rt-thread/bsp/lpc54114-lite/Libraries/devices/LPC54114/drivers/fsl_dma.c

482 lines
18 KiB
C
Raw Normal View History

2018-12-05 11:44:53 +08:00
/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dma.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.lpc_dma"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DMA.
*
* @param base DMA peripheral base address.
*/
static uint32_t DMA_GetInstance(DMA_Type *base);
/*!
* @brief Get virtual channel number.
*
* @param base DMA peripheral base address.
*/
static uint32_t DMA_GetVirtualStartChannel(DMA_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Array to map DMA instance number to base pointer. */
static DMA_Type *const s_dmaBases[] = DMA_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Array to map DMA instance number to clock name. */
static const clock_ip_name_t s_dmaClockName[] = DMA_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Array to map DMA instance number to IRQ number. */
static const IRQn_Type s_dmaIRQNumber[] = DMA_IRQS;
/*! @brief Pointers to transfer handle for each DMA channel. */
static dma_handle_t *s_DMAHandle[FSL_FEATURE_DMA_ALL_CHANNELS];
/*! @brief Static table of descriptors */
#if defined(__ICCARM__)
#pragma data_alignment = FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZE
static dma_descriptor_t s_dma_descriptor_table[FSL_FEATURE_SOC_DMA_COUNT][FSL_FEATURE_DMA_MAX_CHANNELS] = {0};
#elif defined(__CC_ARM)
__attribute__((aligned(FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZE)))
static dma_descriptor_t s_dma_descriptor_table[FSL_FEATURE_SOC_DMA_COUNT][FSL_FEATURE_DMA_MAX_CHANNELS] = {0};
#elif defined(__GNUC__)
__attribute__((aligned(FSL_FEATURE_DMA_DESCRIPTOR_ALIGN_SIZE)))
static dma_descriptor_t s_dma_descriptor_table[FSL_FEATURE_SOC_DMA_COUNT][FSL_FEATURE_DMA_MAX_CHANNELS] = {0};
#endif
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t DMA_GetInstance(DMA_Type *base)
{
int32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dmaBases); instance++)
{
if (s_dmaBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dmaBases));
return instance;
}
static uint32_t DMA_GetVirtualStartChannel(DMA_Type *base)
{
uint32_t startChannel = 0, instance = 0;
uint32_t i = 0;
instance = DMA_GetInstance(base);
/* Compute start channel */
for (i = 0; i < instance; i++)
{
startChannel += FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(s_dmaBases[i]);
}
return startChannel;
}
void DMA_Init(DMA_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* enable dma clock gate */
CLOCK_EnableClock(s_dmaClockName[DMA_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* set descriptor table */
base->SRAMBASE = (uint32_t)s_dma_descriptor_table;
/* enable dma peripheral */
base->CTRL |= DMA_CTRL_ENABLE_MASK;
}
void DMA_Deinit(DMA_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(s_dmaClockName[DMA_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Disable DMA peripheral */
base->CTRL &= ~(DMA_CTRL_ENABLE_MASK);
}
void DMA_ConfigureChannelTrigger(DMA_Type *base, uint32_t channel, dma_channel_trigger_t *trigger)
{
assert((channel < FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)) && (NULL != trigger));
uint32_t tmp = (DMA_CHANNEL_CFG_HWTRIGEN_MASK | DMA_CHANNEL_CFG_TRIGPOL_MASK | DMA_CHANNEL_CFG_TRIGTYPE_MASK |
DMA_CHANNEL_CFG_TRIGBURST_MASK | DMA_CHANNEL_CFG_BURSTPOWER_MASK |
DMA_CHANNEL_CFG_SRCBURSTWRAP_MASK | DMA_CHANNEL_CFG_DSTBURSTWRAP_MASK);
tmp = base->CHANNEL[channel].CFG & (~tmp);
tmp |= (uint32_t)(trigger->type) | (uint32_t)(trigger->burst) | (uint32_t)(trigger->wrap);
base->CHANNEL[channel].CFG = tmp;
}
/*!
* @brief Gets the remaining bytes of the current DMA descriptor transfer.
*
* @param base DMA peripheral base address.
* @param channel DMA channel number.
* @return The number of bytes which have not been transferred yet.
*/
uint32_t DMA_GetRemainingBytes(DMA_Type *base, uint32_t channel)
{
assert(channel < FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base));
/* NOTE: when descriptors are chained, ACTIVE bit is set for whole chain. It makes
* impossible to distinguish between:
* - transfer finishes (represented by value '0x3FF')
* - and remaining 1024 bytes to transfer (value 0x3FF)
* for all descriptor in chain, except the last one.
* If you decide to use this function, please use 1023 transfers as maximal value */
/* Channel not active (transfer finished) and value is 0x3FF - nothing to transfer */
if ((!DMA_ChannelIsActive(base, channel)) &&
(0x3FF == ((base->CHANNEL[channel].XFERCFG & DMA_CHANNEL_XFERCFG_XFERCOUNT_MASK) >>
DMA_CHANNEL_XFERCFG_XFERCOUNT_SHIFT)))
{
return 0;
}
return ((base->CHANNEL[channel].XFERCFG & DMA_CHANNEL_XFERCFG_XFERCOUNT_MASK) >>
DMA_CHANNEL_XFERCFG_XFERCOUNT_SHIFT) +
1;
}
static void DMA_SetupDescriptor(
dma_descriptor_t *desc, uint32_t xfercfg, void *srcEndAddr, void *dstEndAddr, void *nextDesc)
{
desc->xfercfg = xfercfg;
desc->srcEndAddr = srcEndAddr;
desc->dstEndAddr = dstEndAddr;
desc->linkToNextDesc = nextDesc;
}
/* Verify and convert dma_xfercfg_t to XFERCFG register */
static void DMA_SetupXferCFG(dma_xfercfg_t *xfercfg, uint32_t *xfercfg_addr)
{
assert(xfercfg != NULL);
/* check source increment */
assert((xfercfg->srcInc == 0) || (xfercfg->srcInc == 1) || (xfercfg->srcInc == 2) || (xfercfg->srcInc == 4));
/* check destination increment */
assert((xfercfg->dstInc == 0) || (xfercfg->dstInc == 1) || (xfercfg->dstInc == 2) || (xfercfg->dstInc == 4));
/* check data width */
assert((xfercfg->byteWidth == 1) || (xfercfg->byteWidth == 2) || (xfercfg->byteWidth == 4));
/* check transfer count */
assert(xfercfg->transferCount <= DMA_MAX_TRANSFER_COUNT);
uint32_t xfer = 0, tmp;
/* set valid flag - descriptor is ready now */
xfer |= DMA_CHANNEL_XFERCFG_CFGVALID(xfercfg->valid ? 1 : 0);
/* set reload - allow link to next descriptor */
xfer |= DMA_CHANNEL_XFERCFG_RELOAD(xfercfg->reload ? 1 : 0);
/* set swtrig flag - start transfer */
xfer |= DMA_CHANNEL_XFERCFG_SWTRIG(xfercfg->swtrig ? 1 : 0);
/* set transfer count */
xfer |= DMA_CHANNEL_XFERCFG_CLRTRIG(xfercfg->clrtrig ? 1 : 0);
/* set INTA */
xfer |= DMA_CHANNEL_XFERCFG_SETINTA(xfercfg->intA ? 1 : 0);
/* set INTB */
xfer |= DMA_CHANNEL_XFERCFG_SETINTB(xfercfg->intB ? 1 : 0);
/* set data width */
tmp = xfercfg->byteWidth == 4 ? 2 : xfercfg->byteWidth - 1;
xfer |= DMA_CHANNEL_XFERCFG_WIDTH(tmp);
/* set source increment value */
tmp = xfercfg->srcInc == 4 ? 3 : xfercfg->srcInc;
xfer |= DMA_CHANNEL_XFERCFG_SRCINC(tmp);
/* set destination increment value */
tmp = xfercfg->dstInc == 4 ? 3 : xfercfg->dstInc;
xfer |= DMA_CHANNEL_XFERCFG_DSTINC(tmp);
/* set transfer count */
xfer |= DMA_CHANNEL_XFERCFG_XFERCOUNT(xfercfg->transferCount - 1);
/* store xferCFG */
*xfercfg_addr = xfer;
}
void DMA_CreateDescriptor(dma_descriptor_t *desc, dma_xfercfg_t *xfercfg, void *srcAddr, void *dstAddr, void *nextDesc)
{
uint32_t xfercfg_reg = 0;
assert((NULL != desc) && (0 == (uint32_t)desc % 16) && (NULL != xfercfg));
assert((NULL != srcAddr) && (0 == (uint32_t)srcAddr % xfercfg->byteWidth));
assert((NULL != dstAddr) && (0 == (uint32_t)dstAddr % xfercfg->byteWidth));
assert((NULL == nextDesc) || (0 == (uint32_t)nextDesc % 16));
/* Setup channel configuration */
DMA_SetupXferCFG(xfercfg, &xfercfg_reg);
/* Set descriptor structure */
DMA_SetupDescriptor(
desc, xfercfg_reg, (uint8_t *)srcAddr + (xfercfg->srcInc * xfercfg->byteWidth * (xfercfg->transferCount - 1)),
(uint8_t *)dstAddr + (xfercfg->dstInc * xfercfg->byteWidth * (xfercfg->transferCount - 1)), nextDesc);
}
void DMA_AbortTransfer(dma_handle_t *handle)
{
assert(NULL != handle);
DMA_DisableChannel(handle->base, handle->channel);
while (DMA_COMMON_CONST_REG_GET(handle->base, handle->channel, BUSY) & (1U << DMA_CHANNEL_INDEX(handle->channel)))
{
}
DMA_COMMON_REG_GET(handle->base, handle->channel, ABORT) |= 1U << DMA_CHANNEL_INDEX(handle->channel);
DMA_EnableChannel(handle->base, handle->channel);
}
void DMA_CreateHandle(dma_handle_t *handle, DMA_Type *base, uint32_t channel)
{
assert((NULL != handle) && (channel < FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base)));
int32_t dmaInstance;
uint32_t startChannel = 0;
/* base address is invalid DMA instance */
dmaInstance = DMA_GetInstance(base);
startChannel = DMA_GetVirtualStartChannel(base);
memset(handle, 0, sizeof(*handle));
handle->base = base;
handle->channel = channel;
s_DMAHandle[startChannel + channel] = handle;
/* Enable NVIC interrupt */
EnableIRQ(s_dmaIRQNumber[dmaInstance]);
}
void DMA_SetCallback(dma_handle_t *handle, dma_callback callback, void *userData)
{
assert(handle != NULL);
handle->callback = callback;
handle->userData = userData;
}
void DMA_PrepareTransfer(dma_transfer_config_t *config,
void *srcAddr,
void *dstAddr,
uint32_t byteWidth,
uint32_t transferBytes,
dma_transfer_type_t type,
void *nextDesc)
{
uint32_t xfer_count;
assert((NULL != config) && (NULL != srcAddr) && (NULL != dstAddr));
assert((byteWidth == 1) || (byteWidth == 2) || (byteWidth == 4));
/* check max */
xfer_count = transferBytes / byteWidth;
assert((xfer_count <= DMA_MAX_TRANSFER_COUNT) && (0 == transferBytes % byteWidth));
memset(config, 0, sizeof(*config));
switch (type)
{
case kDMA_MemoryToMemory:
config->xfercfg.srcInc = 1;
config->xfercfg.dstInc = 1;
config->isPeriph = false;
break;
case kDMA_PeripheralToMemory:
/* Peripheral register - source doesn't increment */
config->xfercfg.srcInc = 0;
config->xfercfg.dstInc = 1;
config->isPeriph = true;
break;
case kDMA_MemoryToPeripheral:
/* Peripheral register - destination doesn't increment */
config->xfercfg.srcInc = 1;
config->xfercfg.dstInc = 0;
config->isPeriph = true;
break;
case kDMA_StaticToStatic:
config->xfercfg.srcInc = 0;
config->xfercfg.dstInc = 0;
config->isPeriph = true;
break;
default:
return;
}
config->dstAddr = (uint8_t *)dstAddr;
config->srcAddr = (uint8_t *)srcAddr;
config->nextDesc = (uint8_t *)nextDesc;
config->xfercfg.transferCount = xfer_count;
config->xfercfg.byteWidth = byteWidth;
config->xfercfg.intA = true;
config->xfercfg.reload = nextDesc != NULL;
config->xfercfg.valid = true;
}
status_t DMA_SubmitTransfer(dma_handle_t *handle, dma_transfer_config_t *config)
{
assert((NULL != handle) && (NULL != config));
uint32_t instance = DMA_GetInstance(handle->base);
/* Previous transfer has not finished */
if (DMA_ChannelIsActive(handle->base, handle->channel))
{
return kStatus_DMA_Busy;
}
/* enable/disable peripheral request */
if (config->isPeriph)
{
DMA_EnableChannelPeriphRq(handle->base, handle->channel);
}
else
{
DMA_DisableChannelPeriphRq(handle->base, handle->channel);
}
DMA_CreateDescriptor(&(s_dma_descriptor_table[instance][handle->channel]), &config->xfercfg, config->srcAddr,
config->dstAddr, config->nextDesc);
return kStatus_Success;
}
void DMA_StartTransfer(dma_handle_t *handle)
{
assert(NULL != handle);
uint32_t instance = DMA_GetInstance(handle->base);
/* Enable channel interrupt */
DMA_EnableChannelInterrupts(handle->base, handle->channel);
/* If HW trigger is enabled - disable SW trigger */
if (handle->base->CHANNEL[handle->channel].CFG & DMA_CHANNEL_CFG_HWTRIGEN_MASK)
{
s_dma_descriptor_table[instance][handle->channel].xfercfg &= ~(DMA_CHANNEL_XFERCFG_SWTRIG_MASK);
}
/* Otherwise enable SW trigger */
else
{
s_dma_descriptor_table[instance][handle->channel].xfercfg |= DMA_CHANNEL_XFERCFG_SWTRIG_MASK;
}
/* Set channel XFERCFG register according first channel descriptor. */
handle->base->CHANNEL[handle->channel].XFERCFG = s_dma_descriptor_table[instance][handle->channel].xfercfg;
/* At this moment, the channel ACTIVE bit is set and application cannot modify
* or start another transfer using this channel. Channel ACTIVE bit is cleared by
* 'AbortTransfer' function or when the transfer finishes */
}
void DMA_IRQHandle(DMA_Type *base)
{
dma_handle_t *handle;
int32_t channel_index;
uint32_t startChannel = DMA_GetVirtualStartChannel(base);
uint32_t i = 0;
/* Find channels that have completed transfer */
for (i = 0; i < FSL_FEATURE_DMA_NUMBER_OF_CHANNELSn(base); i++)
{
handle = s_DMAHandle[i + startChannel];
/* Handle is not present */
if (NULL == handle)
{
continue;
}
channel_index = DMA_CHANNEL_INDEX(handle->channel);
/* Channel uses INTA flag */
if (DMA_COMMON_REG_GET(handle->base, handle->channel, INTA) & (1U << channel_index))
{
/* Clear INTA flag */
DMA_COMMON_REG_SET(handle->base, handle->channel, INTA, (1U << channel_index));
if (handle->callback)
{
(handle->callback)(handle, handle->userData, true, kDMA_IntA);
}
}
/* Channel uses INTB flag */
if (DMA_COMMON_REG_GET(handle->base, handle->channel, INTB) & (1U << channel_index))
{
/* Clear INTB flag */
DMA_COMMON_REG_SET(handle->base, handle->channel, INTB, (1U << channel_index));
if (handle->callback)
{
(handle->callback)(handle, handle->userData, true, kDMA_IntB);
}
}
/* Error flag */
if (DMA_COMMON_REG_GET(handle->base, handle->channel, ERRINT) & (1U << channel_index))
{
/* Clear error flag */
DMA_COMMON_REG_SET(handle->base, handle->channel, ERRINT, (1U << channel_index));
if (handle->callback)
{
(handle->callback)(handle, handle->userData, false, kDMA_IntError);
}
}
}
}
void DMA0_DriverIRQHandler(void)
{
DMA_IRQHandle(DMA0);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if defined(DMA1)
void DMA1_DriverIRQHandler(void)
{
DMA_IRQHandle(DMA1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif