2018-10-15 01:46:07 +08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2006-2018, RT-Thread Development Team
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
*
|
|
|
|
* Change Logs:
|
|
|
|
* Date Author Notes
|
|
|
|
*/
|
2010-05-20 08:10:15 +08:00
|
|
|
/*
|
|
|
|
* Sun RPC is a product of Sun Microsystems, Inc. and is provided for
|
|
|
|
* unrestricted use provided that this legend is included on all tape
|
|
|
|
* media and as a part of the software program in whole or part. Users
|
|
|
|
* may copy or modify Sun RPC without charge, but are not authorized
|
|
|
|
* to license or distribute it to anyone else except as part of a product or
|
|
|
|
* program developed by the user.
|
|
|
|
*
|
|
|
|
* SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
|
|
|
|
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
|
|
|
|
*
|
|
|
|
* Sun RPC is provided with no support and without any obligation on the
|
|
|
|
* part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
|
|
* modification or enhancement.
|
|
|
|
*
|
|
|
|
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
|
|
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
|
|
|
|
* OR ANY PART THEREOF.
|
|
|
|
*
|
|
|
|
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
|
|
|
|
* or profits or other special, indirect and consequential damages, even if
|
|
|
|
* Sun has been advised of the possibility of such damages.
|
|
|
|
*
|
|
|
|
* Sun Microsystems, Inc.
|
|
|
|
* 2550 Garcia Avenue
|
|
|
|
* Mountain View, California 94043
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* xdr.h, External Data Representation Serialization Routines.
|
|
|
|
*
|
|
|
|
* Copyright (C) 1984, Sun Microsystems, Inc.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _RPC_XDR_H
|
|
|
|
#define _RPC_XDR_H
|
|
|
|
|
|
|
|
#include <rpc/types.h>
|
|
|
|
|
|
|
|
/* We need FILE. */
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XDR provides a conventional way for converting between C data
|
|
|
|
* types and an external bit-string representation. Library supplied
|
|
|
|
* routines provide for the conversion on built-in C data types. These
|
|
|
|
* routines and utility routines defined here are used to help implement
|
|
|
|
* a type encode/decode routine for each user-defined type.
|
|
|
|
*
|
|
|
|
* Each data type provides a single procedure which takes two arguments:
|
|
|
|
*
|
|
|
|
* bool_t
|
|
|
|
* xdrproc(xdrs, argresp)
|
|
|
|
* XDR *xdrs;
|
|
|
|
* <type> *argresp;
|
|
|
|
*
|
|
|
|
* xdrs is an instance of a XDR handle, to which or from which the data
|
|
|
|
* type is to be converted. argresp is a pointer to the structure to be
|
|
|
|
* converted. The XDR handle contains an operation field which indicates
|
|
|
|
* which of the operations (ENCODE, DECODE * or FREE) is to be performed.
|
|
|
|
*
|
|
|
|
* XDR_DECODE may allocate space if the pointer argresp is null. This
|
|
|
|
* data can be freed with the XDR_FREE operation.
|
|
|
|
*
|
|
|
|
* We write only one procedure per data type to make it easy
|
|
|
|
* to keep the encode and decode procedures for a data type consistent.
|
|
|
|
* In many cases the same code performs all operations on a user defined type,
|
|
|
|
* because all the hard work is done in the component type routines.
|
|
|
|
* decode as a series of calls on the nested data types.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Xdr operations. XDR_ENCODE causes the type to be encoded into the
|
|
|
|
* stream. XDR_DECODE causes the type to be extracted from the stream.
|
|
|
|
* XDR_FREE can be used to release the space allocated by an XDR_DECODE
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
enum xdr_op {
|
|
|
|
XDR_ENCODE = 0,
|
|
|
|
XDR_DECODE = 1,
|
|
|
|
XDR_FREE = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the number of bytes per unit of external data.
|
|
|
|
*/
|
|
|
|
#define BYTES_PER_XDR_UNIT (4)
|
|
|
|
/*
|
|
|
|
* This only works if the above is a power of 2. But it's defined to be
|
|
|
|
* 4 by the appropriate RFCs. So it will work. And it's normally quicker
|
|
|
|
* than the old routine.
|
|
|
|
*/
|
|
|
|
#define RNDUP(x) (((x) + BYTES_PER_XDR_UNIT - 1) & ~(BYTES_PER_XDR_UNIT - 1))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The XDR handle.
|
|
|
|
* Contains operation which is being applied to the stream,
|
|
|
|
* an operations vector for the particular implementation (e.g. see xdr_mem.c),
|
|
|
|
* and two private fields for the use of the particular implementation.
|
|
|
|
*/
|
|
|
|
typedef struct XDR XDR;
|
|
|
|
struct XDR
|
|
|
|
{
|
|
|
|
enum xdr_op x_op; /* operation; fast additional param */
|
|
|
|
struct xdr_ops
|
|
|
|
{
|
|
|
|
bool_t (*x_getlong) (XDR *__xdrs, long *__lp);
|
|
|
|
/* get a long from underlying stream */
|
|
|
|
bool_t (*x_putlong) (XDR *__xdrs, const long *__lp);
|
|
|
|
/* put a long to " */
|
|
|
|
bool_t (*x_getbytes) (XDR *__xdrs, char* __addr, unsigned int __len);
|
|
|
|
/* get some bytes from " */
|
|
|
|
bool_t (*x_putbytes) (XDR *__xdrs, const char *__addr, unsigned int __len);
|
|
|
|
/* put some bytes to " */
|
|
|
|
unsigned int (*x_getpostn) (const XDR *__xdrs);
|
|
|
|
/* returns bytes off from beginning */
|
|
|
|
bool_t (*x_setpostn) (XDR *__xdrs, unsigned int __pos);
|
|
|
|
/* lets you reposition the stream */
|
|
|
|
int32_t *(*x_inline) (XDR *__xdrs, unsigned int __len);
|
|
|
|
/* buf quick ptr to buffered data */
|
|
|
|
void (*x_destroy) (XDR *__xdrs);
|
|
|
|
/* free privates of this xdr_stream */
|
|
|
|
bool_t (*x_getint32) (XDR *__xdrs, int32_t *__ip);
|
|
|
|
/* get a int from underlying stream */
|
|
|
|
bool_t (*x_putint32) (XDR *__xdrs, const int32_t *__ip);
|
|
|
|
/* put a int to " */
|
|
|
|
}
|
|
|
|
*x_ops;
|
|
|
|
char* x_public; /* users' data */
|
|
|
|
char* x_private; /* pointer to private data */
|
|
|
|
char* x_base; /* private used for position info */
|
|
|
|
unsigned int x_handy; /* extra private word */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A xdrproc_t exists for each data type which is to be encoded or decoded.
|
|
|
|
*
|
|
|
|
* The second argument to the xdrproc_t is a pointer to an opaque pointer.
|
|
|
|
* The opaque pointer generally points to a structure of the data type
|
|
|
|
* to be decoded. If this pointer is 0, then the type routines should
|
|
|
|
* allocate dynamic storage of the appropriate size and return it.
|
|
|
|
* bool_t (*xdrproc_t)(XDR *, char* *);
|
|
|
|
*/
|
|
|
|
typedef bool_t (*xdrproc_t) (XDR *, void *,...);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Operations defined on a XDR handle
|
|
|
|
*
|
|
|
|
* XDR *xdrs;
|
|
|
|
* int32_t *int32p;
|
|
|
|
* long *longp;
|
|
|
|
* char* addr;
|
|
|
|
* unsigned int len;
|
|
|
|
* unsigned int pos;
|
|
|
|
*/
|
|
|
|
#define XDR_GETINT32(xdrs, int32p) \
|
|
|
|
(*(xdrs)->x_ops->x_getint32)(xdrs, int32p)
|
|
|
|
#define xdr_getint32(xdrs, int32p) \
|
|
|
|
(*(xdrs)->x_ops->x_getint32)(xdrs, int32p)
|
|
|
|
|
|
|
|
#define XDR_PUTINT32(xdrs, int32p) \
|
|
|
|
(*(xdrs)->x_ops->x_putint32)(xdrs, int32p)
|
|
|
|
#define xdr_putint32(xdrs, int32p) \
|
|
|
|
(*(xdrs)->x_ops->x_putint32)(xdrs, int32p)
|
|
|
|
|
|
|
|
#define XDR_GETLONG(xdrs, longp) \
|
|
|
|
(*(xdrs)->x_ops->x_getlong)(xdrs, longp)
|
|
|
|
#define xdr_getlong(xdrs, longp) \
|
|
|
|
(*(xdrs)->x_ops->x_getlong)(xdrs, longp)
|
|
|
|
|
|
|
|
#define XDR_PUTLONG(xdrs, longp) \
|
|
|
|
(*(xdrs)->x_ops->x_putlong)(xdrs, longp)
|
|
|
|
#define xdr_putlong(xdrs, longp) \
|
|
|
|
(*(xdrs)->x_ops->x_putlong)(xdrs, longp)
|
|
|
|
|
|
|
|
#define XDR_GETBYTES(xdrs, addr, len) \
|
|
|
|
(*(xdrs)->x_ops->x_getbytes)(xdrs, addr, len)
|
|
|
|
#define xdr_getbytes(xdrs, addr, len) \
|
|
|
|
(*(xdrs)->x_ops->x_getbytes)(xdrs, addr, len)
|
|
|
|
|
|
|
|
#define XDR_PUTBYTES(xdrs, addr, len) \
|
|
|
|
(*(xdrs)->x_ops->x_putbytes)(xdrs, addr, len)
|
|
|
|
#define xdr_putbytes(xdrs, addr, len) \
|
|
|
|
(*(xdrs)->x_ops->x_putbytes)(xdrs, addr, len)
|
|
|
|
|
|
|
|
#define XDR_GETPOS(xdrs) \
|
|
|
|
(*(xdrs)->x_ops->x_getpostn)(xdrs)
|
|
|
|
#define xdr_getpos(xdrs) \
|
|
|
|
(*(xdrs)->x_ops->x_getpostn)(xdrs)
|
|
|
|
|
|
|
|
#define XDR_SETPOS(xdrs, pos) \
|
|
|
|
(*(xdrs)->x_ops->x_setpostn)(xdrs, pos)
|
|
|
|
#define xdr_setpos(xdrs, pos) \
|
|
|
|
(*(xdrs)->x_ops->x_setpostn)(xdrs, pos)
|
|
|
|
|
|
|
|
#define XDR_INLINE(xdrs, len) \
|
|
|
|
(*(xdrs)->x_ops->x_inline)(xdrs, len)
|
|
|
|
#define xdr_inline(xdrs, len) \
|
|
|
|
(*(xdrs)->x_ops->x_inline)(xdrs, len)
|
|
|
|
|
|
|
|
#define XDR_DESTROY(xdrs) \
|
|
|
|
do { \
|
|
|
|
if ((xdrs)->x_ops->x_destroy) \
|
|
|
|
(*(xdrs)->x_ops->x_destroy)(xdrs); \
|
|
|
|
} while (0)
|
|
|
|
#define xdr_destroy(xdrs) \
|
|
|
|
do { \
|
|
|
|
if ((xdrs)->x_ops->x_destroy) \
|
|
|
|
(*(xdrs)->x_ops->x_destroy)(xdrs); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Support struct for discriminated unions.
|
|
|
|
* You create an array of xdrdiscrim structures, terminated with
|
|
|
|
* a entry with a null procedure pointer. The xdr_union routine gets
|
|
|
|
* the discriminant value and then searches the array of structures
|
|
|
|
* for a matching value. If a match is found the associated xdr routine
|
|
|
|
* is called to handle that part of the union. If there is
|
|
|
|
* no match, then a default routine may be called.
|
|
|
|
* If there is no match and no default routine it is an error.
|
|
|
|
*/
|
|
|
|
#define NULL_xdrproc_t ((xdrproc_t)0)
|
|
|
|
struct xdr_discrim
|
|
|
|
{
|
|
|
|
int value;
|
|
|
|
xdrproc_t proc;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Inline routines for fast encode/decode of primitive data types.
|
|
|
|
* Caveat emptor: these use single memory cycles to get the
|
|
|
|
* data from the underlying buffer, and will fail to operate
|
|
|
|
* properly if the data is not aligned. The standard way to use these
|
|
|
|
* is to say:
|
|
|
|
* if ((buf = XDR_INLINE(xdrs, count)) == NULL)
|
|
|
|
* return (FALSE);
|
|
|
|
* <<< macro calls >>>
|
|
|
|
* where ``count'' is the number of bytes of data occupied
|
|
|
|
* by the primitive data types.
|
|
|
|
*
|
|
|
|
* N.B. and frozen for all time: each data type here uses 4 bytes
|
|
|
|
* of external representation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define IXDR_GET_INT32(buf) ((int32_t)ntohl((uint32_t)*(buf)++))
|
|
|
|
#define IXDR_PUT_INT32(buf, v) (*(buf)++ = (int32_t)htonl((uint32_t)(v)))
|
|
|
|
#define IXDR_GET_U_INT32(buf) ((uint32_t)IXDR_GET_INT32(buf))
|
|
|
|
#define IXDR_PUT_U_INT32(buf, v) IXDR_PUT_INT32(buf, (int32_t)(v))
|
|
|
|
|
|
|
|
/* WARNING: The IXDR_*_LONG defines are removed by Sun for new platforms
|
|
|
|
* and shouldn't be used any longer. Code which use this defines or longs
|
|
|
|
* in the RPC code will not work on 64bit Solaris platforms !
|
|
|
|
*/
|
|
|
|
#define IXDR_GET_LONG(buf) ((long)IXDR_GET_U_INT32(buf))
|
|
|
|
#define IXDR_PUT_LONG(buf, v) ((long)IXDR_PUT_INT32(buf, (long)(v)))
|
|
|
|
#define IXDR_GET_U_LONG(buf) ((unsigned long)IXDR_GET_LONG(buf))
|
|
|
|
#define IXDR_PUT_U_LONG(buf, v) IXDR_PUT_LONG(buf, (long)(v))
|
|
|
|
|
|
|
|
|
|
|
|
#define IXDR_GET_BOOL(buf) ((bool_t)IXDR_GET_LONG(buf))
|
|
|
|
#define IXDR_GET_ENUM(buf, t) ((t)IXDR_GET_LONG(buf))
|
|
|
|
#define IXDR_GET_SHORT(buf) ((short)IXDR_GET_LONG(buf))
|
|
|
|
#define IXDR_GET_U_SHORT(buf) ((unsigned short)IXDR_GET_LONG(buf))
|
|
|
|
|
|
|
|
#define IXDR_PUT_BOOL(buf, v) IXDR_PUT_LONG(buf, (long)(v))
|
|
|
|
#define IXDR_PUT_ENUM(buf, v) IXDR_PUT_LONG(buf, (long)(v))
|
|
|
|
#define IXDR_PUT_SHORT(buf, v) IXDR_PUT_LONG(buf, (long)(v))
|
|
|
|
#define IXDR_PUT_U_SHORT(buf, v) IXDR_PUT_LONG(buf, (long)(v))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These are the "generic" xdr routines.
|
|
|
|
* None of these can have const applied because it's not possible to
|
|
|
|
* know whether the call is a read or a write to the passed parameter
|
|
|
|
* also, the XDR structure is always updated by some of these calls.
|
|
|
|
*/
|
|
|
|
extern bool_t xdr_void (void);
|
|
|
|
extern bool_t xdr_short (XDR *__xdrs, short *__sp);
|
|
|
|
extern bool_t xdr_u_short (XDR *__xdrs, unsigned short *__usp);
|
|
|
|
extern bool_t xdr_int (XDR *__xdrs, int *__ip);
|
|
|
|
extern bool_t xdr_u_int (XDR *__xdrs, unsigned int *__up);
|
|
|
|
extern bool_t xdr_long (XDR *__xdrs, long *__lp);
|
|
|
|
extern bool_t xdr_u_long (XDR *__xdrs, unsigned long *__ulp);
|
|
|
|
extern bool_t xdr_hyper (XDR *__xdrs, int64_t *__llp);
|
|
|
|
extern bool_t xdr_u_hyper (XDR *__xdrs, uint64_t *__ullp);
|
|
|
|
extern bool_t xdr_longlong_t (XDR *__xdrs, int64_t *__llp);
|
|
|
|
extern bool_t xdr_u_longlong_t (XDR *__xdrs, uint64_t *__ullp);
|
|
|
|
extern bool_t xdr_int8_t (XDR *__xdrs, int8_t *__ip);
|
|
|
|
extern bool_t xdr_uint8_t (XDR *__xdrs, uint8_t *__up);
|
|
|
|
extern bool_t xdr_int16_t (XDR *__xdrs, int16_t *__ip);
|
|
|
|
extern bool_t xdr_uint16_t (XDR *__xdrs, uint16_t *__up);
|
|
|
|
extern bool_t xdr_int32_t (XDR *__xdrs, int32_t *__ip);
|
|
|
|
extern bool_t xdr_uint32_t (XDR *__xdrs, uint32_t *__up);
|
|
|
|
extern bool_t xdr_int64_t (XDR *__xdrs, int64_t *__ip);
|
|
|
|
extern bool_t xdr_uint64_t (XDR *__xdrs, uint64_t *__up);
|
|
|
|
extern bool_t xdr_bool (XDR *__xdrs, bool_t *__bp);
|
|
|
|
extern bool_t xdr_enum (XDR *__xdrs, enum_t *__ep);
|
|
|
|
extern bool_t xdr_array (XDR * _xdrs, char* *__addrp, unsigned int *__sizep,
|
|
|
|
unsigned int __maxsize, unsigned int __elsize, xdrproc_t __elproc);
|
|
|
|
extern bool_t xdr_bytes (XDR *xdrs, char **cpp, unsigned int *sizep,
|
|
|
|
unsigned int maxsize);
|
|
|
|
extern bool_t xdr_opaque (XDR *__xdrs, char* __cp, unsigned int __cnt);
|
|
|
|
extern bool_t xdr_string (XDR *xdrs, char **cpp, unsigned int maxsize);
|
|
|
|
extern bool_t xdr_union (XDR *__xdrs, enum_t *__dscmp, char *__unp,
|
|
|
|
const struct xdr_discrim *__choices,
|
|
|
|
xdrproc_t dfault);
|
|
|
|
extern bool_t xdr_char (XDR *__xdrs, char *__cp);
|
|
|
|
extern bool_t xdr_u_char (XDR *__xdrs, unsigned char *__cp);
|
|
|
|
extern bool_t xdr_vector (XDR *__xdrs, char *__basep, unsigned int __nelem,
|
|
|
|
unsigned int __elemsize, xdrproc_t __xdr_elem);
|
|
|
|
extern bool_t xdr_float (XDR *__xdrs, float *__fp);
|
|
|
|
extern bool_t xdr_double (XDR *__xdrs, double *__dp);
|
|
|
|
extern bool_t xdr_reference (XDR *__xdrs, char* *__xpp, unsigned int __size,
|
|
|
|
xdrproc_t __proc);
|
|
|
|
extern bool_t xdr_pointer (XDR *__xdrs, char **__objpp,
|
|
|
|
unsigned int __obj_size, xdrproc_t __xdr_obj);
|
|
|
|
extern bool_t xdr_wrapstring (XDR *__xdrs, char **cpp);
|
|
|
|
extern unsigned long xdr_sizeof (xdrproc_t, void *);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Common opaque bytes objects used by many rpc protocols;
|
|
|
|
* declared here due to commonality.
|
|
|
|
*/
|
|
|
|
#define MAX_NETOBJ_SZ 1024
|
|
|
|
struct netobj
|
|
|
|
{
|
|
|
|
unsigned int n_len;
|
|
|
|
char *n_bytes;
|
|
|
|
};
|
|
|
|
typedef struct netobj netobj;
|
|
|
|
extern bool_t xdr_netobj (XDR *__xdrs, struct netobj *__np);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These are the public routines for the various implementations of
|
|
|
|
* xdr streams.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* XDR using memory buffers */
|
|
|
|
extern void xdrmem_create (XDR *__xdrs, const char* __addr,
|
|
|
|
unsigned int __size, enum xdr_op __xop);
|
|
|
|
|
|
|
|
/* XDR pseudo records for tcp */
|
|
|
|
extern void xdrrec_create (XDR *__xdrs, unsigned int __sendsize,
|
|
|
|
unsigned int __recvsize, char* __tcp_handle,
|
|
|
|
int (*__readit) (char *, char *, int),
|
|
|
|
int (*__writeit) (char *, char *, int));
|
|
|
|
|
|
|
|
/* make end of xdr record */
|
|
|
|
extern bool_t xdrrec_endofrecord (XDR *__xdrs, bool_t __sendnow);
|
|
|
|
|
|
|
|
/* move to beginning of next record */
|
|
|
|
extern bool_t xdrrec_skiprecord (XDR *__xdrs);
|
|
|
|
|
|
|
|
/* true if no more input */
|
|
|
|
extern bool_t xdrrec_eof (XDR *__xdrs);
|
|
|
|
|
|
|
|
/* free memory buffers for xdr */
|
|
|
|
extern void xdr_free (xdrproc_t __proc, char *__objp);
|
|
|
|
|
|
|
|
#endif /* rpc/xdr.h */
|