rt-thread/src/kservice.c

1313 lines
31 KiB
C
Raw Normal View History

/*
* File : kservice.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
*
2013-06-24 17:06:09 +08:00
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2006-03-16 Bernard the first version
* 2006-05-25 Bernard rewrite vsprintf
* 2006-08-10 Bernard add rt_show_version
* 2010-03-17 Bernard remove rt_strlcpy function
* fix gcc compiling issue.
* 2010-04-15 Bernard remove weak definition on ICCM16C compiler
* 2012-07-18 Arda add the alignment display for signed integer
2013-06-24 17:06:09 +08:00
* 2012-11-23 Bernard fix IAR compiler error.
* 2012-12-22 Bernard fix rt_kprintf issue, which found by Grissiom.
2013-06-24 00:09:52 +08:00
* 2013-06-24 Bernard remove rt_kprintf if RT_USING_CONSOLE is not defined.
* 2013-09-24 aozima make sure the device is in STREAM mode when used by rt_kprintf.
* 2015-07-06 Bernard Add rt_assert_handler routine.
*/
#include <rtthread.h>
#include <rthw.h>
/* use precision */
#define RT_PRINTF_PRECISION
/**
* @addtogroup KernelService
*/
/*@{*/
/* global errno in RT-Thread */
static volatile int _errno;
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
static rt_device_t _console_device = RT_NULL;
#endif
/*
* This function will get errno
*
* @return errno
*/
rt_err_t rt_get_errno(void)
{
rt_thread_t tid;
if (rt_interrupt_get_nest() != 0)
{
/* it's in interrupt context */
return _errno;
}
tid = rt_thread_self();
if (tid == RT_NULL)
return _errno;
return tid->error;
}
RTM_EXPORT(rt_get_errno);
/*
* This function will set errno
*
* @param error the errno shall be set
*/
void rt_set_errno(rt_err_t error)
{
rt_thread_t tid;
if (rt_interrupt_get_nest() != 0)
{
/* it's in interrupt context */
_errno = error;
return;
}
tid = rt_thread_self();
if (tid == RT_NULL)
{
_errno = error;
2013-06-24 17:06:09 +08:00
return;
}
tid->error = error;
}
RTM_EXPORT(rt_set_errno);
/**
* This function returns errno.
*
* @return the errno in the system
*/
int *_rt_errno(void)
{
rt_thread_t tid;
2013-06-24 17:06:09 +08:00
if (rt_interrupt_get_nest() != 0)
return (int *)&_errno;
tid = rt_thread_self();
if (tid != RT_NULL)
return (int *)&(tid->error);
return (int *)&_errno;
}
RTM_EXPORT(_rt_errno);
/**
* This function will set the content of memory to specified value
*
* @param s the address of source memory
* @param c the value shall be set in content
* @param count the copied length
*
* @return the address of source memory
*/
void *rt_memset(void *s, int c, rt_ubase_t count)
{
#ifdef RT_TINY_SIZE
char *xs = (char *)s;
while (count--)
*xs++ = c;
return s;
#else
#define LBLOCKSIZE (sizeof(rt_int32_t))
#define UNALIGNED(X) ((rt_int32_t)X & (LBLOCKSIZE - 1))
#define TOO_SMALL(LEN) ((LEN) < LBLOCKSIZE)
int i;
char *m = (char *)s;
rt_uint32_t buffer;
rt_uint32_t *aligned_addr;
rt_uint32_t d = c & 0xff;
if (!TOO_SMALL(count) && !UNALIGNED(s))
{
/* If we get this far, we know that n is large and m is word-aligned. */
aligned_addr = (rt_uint32_t *)s;
/* Store D into each char sized location in BUFFER so that
* we can set large blocks quickly.
*/
if (LBLOCKSIZE == 4)
{
buffer = (d << 8) | d;
buffer |= (buffer << 16);
}
else
{
buffer = 0;
for (i = 0; i < LBLOCKSIZE; i ++)
buffer = (buffer << 8) | d;
}
while (count >= LBLOCKSIZE * 4)
{
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
count -= 4 * LBLOCKSIZE;
}
while (count >= LBLOCKSIZE)
{
*aligned_addr++ = buffer;
count -= LBLOCKSIZE;
}
/* Pick up the remainder with a bytewise loop. */
m = (char *)aligned_addr;
}
while (count--)
{
*m++ = (char)d;
}
return s;
#undef LBLOCKSIZE
#undef UNALIGNED
#undef TOO_SMALL
#endif
}
RTM_EXPORT(rt_memset);
/**
* This function will copy memory content from source address to destination
* address.
*
* @param dst the address of destination memory
* @param src the address of source memory
* @param count the copied length
*
* @return the address of destination memory
*/
void *rt_memcpy(void *dst, const void *src, rt_ubase_t count)
{
#ifdef RT_TINY_SIZE
char *tmp = (char *)dst, *s = (char *)src;
while (count--)
*tmp++ = *s++;
return dst;
#else
#define UNALIGNED(X, Y) \
(((rt_int32_t)X & (sizeof(rt_int32_t) - 1)) | \
((rt_int32_t)Y & (sizeof(rt_int32_t) - 1)))
#define BIGBLOCKSIZE (sizeof(rt_int32_t) << 2)
#define LITTLEBLOCKSIZE (sizeof(rt_int32_t))
#define TOO_SMALL(LEN) ((LEN) < BIGBLOCKSIZE)
char *dst_ptr = (char *)dst;
char *src_ptr = (char *)src;
rt_int32_t *aligned_dst;
rt_int32_t *aligned_src;
int len = count;
/* If the size is small, or either SRC or DST is unaligned,
then punt into the byte copy loop. This should be rare. */
if (!TOO_SMALL(len) && !UNALIGNED(src_ptr, dst_ptr))
{
aligned_dst = (rt_int32_t *)dst_ptr;
aligned_src = (rt_int32_t *)src_ptr;
/* Copy 4X long words at a time if possible. */
while (len >= BIGBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
len -= BIGBLOCKSIZE;
}
/* Copy one long word at a time if possible. */
while (len >= LITTLEBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
len -= LITTLEBLOCKSIZE;
}
/* Pick up any residual with a byte copier. */
dst_ptr = (char *)aligned_dst;
src_ptr = (char *)aligned_src;
}
while (len--)
*dst_ptr++ = *src_ptr++;
return dst;
#undef UNALIGNED
#undef BIGBLOCKSIZE
#undef LITTLEBLOCKSIZE
#undef TOO_SMALL
#endif
}
RTM_EXPORT(rt_memcpy);
/**
* This function will move memory content from source address to destination
* address.
*
* @param dest the address of destination memory
* @param src the address of source memory
* @param n the copied length
*
* @return the address of destination memory
*/
void *rt_memmove(void *dest, const void *src, rt_ubase_t n)
{
char *tmp = (char *)dest, *s = (char *)src;
if (s < tmp && tmp < s + n)
{
tmp += n;
s += n;
while (n--)
*(--tmp) = *(--s);
}
else
{
while (n--)
*tmp++ = *s++;
}
return dest;
}
RTM_EXPORT(rt_memmove);
/**
* This function will compare two areas of memory
*
* @param cs one area of memory
* @param ct znother area of memory
* @param count the size of the area
*
* @return the result
*/
rt_int32_t rt_memcmp(const void *cs, const void *ct, rt_ubase_t count)
{
const unsigned char *su1, *su2;
int res = 0;
for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--)
if ((res = *su1 - *su2) != 0)
break;
return res;
}
RTM_EXPORT(rt_memcmp);
/**
* This function will return the first occurrence of a string.
*
* @param s1 the source string
* @param s2 the find string
*
* @return the first occurrence of a s2 in s1, or RT_NULL if no found.
*/
char *rt_strstr(const char *s1, const char *s2)
{
int l1, l2;
l2 = rt_strlen(s2);
if (!l2)
return (char *)s1;
l1 = rt_strlen(s1);
while (l1 >= l2)
{
l1 --;
if (!rt_memcmp(s1, s2, l2))
return (char *)s1;
s1 ++;
}
return RT_NULL;
}
RTM_EXPORT(rt_strstr);
/**
* This function will compare two strings while ignoring differences in case
*
* @param a the string to be compared
* @param b the string to be compared
*
* @return the result
*/
rt_uint32_t rt_strcasecmp(const char *a, const char *b)
{
int ca, cb;
do
{
ca = *a++ & 0xff;
cb = *b++ & 0xff;
if (ca >= 'A' && ca <= 'Z')
ca += 'a' - 'A';
if (cb >= 'A' && cb <= 'Z')
cb += 'a' - 'A';
}
while (ca == cb && ca != '\0');
return ca - cb;
}
RTM_EXPORT(rt_strcasecmp);
/**
* This function will copy string no more than n bytes.
*
* @param dst the string to copy
* @param src the string to be copied
* @param n the maximum copied length
*
* @return the result
*/
char *rt_strncpy(char *dst, const char *src, rt_ubase_t n)
{
if (n != 0)
{
char *d = dst;
const char *s = src;
do
{
if ((*d++ = *s++) == 0)
{
/* NUL pad the remaining n-1 bytes */
while (--n != 0)
*d++ = 0;
break;
}
} while (--n != 0);
}
return (dst);
}
RTM_EXPORT(rt_strncpy);
/**
* This function will compare two strings with specified maximum length
*
* @param cs the string to be compared
* @param ct the string to be compared
* @param count the maximum compare length
*
* @return the result
*/
rt_int32_t rt_strncmp(const char *cs, const char *ct, rt_ubase_t count)
{
register signed char __res = 0;
while (count)
{
if ((__res = *cs - *ct++) != 0 || !*cs++)
break;
count --;
}
return __res;
}
RTM_EXPORT(rt_strncmp);
/**
* This function will compare two strings without specified length
*
* @param cs the string to be compared
* @param ct the string to be compared
*
* @return the result
*/
rt_int32_t rt_strcmp(const char *cs, const char *ct)
{
while (*cs && *cs == *ct)
cs++, ct++;
return (*cs - *ct);
}
RTM_EXPORT(rt_strcmp);
/**
* This function will return the length of a string, which terminate will
* null character.
*
* @param s the string
*
* @return the length of string
*/
rt_size_t rt_strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc) /* nothing */
;
return sc - s;
}
RTM_EXPORT(rt_strlen);
#ifdef RT_USING_HEAP
/**
* This function will duplicate a string.
*
* @param s the string to be duplicated
*
* @return the duplicated string pointer
*/
char *rt_strdup(const char *s)
{
rt_size_t len = rt_strlen(s) + 1;
char *tmp = (char *)rt_malloc(len);
if (!tmp)
return RT_NULL;
rt_memcpy(tmp, s, len);
return tmp;
}
RTM_EXPORT(rt_strdup);
#endif
/**
* This function will show the version of rt-thread rtos
*/
void rt_show_version(void)
{
rt_kprintf("\n \\ | /\n");
rt_kprintf("- RT - Thread Operating System\n");
rt_kprintf(" / | \\ %d.%d.%d build %s\n",
RT_VERSION, RT_SUBVERSION, RT_REVISION, __DATE__);
rt_kprintf(" 2006 - 2016 Copyright by rt-thread team\n");
}
RTM_EXPORT(rt_show_version);
/* private function */
#define isdigit(c) ((unsigned)((c) - '0') < 10)
rt_inline rt_int32_t divide(rt_int32_t *n, rt_int32_t base)
{
rt_int32_t res;
/* optimized for processor which does not support divide instructions. */
if (base == 10)
{
res = ((rt_uint32_t)*n) % 10U;
*n = ((rt_uint32_t)*n) / 10U;
}
else
{
res = ((rt_uint32_t)*n) % 16U;
*n = ((rt_uint32_t)*n) / 16U;
}
return res;
}
rt_inline int skip_atoi(const char **s)
{
register int i=0;
while (isdigit(**s))
i = i * 10 + *((*s)++) - '0';
return i;
}
#define ZEROPAD (1 << 0) /* pad with zero */
#define SIGN (1 << 1) /* unsigned/signed long */
#define PLUS (1 << 2) /* show plus */
#define SPACE (1 << 3) /* space if plus */
#define LEFT (1 << 4) /* left justified */
#define SPECIAL (1 << 5) /* 0x */
#define LARGE (1 << 6) /* use 'ABCDEF' instead of 'abcdef' */
#ifdef RT_PRINTF_PRECISION
static char *print_number(char *buf,
char *end,
long num,
int base,
int s,
int precision,
int type)
#else
static char *print_number(char *buf,
char *end,
long num,
int base,
int s,
int type)
#endif
{
char c, sign;
#ifdef RT_PRINTF_LONGLONG
char tmp[32];
#else
char tmp[16];
#endif
const char *digits;
static const char small_digits[] = "0123456789abcdef";
static const char large_digits[] = "0123456789ABCDEF";
register int i;
register int size;
size = s;
digits = (type & LARGE) ? large_digits : small_digits;
if (type & LEFT)
type &= ~ZEROPAD;
c = (type & ZEROPAD) ? '0' : ' ';
/* get sign */
sign = 0;
if (type & SIGN)
{
if (num < 0)
{
sign = '-';
num = -num;
}
else if (type & PLUS)
sign = '+';
else if (type & SPACE)
sign = ' ';
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base == 16)
size -= 2;
else if (base == 8)
size--;
}
#endif
i = 0;
if (num == 0)
tmp[i++]='0';
else
{
while (num != 0)
tmp[i++] = digits[divide(&num, base)];
}
#ifdef RT_PRINTF_PRECISION
if (i > precision)
precision = i;
size -= precision;
#else
size -= i;
#endif
if (!(type&(ZEROPAD | LEFT)))
{
if ((sign)&&(size>0))
size--;
while (size-->0)
{
if (buf <= end)
*buf = ' ';
++ buf;
}
}
if (sign)
{
if (buf <= end)
{
*buf = sign;
-- size;
}
++ buf;
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base==8)
{
if (buf <= end)
*buf = '0';
++ buf;
}
else if (base == 16)
{
if (buf <= end)
*buf = '0';
++ buf;
if (buf <= end)
{
*buf = type & LARGE? 'X' : 'x';
}
++ buf;
}
}
#endif
/* no align to the left */
if (!(type & LEFT))
{
while (size-- > 0)
{
if (buf <= end)
*buf = c;
++ buf;
}
}
#ifdef RT_PRINTF_PRECISION
while (i < precision--)
{
if (buf <= end)
*buf = '0';
++ buf;
}
#endif
/* put number in the temporary buffer */
while (i-- > 0)
{
if (buf <= end)
*buf = tmp[i];
++ buf;
}
while (size-- > 0)
{
if (buf <= end)
*buf = ' ';
++ buf;
}
return buf;
}
rt_int32_t rt_vsnprintf(char *buf,
rt_size_t size,
const char *fmt,
va_list args)
{
#ifdef RT_PRINTF_LONGLONG
unsigned long long num;
#else
rt_uint32_t num;
#endif
int i, len;
char *str, *end, c;
const char *s;
rt_uint8_t base; /* the base of number */
rt_uint8_t flags; /* flags to print number */
rt_uint8_t qualifier; /* 'h', 'l', or 'L' for integer fields */
rt_int32_t field_width; /* width of output field */
#ifdef RT_PRINTF_PRECISION
int precision; /* min. # of digits for integers and max for a string */
#endif
str = buf;
end = buf + size - 1;
/* Make sure end is always >= buf */
if (end < buf)
{
end = ((char *)-1);
size = end - buf;
}
for (; *fmt ; ++fmt)
{
if (*fmt != '%')
{
if (str <= end)
*str = *fmt;
++ str;
continue;
}
/* process flags */
flags = 0;
while (1)
{
/* skips the first '%' also */
++ fmt;
if (*fmt == '-') flags |= LEFT;
else if (*fmt == '+') flags |= PLUS;
else if (*fmt == ' ') flags |= SPACE;
else if (*fmt == '#') flags |= SPECIAL;
else if (*fmt == '0') flags |= ZEROPAD;
else break;
}
/* get field width */
field_width = -1;
if (isdigit(*fmt)) field_width = skip_atoi(&fmt);
else if (*fmt == '*')
{
++ fmt;
/* it's the next argument */
field_width = va_arg(args, int);
if (field_width < 0)
{
field_width = -field_width;
flags |= LEFT;
}
}
#ifdef RT_PRINTF_PRECISION
/* get the precision */
precision = -1;
if (*fmt == '.')
{
++ fmt;
if (isdigit(*fmt)) precision = skip_atoi(&fmt);
else if (*fmt == '*')
{
++ fmt;
/* it's the next argument */
precision = va_arg(args, int);
}
if (precision < 0) precision = 0;
}
#endif
/* get the conversion qualifier */
qualifier = 0;
#ifdef RT_PRINTF_LONGLONG
if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L')
#else
if (*fmt == 'h' || *fmt == 'l')
#endif
{
qualifier = *fmt;
++ fmt;
#ifdef RT_PRINTF_LONGLONG
if (qualifier == 'l' && *fmt == 'l')
{
qualifier = 'L';
++ fmt;
}
#endif
}
/* the default base */
base = 10;
switch (*fmt)
{
case 'c':
if (!(flags & LEFT))
{
while (--field_width > 0)
{
if (str <= end) *str = ' ';
++ str;
}
}
/* get character */
c = (rt_uint8_t)va_arg(args, int);
if (str <= end) *str = c;
++ str;
/* put width */
while (--field_width > 0)
{
if (str <= end) *str = ' ';
++ str;
}
continue;
case 's':
s = va_arg(args, char *);
if (!s) s = "(NULL)";
len = rt_strlen(s);
#ifdef RT_PRINTF_PRECISION
if (precision > 0 && len > precision) len = precision;
#endif
if (!(flags & LEFT))
{
while (len < field_width--)
{
if (str <= end) *str = ' ';
++ str;
}
}
for (i = 0; i < len; ++i)
{
if (str <= end) *str = *s;
++ str;
++ s;
}
while (len < field_width--)
{
if (str <= end) *str = ' ';
++ str;
}
continue;
case 'p':
if (field_width == -1)
{
field_width = sizeof(void *) << 1;
flags |= ZEROPAD;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end,
(long)va_arg(args, void *),
16, field_width, precision, flags);
#else
str = print_number(str, end,
(long)va_arg(args, void *),
16, field_width, flags);
#endif
continue;
case '%':
if (str <= end) *str = '%';
++ str;
continue;
/* integer number formats - set up the flags and "break" */
case 'o':
base = 8;
break;
case 'X':
flags |= LARGE;
case 'x':
base = 16;
break;
case 'd':
case 'i':
flags |= SIGN;
case 'u':
break;
default:
if (str <= end) *str = '%';
++ str;
if (*fmt)
{
if (str <= end) *str = *fmt;
++ str;
}
else
{
-- fmt;
}
continue;
}
#ifdef RT_PRINTF_LONGLONG
if (qualifier == 'L') num = va_arg(args, long long);
else if (qualifier == 'l')
#else
if (qualifier == 'l')
#endif
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t)num;
}
else if (qualifier == 'h')
{
num = (rt_uint16_t)va_arg(args, rt_int32_t);
if (flags & SIGN) num = (rt_int16_t)num;
}
else
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t)num;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end, num, base, field_width, precision, flags);
#else
str = print_number(str, end, num, base, field_width, flags);
#endif
}
if (str <= end) *str = '\0';
else *end = '\0';
/* the trailing null byte doesn't count towards the total
* ++str;
*/
return str - buf;
}
RTM_EXPORT(rt_vsnprintf);
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param size the size of buffer
* @param fmt the format
*/
rt_int32_t rt_snprintf(char *buf, rt_size_t size, const char *fmt, ...)
{
rt_int32_t n;
va_list args;
va_start(args, fmt);
n = rt_vsnprintf(buf, size, fmt, args);
va_end(args);
return n;
}
RTM_EXPORT(rt_snprintf);
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param arg_ptr the arg_ptr
* @param format the format
*/
rt_int32_t rt_vsprintf(char *buf, const char *format, va_list arg_ptr)
{
return rt_vsnprintf(buf, (rt_size_t) -1, format, arg_ptr);
}
RTM_EXPORT(rt_vsprintf);
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param format the format
*/
rt_int32_t rt_sprintf(char *buf, const char *format, ...)
{
rt_int32_t n;
va_list arg_ptr;
va_start(arg_ptr, format);
n = rt_vsprintf(buf ,format, arg_ptr);
va_end(arg_ptr);
return n;
}
RTM_EXPORT(rt_sprintf);
#ifdef RT_USING_CONSOLE
#ifdef RT_USING_DEVICE
/**
* This function returns the device using in console.
*
* @return the device using in console or RT_NULL
*/
rt_device_t rt_console_get_device(void)
{
return _console_device;
}
RTM_EXPORT(rt_console_get_device);
/**
* This function will set a device as console device.
* After set a device to console, all output of rt_kprintf will be
* redirected to this new device.
*
* @param name the name of new console device
*
* @return the old console device handler
*/
rt_device_t rt_console_set_device(const char *name)
{
rt_device_t new, old;
/* save old device */
old = _console_device;
/* find new console device */
new = rt_device_find(name);
if (new != RT_NULL)
{
if (_console_device != RT_NULL)
{
/* close old console device */
rt_device_close(_console_device);
}
/* set new console device */
rt_device_open(new, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_STREAM);
_console_device = new;
}
return old;
}
RTM_EXPORT(rt_console_set_device);
#endif
2014-06-26 14:47:53 +08:00
WEAK void rt_hw_console_output(const char *str)
{
/* empty console output */
}
RTM_EXPORT(rt_hw_console_output);
/**
* This function will print a formatted string on system console
*
* @param fmt the format
*/
void rt_kprintf(const char *fmt, ...)
{
va_list args;
rt_size_t length;
static char rt_log_buf[RT_CONSOLEBUF_SIZE];
va_start(args, fmt);
/* the return value of vsnprintf is the number of bytes that would be
* written to buffer had if the size of the buffer been sufficiently
* large excluding the terminating null byte. If the output string
* would be larger than the rt_log_buf, we have to adjust the output
* length. */
length = rt_vsnprintf(rt_log_buf, sizeof(rt_log_buf) - 1, fmt, args);
if (length > RT_CONSOLEBUF_SIZE - 1)
length = RT_CONSOLEBUF_SIZE - 1;
#ifdef RT_USING_DEVICE
if (_console_device == RT_NULL)
{
rt_hw_console_output(rt_log_buf);
}
else
{
rt_uint16_t old_flag = _console_device->open_flag;
_console_device->open_flag |= RT_DEVICE_FLAG_STREAM;
rt_device_write(_console_device, 0, rt_log_buf, length);
_console_device->open_flag = old_flag;
}
#else
rt_hw_console_output(rt_log_buf);
#endif
va_end(args);
}
RTM_EXPORT(rt_kprintf);
#endif
#ifdef RT_USING_HEAP
/**
* This function allocates a memory block, which address is aligned to the
* specified alignment size.
*
* @param size the allocated memory block size
* @param align the alignment size
*
* @return the allocated memory block on successful, otherwise returns RT_NULL
*/
void* rt_malloc_align(rt_size_t size, rt_size_t align)
{
void *align_ptr;
void *ptr;
rt_size_t align_size;
/* align the alignment size to 4 byte */
align = ((align + 0x03) & ~0x03);
/* get total aligned size */
align_size = ((size + 0x03) & ~0x03) + align;
/* allocate memory block from heap */
ptr = rt_malloc(align_size);
if (ptr != RT_NULL)
{
/* the allocated memory block is aligned */
if (((rt_uint32_t)ptr & (align - 1)) == 0)
{
align_ptr = (void *)((rt_uint32_t)ptr + align);
}
else
{
align_ptr = (void *)(((rt_uint32_t)ptr + (align - 1)) & ~(align - 1));
}
/* set the pointer before alignment pointer to the real pointer */
*((rt_uint32_t *)((rt_uint32_t)align_ptr - sizeof(void *))) = (rt_uint32_t)ptr;
ptr = align_ptr;
}
return ptr;
}
RTM_EXPORT(rt_malloc_align);
/**
* This function release the memory block, which is allocated by
* rt_malloc_align function and address is aligned.
*
* @param ptr the memory block pointer
*/
void rt_free_align(void *ptr)
{
void *real_ptr;
real_ptr = (void *)*(rt_uint32_t *)((rt_uint32_t)ptr - sizeof(void *));
rt_free(real_ptr);
}
RTM_EXPORT(rt_free_align);
#endif
#ifndef RT_USING_CPU_FFS
const rt_uint8_t __lowest_bit_bitmap[] =
{
/* 00 */ 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 10 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 20 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 30 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 40 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 50 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 60 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 70 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 80 */ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 90 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* A0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* B0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* C0 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* D0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* E0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* F0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/**
2013-06-24 17:06:09 +08:00
* This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
2013-06-24 17:06:09 +08:00
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
2013-06-24 17:06:09 +08:00
*
* @return return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
int __rt_ffs(int value)
{
if (value == 0) return 0;
if (value & 0xff)
return __lowest_bit_bitmap[value & 0xff] + 1;
if (value & 0xff00)
return __lowest_bit_bitmap[(value & 0xff00) >> 8] + 9;
2013-06-24 17:06:09 +08:00
if (value & 0xff0000)
return __lowest_bit_bitmap[(value & 0xff0000) >> 16] + 17;
2013-06-24 17:06:09 +08:00
return __lowest_bit_bitmap[(value & 0xff000000) >> 24] + 25;
}
#endif
2015-06-11 10:59:25 +08:00
#ifdef RT_DEBUG
/* RT_ASSERT(EX)'s hook */
void (*rt_assert_hook)(const char* ex, const char* func, rt_size_t line);
/**
* This function will set a hook function to RT_ASSERT(EX). It will run when the expression is false.
*
* @param hook the hook function
*/
void rt_assert_set_hook(void (*hook)(const char* ex, const char* func, rt_size_t line)) {
rt_assert_hook = hook;
}
/**
* The RT_ASSERT function.
*
* @param ex the assertion condition string
* @param func the function name when assertion.
* @param line the file line number when assertion.
*/
void rt_assert_handler(const char* ex_string, const char* func, rt_size_t line)
{
volatile char dummy = 0;
if (rt_assert_hook == RT_NULL)
{
#ifdef RT_USING_MODULE
if (rt_module_self() != RT_NULL)
{
/* unload assertion module */
rt_module_unload(rt_module_self());
/* re-schedule */
rt_schedule();
}
else
#endif
{
rt_kprintf("(%s) assertion failed at function:%s, line number:%d \n", ex_string, func, line);
while (dummy == 0);
}
}
else
{
rt_assert_hook(ex_string, func, line);
}
}
RTM_EXPORT(rt_assert_handler);
2015-06-11 10:59:25 +08:00
#endif /* RT_DEBUG */
#if !defined (RT_USING_NEWLIB) && defined (RT_USING_MINILIBC) && defined (__GNUC__)
#include <sys/types.h>
void *memcpy(void *dest, const void *src, size_t n) __attribute__((weak, alias("rt_memcpy")));
void *memset(void *s, int c, size_t n) __attribute__((weak, alias("rt_memset")));
void *memmove(void *dest, const void *src, size_t n) __attribute__((weak, alias("rt_memmove")));
int memcmp(const void *s1, const void *s2, size_t n) __attribute__((weak, alias("rt_memcmp")));
size_t strlen(const char *s) __attribute__((weak, alias("rt_strlen")));
char *strstr(const char *s1,const char *s2) __attribute__((weak, alias("rt_strstr")));
int strcasecmp(const char *a, const char *b) __attribute__((weak, alias("rt_strcasecmp")));
char *strncpy(char *dest, const char *src, size_t n) __attribute__((weak, alias("rt_strncpy")));
int strncmp(const char *cs, const char *ct, size_t count) __attribute__((weak, alias("rt_strncmp")));
#ifdef RT_USING_HEAP
char *strdup(const char *s) __attribute__((weak, alias("rt_strdup")));
#endif
int sprintf(char *buf, const char *format, ...) __attribute__((weak, alias("rt_sprintf")));
int snprintf(char *buf, rt_size_t size, const char *fmt, ...) __attribute__((weak, alias("rt_snprintf")));
int vsprintf(char *buf, const char *format, va_list arg_ptr) __attribute__((weak, alias("rt_vsprintf")));
#endif
/*@}*/