rt-thread/bsp/acm32f0x0-nucleo/drivers/drv_spi.c

641 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-31 AisinoChip first version
*/
#include "board.h"
#include <rtdevice.h>
#ifdef RT_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2)
#include "spi_config.h"
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
SPI_MAX_INDEX
};
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
struct dma_config
{
DMA_Channel_TypeDef *Instance;
rt_uint32_t dma_rcc;
IRQn_Type dma_irq;
rt_uint32_t channel;
rt_uint32_t request;
};
#endif
struct acm32_hw_spi_cs
{
enum_GPIOx_t GPIOx;
uint16_t GPIO_Pin;
};
struct acm32_spi_config
{
SPI_TypeDef *Instance;
char *bus_name;
IRQn_Type irq_type;
enum_Enable_ID_t enable_id;
#if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
struct dma_config *dma_rx;
#endif
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
struct dma_config *dma_tx;
#endif
enum_GPIOx_t cs_port;
rt_uint32_t cs_pin;
rt_uint32_t cs_alternate;
enum_GPIOx_t sck_port;
rt_uint32_t sck_pin;
rt_uint32_t sck_alternate;
enum_GPIOx_t mosi_port;
rt_uint32_t mosi_pin;
rt_uint32_t mosi_alternate;
enum_GPIOx_t miso_port;
rt_uint32_t miso_pin;
rt_uint32_t miso_alternate;
enum_GPIOx_t wp_port;
rt_uint32_t wp_pin;
rt_uint32_t wp_alternate;
enum_GPIOx_t hold_port;
rt_uint32_t hold_pin;
rt_uint32_t hold_alternate;
};
struct acm32_spi_device
{
rt_uint32_t pin;
char *bus_name;
char *device_name;
};
#define SPI_USING_RX_DMA_FLAG (1<<0)
#define SPI_USING_TX_DMA_FLAG (1<<1)
struct acm32_spi
{
SPI_HandleTypeDef handle;
struct acm32_spi_config *config;
struct rt_spi_configuration *cfg;
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
struct
{
#if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
DMA_HandleTypeDef handle_rx;
#endif
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
DMA_HandleTypeDef handle_tx;
#endif
} dma;
rt_uint8_t spi_dma_flag;
#endif
struct rt_spi_bus spi_bus;
};
static struct acm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
};
static struct acm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t acm32_spi_init(struct acm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.SPI_Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.SPI_Mode = SPI_MODE_MASTER;
}
spi_handle->Init.X_Mode = SPI_1X_MODE;
if (cfg->mode & RT_SPI_3WIRE)
{
return -RT_EINVAL;
}
if (cfg->data_width != 8)
{
return -RT_EINVAL;
}
switch (cfg->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_0;
break;
case RT_SPI_MODE_1:
spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_1;
break;
case RT_SPI_MODE_2:
spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_2;
break;
case RT_SPI_MODE_3:
spi_handle->Init.SPI_Work_Mode = SPI_WORK_MODE_3;
break;
}
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.First_Bit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.First_Bit = SPI_FIRSTBIT_LSB;
}
uint32_t SPI_APB_CLOCK;
SPI_APB_CLOCK = System_Get_SystemClock();
if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_128;
}
else
{
/* min prescaler 254 */
spi_handle->Init.BaudRate_Prescaler = SPI_BAUDRATE_PRESCALER_254;
}
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return -RT_EIO;
}
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
#if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
/* DMA configuration */
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_rx);
__HAL_LINK_DMA(spi_drv->handle, HDMA_Rx, spi_drv->dma.handle_rx);
}
#endif
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_tx);
__HAL_LINK_DMA(spi_drv->handle, HDMA_Tx, spi_drv->dma.handle_tx);
}
#endif
#endif
return RT_EOK;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
rt_uint32_t timeout = 1000;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct acm32_spi *spi_drv = rt_container_of(device->bus, struct acm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct acm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_CLEAR);
}
recv_buf = message->recv_buf;
send_buf = message->send_buf;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, message->length);
while (HAL_SPI_GetTxState(spi_handle) != SPI_TX_STATE_IDLE);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, message->length, timeout);
}
if (state == HAL_OK)
{
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, message->length);
while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
}
else
{
state = HAL_SPI_Receive_IT(spi_handle, (uint8_t *)recv_buf, message->length);
while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
}
}
}
else
#endif
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, message->length, timeout);
}
if (state != HAL_OK)
{
message->length = 0;
}
}
else if (message->send_buf)
{
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, message->length);
while (HAL_SPI_GetTxState(spi_handle) != SPI_TX_STATE_IDLE);
}
else
#endif
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, message->length, 0);
}
if (state != HAL_OK)
{
message->length = 0;
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, message->length);
#if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, message->length);
while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
}
else
#endif
{
rt_kprintf("expect %d bytes\n", message->length);
state = HAL_SPI_Receive_IT(spi_handle, (uint8_t *)recv_buf, message->length);
while (HAL_SPI_GetRxState(spi_handle) != SPI_RX_STATE_IDLE);
rt_kprintf("recv %d bytes\n", spi_handle->Rx_Count);
}
if (state != HAL_OK)
{
message->length = 0;
}
}
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
static rt_err_t _configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct acm32_spi *spi_drv = rt_container_of(device->bus, struct acm32_spi, spi_bus);
spi_drv->cfg = configuration;
return acm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops acm_spi_ops =
{
.configure = _configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result = RT_EOK;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
#if defined(BSP_SPI1_RX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
spi_bus_obj[i].dma.handle_rx.Init.Data_Flow = DMA_DATA_FLOW_P2M;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.Desination_Inc = DMA_DST_ADDR_INCREASE_ENABLE;
spi_bus_obj[i].dma.handle_rx.Init.Request_ID = spi_config[i].dma_rx->request;
spi_bus_obj[i].dma.handle_rx.Init.Source_Width = DMA_SRC_WIDTH_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Desination_Width = DMA_DST_WIDTH_BYTE;
spi_bus_obj[i].dma.handle_rx.DMA_ITC_Callback = NULL;
spi_bus_obj[i].dma.handle_rx.DMA_IE_Callback = NULL;
}
#endif
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI2_TX_USING_DMA)
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
spi_bus_obj[i].dma.handle_tx.Init.Data_Flow = DMA_DATA_FLOW_M2P;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_ENABLE;
spi_bus_obj[i].dma.handle_tx.Init.Desination_Inc = DMA_DST_ADDR_INCREASE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.Request_ID = spi_config[i].dma_tx->request;
spi_bus_obj[i].dma.handle_tx.Init.Source_Width = DMA_SRC_WIDTH_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Desination_Width = DMA_DST_WIDTH_BYTE;
spi_bus_obj[i].dma.handle_tx.DMA_ITC_Callback = NULL;
spi_bus_obj[i].dma.handle_tx.DMA_IE_Callback = NULL;
}
#endif
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &acm_spi_ops);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#if defined(BSP_USING_SPI1)
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2)
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
static void acm32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
}
int rt_hw_spi_init(void)
{
acm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
static uint32_t get_gpio_alternate(enum_GPIOx_t gpio_port, uint16_t gpio_pin)
{
/* SPI1_CS : PA2->AF3 PA4->AF1 PA15->AF1 PB0->AF1 PB11->AF5 */
/* SPI2_CS : PA8->AF4 PB9->AF4 PB12->AF4 */
if (gpio_port == GPIOA || gpio_port == GPIOB)
{
if (gpio_port == GPIOA)
{
switch (gpio_pin)
{
case GPIO_PIN_2:
return GPIO_FUNCTION_3;
case GPIO_PIN_4:
return GPIO_FUNCTION_1;
case GPIO_PIN_8:
return GPIO_FUNCTION_4;
case GPIO_PIN_15:
return GPIO_FUNCTION_1;
default:
return RT_UINT32_MAX;
}
}
else
{
switch (gpio_pin)
{
case GPIO_PIN_0:
return GPIO_FUNCTION_1;
case GPIO_PIN_9:
return GPIO_FUNCTION_4;
case GPIO_PIN_11:
return GPIO_FUNCTION_5;
case GPIO_PIN_12:
return GPIO_FUNCTION_4;
default:
return RT_UINT32_MAX;
}
}
}
return RT_UINT32_MAX;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, enum_GPIOx_t cs_gpiox, uint16_t cs_gpio_pin)
{
rt_uint32_t alternate;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct acm32_hw_spi_cs *cs_pin;
alternate = get_gpio_alternate(cs_gpiox, cs_gpio_pin);
if (alternate == RT_UINT32_MAX)
{
return -RT_EINVAL;
}
/* initialize the cs pin && select the slave*/
GPIO_InitTypeDef GPIO_Initure;
GPIO_Initure.Pin = cs_gpio_pin;
GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_Initure.Pull = GPIO_PULLUP;
GPIO_Initure.Alternate = alternate;
HAL_GPIO_Init(cs_gpiox, &GPIO_Initure);
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct acm32_hw_spi_cs *)rt_malloc(sizeof(struct acm32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
RT_ASSERT(result == RT_EOK);
return result;
}
void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
{
GPIO_InitTypeDef GPIO_Handle;
struct acm32_spi *spi_drv;
struct acm32_spi_config *spi_config;
RT_ASSERT(hspi != RT_NULL);
spi_drv = rt_container_of(hspi, struct acm32_spi, handle);
RT_ASSERT(spi_drv->spi_bus.parent.user_data != RT_NULL);
spi_config = (struct acm32_spi_config *)spi_drv->spi_bus.parent.user_data;
/* Enable Clock */
System_Module_Enable(spi_config->enable_id);
/* SPI CS */
GPIO_Handle.Pin = spi_config->cs_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->cs_alternate ;
HAL_GPIO_Init(spi_config->cs_port, &GPIO_Handle);
/* SPI SCK */
GPIO_Handle.Pin = spi_config->sck_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->sck_alternate ;
HAL_GPIO_Init(spi_config->sck_port, &GPIO_Handle);
/* SPI MOSI */
GPIO_Handle.Pin = spi_config->mosi_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->mosi_alternate ;
HAL_GPIO_Init(spi_config->mosi_port, &GPIO_Handle);
/* SPI MISO */
GPIO_Handle.Pin = spi_config->miso_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->miso_alternate ;
HAL_GPIO_Init(spi_config->miso_port, &GPIO_Handle);
if (hspi->Init.X_Mode == SPI_4X_MODE)
{
/* SPI WP */
GPIO_Handle.Pin = spi_config->wp_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->wp_alternate ;
HAL_GPIO_Init(spi_config->wp_port, &GPIO_Handle);
/* SPI HOLD */
GPIO_Handle.Pin = spi_config->hold_pin;
GPIO_Handle.Mode = GPIO_MODE_AF_PP;
GPIO_Handle.Pull = GPIO_PULLUP;
GPIO_Handle.Alternate = spi_config->hold_alternate ;
HAL_GPIO_Init(spi_config->hold_port, &GPIO_Handle);
}
/* Clear Pending Interrupt */
NVIC_ClearPendingIRQ(spi_config->irq_type);
/* Enable External Interrupt */
NVIC_EnableIRQ(spi_config->irq_type);
}
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 */
#endif /* RT_USING_SPI */