING_TIMER10
TIMER10_INDEX,
#endif
#ifdef BSP_USING_TIMER11
TIMER11_INDEX,
#endif
#ifdef BSP_USING_TIMER12
TIMER12_INDEX,
#endif
};
#ifdef BSP_USING_TIMER1
static void timer1_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER2
static void timer2_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER3
static void timer3_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER4
static void timer4_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER5
static void timer5_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER6
static void timer6_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER7
static void timer7_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER8
static void timer8_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER9
static void timer9_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER10
static void timer10_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER11
static void timer11_irq_handler(void);
#endif
#ifdef BSP_USING_TIMER12
static void timer12_irq_handler(void);
#endif
struct hc32_hwtimer_config
{
rt_hwtimer_t time_device;
CM_TMRA_TypeDef *timer_periph;
struct hc32_irq_config irq_config;
func_ptr_t irq_callback;
uint32_t extend_div;
uint32_t extend_cnt;
char *name;
};
#ifndef HC32_TIMER_CONFIG
#define HC32_TIMER_CONFIG(periph, irq, label, src, irq_info) \
{ \
.timer_periph = periph, \
.irq_callback = irq, \
.name = label, \
.irq_config = irq_info, \
.irq_config.int_src = src, \
}
#endif /* HC32_TIMER_CONFIG */
static struct hc32_hwtimer_config hwtimer_obj[] =
{
#ifdef BSP_USING_TIMER1
HC32_TIMER_CONFIG(CM_TMRA_1, timer1_irq_handler, "timer1", INT_SRC_TMRA_1_OVF, TIMER1_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER2
HC32_TIMER_CONFIG(CM_TMRA_2, timer2_irq_handler, "timer2", INT_SRC_TMRA_2_OVF, TIMER2_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER3
HC32_TIMER_CONFIG(CM_TMRA_3, timer3_irq_handler, "timer3", INT_SRC_TMRA_3_OVF, TIMER3_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER4
HC32_TIMER_CONFIG(CM_TMRA_4, timer4_irq_handler, "timer4", INT_SRC_TMRA_4_OVF, TIMER4_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER5
HC32_TIMER_CONFIG(CM_TMRA_5, timer5_irq_handler, "timer5", INT_SRC_TMRA_5_OVF, TIMER5_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER6
HC32_TIMER_CONFIG(CM_TMRA_6, timer6_irq_handler, "timer6", INT_SRC_TMRA_6_OVF, TIMER6_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER7
HC32_TIMER_CONFIG(CM_TMRA_7, timer7_irq_handler, "timer7", INT_SRC_TMRA_7_OVF, TIMER7_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER8
HC32_TIMER_CONFIG(CM_TMRA_8, timer8_irq_handler, "timer8", INT_SRC_TMRA_8_OVF, TIMER8_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER9
HC32_TIMER_CONFIG(CM_TMRA_9, timer9_irq_handler, "timer9", INT_SRC_TMRA_9_OVF, TIMER9_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER10
HC32_TIMER_CONFIG(CM_TMRA_10, timer10_irq_handler, "timer10", INT_SRC_TMRA_10_OVF, TIMER10_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER11
HC32_TIMER_CONFIG(CM_TMRA_11, timer11_irq_handler, "timer11", INT_SRC_TMRA_11_OVF, TIMER11_IRQ_CONFIG),
#endif
#ifdef BSP_USING_TIMER12
HC32_TIMER_CONFIG(CM_TMRA_12, timer12_irq_handler, "timer12", INT_SRC_TMRA_12_OVF, TIMER12_IRQ_CONFIG),
#endif
};
static void hc32_timer_irq_handler(struct hc32_hwtimer_config *timer_config)
{
if ((++timer_config->extend_cnt) >= timer_config->extend_div)
{
timer_config->extend_cnt = 0;
rt_device_hwtimer_isr(&timer_config->time_device);
}
TMRA_ClearStatus(timer_config->timer_periph, (TMRA_FLAG_OVF | TMRA_FLAG_UDF));
}
#ifdef BSP_USING_TIMER1
static void timer1_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER2
static void timer2_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER2_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER3
static void timer3_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER3_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER4
static void timer4_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER4_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER5
static void timer5_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER5_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER6
static void timer6_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER6_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER7
static void timer7_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER7_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER8
static void timer8_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER8_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER9
static void timer9_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER9_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER10
static void timer10_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER10_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER11
static void timer11_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER11_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_TIMER12
static void timer12_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_timer_irq_handler(&hwtimer_obj[TIMER12_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
static rt_uint16_t hc32_timer_get_unit_number(CM_TMRA_TypeDef *TMRAx)
{
rt_uint16_t unit_num;
const rt_uint32_t unit_step = 0x400U;
if (((rt_uint32_t)TMRAx) >= ((rt_uint32_t)CM_TMRA_1))
{
unit_num = (((rt_uint32_t)TMRAx) - ((rt_uint32_t)CM_TMRA_1)) / unit_step;
}
else
{
unit_num = (((rt_uint32_t)TMRAx) - ((rt_uint32_t)CM_TMRA_5)) / unit_step + 4;
}
return unit_num;
}
static void hc32_timer_clock_config(CM_TMRA_TypeDef *TMRAx, en_functional_state_t enNewState)
{
rt_uint32_t timer_periph;
rt_uint16_t unit_num;
unit_num = hc32_timer_get_unit_number(TMRAx);
timer_periph = PWC_FCG2_TMRA_1 << unit_num;
FCG_Fcg2PeriphClockCmd(timer_periph, enNewState);
}
static void hc32_timer_get_div_value(CM_TMRA_TypeDef *TMRAx, uint32_t freq, uint16_t *div, uint32_t *extend_div)
{
stc_clock_freq_t stcClkFreq;
rt_uint32_t divisor, remainder;
rt_uint16_t div_val;
rt_uint32_t clk_freq;
rt_uint16_t unit_num;
CLK_GetClockFreq(&stcClkFreq);
unit_num = hc32_timer_get_unit_number(TMRAx);
if (unit_num >= 4)
{
clk_freq = stcClkFreq.u32Pclk1Freq;
}
else
{
clk_freq = stcClkFreq.u32Pclk0Freq;
}
divisor = clk_freq / freq;
remainder = clk_freq % freq;
for (div_val = 1; div_val <= 1024; div_val <<= 1)
{
if (((divisor % 2) == 0) && (remainder == 0))
{
remainder = divisor % 2;
divisor = divisor / 2;
}
else
{
break;
}
}
*extend_div = divisor;
*div = (__CLZ(__RBIT(div_val))) << TMRA_BCSTR_CKDIV_POS;
}
static void hc32_timer_interrupt_config(struct rt_hwtimer_device *timer, en_functional_state_t enNewState)
{
struct hc32_hwtimer_config *timer_config = RT_NULL;
timer_config = (struct hc32_hwtimer_config *)timer;
if (INT_SRC_MAX == timer_config->irq_config.int_src)
{
LOG_D("%s interrupt init failed", timer_config->name);
return;
}
if (ENABLE == enNewState)
{
/* Enable the specified interrupts of Timer */
hc32_install_irq_handler(&timer_config->irq_config, timer_config->irq_callback, RT_FALSE);
NVIC_EnableIRQ(timer_config->irq_config.irq_num);
TMRA_IntCmd(timer_config->timer_periph, TMRA_INT_OVF, ENABLE);
}
else
{
/* Disable the specified interrupts of Timer */
TMRA_IntCmd(timer_config->timer_periph, TMRA_INT_OVF, DISABLE);
NVIC_DisableIRQ(timer_config->irq_config.irq_num);
}
}
static void hc32_timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
stc_tmra_init_t stcTmraInit;
struct hc32_hwtimer_config *timer_config = RT_NULL;
RT_ASSERT(timer != RT_NULL);
timer_config = (struct hc32_hwtimer_config *)timer;
if (state)
{
/* Enable Timer peripheral clock. */
hc32_timer_clock_config(timer_config->timer_periph, ENABLE);
TMRA_DeInit(timer_config->timer_periph);
TMRA_StructInit(&stcTmraInit);
stcTmraInit.sw_count.u16CountDir = TMRA_DIR_UP;
TMRA_Init(timer_config->timer_periph, &stcTmraInit);
LOG_D("%s init success", timer_config->name);
}
else
{
TMRA_DeInit(timer_config->timer_periph);
hc32_timer_interrupt_config(timer, DISABLE);
/* Disable Timer peripheral clock. */
hc32_timer_clock_config(timer_config->timer_periph, DISABLE);
}
}
static rt_err_t hc32_timer_start(struct rt_hwtimer_device *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode)
{
rt_err_t result = RT_EOK;
struct hc32_hwtimer_config *timer_config = RT_NULL;
RT_ASSERT(timer != RT_NULL);
timer_config = (struct hc32_hwtimer_config *)timer;
if (mode == HWTIMER_MODE_ONESHOT)
{
TMRA_CountReloadCmd(timer_config->timer_periph, DISABLE);
}
else
{
TMRA_CountReloadCmd(timer_config->timer_periph, ENABLE);
}
timer_config->extend_cnt = 0;
TMRA_SetCountValue(timer_config->timer_periph, 0);
TMRA_SetPeriodValue(timer_config->timer_periph, cnt - 1);
hc32_timer_interrupt_config(timer, ENABLE);
TMRA_Start(timer_config->timer_periph);
return result;
}
static void hc32_timer_stop(struct rt_hwtimer_device *timer)
{
struct hc32_hwtimer_config *timer_config = RT_NULL;
RT_ASSERT(timer != RT_NULL);
timer_config = (struct hc32_hwtimer_config *)timer;
/* stop timer */
TMRA_Stop(timer_config->timer_periph);
hc32_timer_interrupt_config(timer, DISABLE);
TMRA_SetCountValue(timer_config->timer_periph, 0);
}
static rt_uint32_t hc32_timer_get_counter(struct rt_hwtimer_device *timer)
{
rt_uint32_t count_val;
rt_uint32_t period_val;
float temp;
struct hc32_hwtimer_config *timer_config = RT_NULL;
RT_ASSERT(timer != RT_NULL);
timer_config = (struct hc32_hwtimer_config *)timer;
period_val = TMRA_GetPeriodValue(timer_config->timer_periph);
count_val = TMRA_GetCountValue(timer_config->timer_periph);
temp = (timer_config->extend_cnt * period_val + count_val);
temp = temp / (timer_config->extend_div * period_val) * period_val;
count_val = (rt_uint32_t)temp;
return count_val;
}
static rt_err_t hc32_timer_ctrl(struct rt_hwtimer_device *timer, rt_uint32_t cmd, void *args)
{
struct hc32_hwtimer_config *timer_config = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(args != RT_NULL);
timer_config = (struct hc32_hwtimer_config *)timer;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t freq;
rt_uint16_t div_val;
rt_uint32_t extend_div_val;
/* set timer frequency */
freq = *((rt_uint32_t *)args);
hc32_timer_get_div_value(timer_config->timer_periph, freq, &div_val, &extend_div_val);
TMRA_SetClockDiv(timer_config->timer_periph, div_val);
timer_config->extend_div = extend_div_val;
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static const struct rt_hwtimer_ops hwtimer_ops =
{
.init = hc32_timer_init,
.start = hc32_timer_start,
.stop = hc32_timer_stop,
.count_get = hc32_timer_get_counter,
.control = hc32_timer_ctrl,
};
static const struct rt_hwtimer_info hwtimer_info =
{
.maxfreq = 30000000,
.minfreq = 1000,
.maxcnt = 0xFFFF,
.cntmode = HWTIMER_CNTMODE_UP,
};
static int rt_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(hwtimer_obj) / sizeof(hwtimer_obj[0]); i++)
{
hwtimer_obj[i].time_device.info = &hwtimer_info;
hwtimer_obj[i].time_device.ops = &hwtimer_ops;
if (rt_device_hwtimer_register(&hwtimer_obj[i].time_device, hwtimer_obj[i].name, hwtimer_obj[i].timer_periph) == RT_EOK)
{
LOG_D("%s register success", hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hwtimer_init);
#endif
#endif /* RT_USING_HWTIMER */