rt-thread/bsp/hpmicro/libraries/drivers/drv_spi.c

624 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2021-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-02-01 HPMicro First version
* 2023-02-15 HPMicro Add DMA support
* 2023-07-14 HPMicro Manage the DMA buffer alignment in driver
* 2023-12-14 HPMicro change state blocking wait to interrupt semaphore wait for DMA
*/
#include <rtthread.h>
#ifdef BSP_USING_SPI
#include <rtdevice.h>
#include "board.h"
#include "drv_spi.h"
#include "hpm_spi_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_dma_mgr.h"
#include "hpm_dmamux_drv.h"
#include "hpm_l1c_drv.h"
struct hpm_spi
{
uint32_t instance;
char *bus_name;
SPI_Type *spi_base;
spi_control_config_t control_config;
struct rt_spi_bus spi_bus;
rt_sem_t xfer_sem;
rt_bool_t enable_dma;
rt_uint8_t tx_dmamux;
rt_uint8_t rx_dmamux;
dma_resource_t tx_dma;
dma_resource_t rx_dma;
rt_uint8_t spi_irq;
rt_sem_t spi_xfer_done_sem;
rt_sem_t txdma_xfer_done_sem;
rt_sem_t rxdma_xfer_done_sem;
};
static rt_err_t hpm_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg);
static rt_ssize_t hpm_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *msg);
static struct hpm_spi hpm_spis[] =
{
#if defined(BSP_USING_SPI0)
{
.bus_name = "spi0",
.spi_base = HPM_SPI0,
#if defined(BSP_SPI0_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.tx_dmamux = HPM_DMA_SRC_SPI0_TX,
.rx_dmamux = HPM_DMA_SRC_SPI0_RX,
.spi_irq = IRQn_SPI0,
},
#endif
#if defined(BSP_USING_SPI1)
{
.bus_name = "spi1",
.spi_base = HPM_SPI1,
#if defined(BSP_SPI1_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.tx_dmamux = HPM_DMA_SRC_SPI1_TX,
.rx_dmamux = HPM_DMA_SRC_SPI1_RX,
.spi_irq = IRQn_SPI1,
},
#endif
#if defined(BSP_USING_SPI2)
{
.bus_name = "spi2",
.spi_base = HPM_SPI2,
#if defined(BSP_SPI2_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.tx_dmamux = HPM_DMA_SRC_SPI2_TX,
.rx_dmamux = HPM_DMA_SRC_SPI2_RX,
.spi_irq = IRQn_SPI2,
},
#endif
#if defined(BSP_USING_SPI3)
{
.bus_name = "spi3",
.spi_base = HPM_SPI3,
#if defined(BSP_SPI3_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.tx_dmamux = HPM_DMA_SRC_SPI3_TX,
.rx_dmamux = HPM_DMA_SRC_SPI3_RX,
.spi_irq = IRQn_SPI3,
},
#endif
};
static struct rt_spi_ops hpm_spi_ops =
{
.configure = hpm_spi_configure,
.xfer = hpm_spi_xfer,
};
static inline void handle_spi_isr(SPI_Type *ptr)
{
volatile uint32_t irq_status;
RT_ASSERT(ptr != RT_NULL);
rt_base_t level;
level = rt_hw_interrupt_disable();
irq_status = spi_get_interrupt_status(ptr);
if (irq_status & spi_end_int)
{
for (uint32_t i = 0; i < sizeof(hpm_spis) / sizeof(hpm_spis[0]); i++)
{
if (hpm_spis[i].spi_base == ptr)
{
rt_sem_release(hpm_spis[i].spi_xfer_done_sem);
}
}
spi_disable_interrupt(ptr, spi_end_int);
spi_clear_interrupt_status(ptr, spi_end_int);
}
rt_hw_interrupt_enable(level);
}
#if defined(BSP_USING_SPI0)
void spi0_isr(void)
{
handle_spi_isr(HPM_SPI0);
}
SDK_DECLARE_EXT_ISR_M(IRQn_SPI0, spi0_isr);
#endif
#if defined(BSP_USING_SPI1)
void spi1_isr(void)
{
handle_spi_isr(HPM_SPI1);
}
SDK_DECLARE_EXT_ISR_M(IRQn_SPI1, spi1_isr);
#endif
#if defined(BSP_USING_SPI2)
void spi2_isr(void)
{
handle_spi_isr(HPM_SPI2);
}
SDK_DECLARE_EXT_ISR_M(IRQn_SPI2, spi2_isr);
#endif
#if defined(BSP_USING_SPI3)
void spi3_isr(void)
{
handle_spi_isr(HPM_SPI3);
}
SDK_DECLARE_EXT_ISR_M(IRQn_SPI3, spi3_isr);
#endif
void spi_dma_channel_tc_callback(DMA_Type *ptr, uint32_t channel, void *user_data)
{
struct hpm_spi *spi = (struct hpm_spi *)user_data;
RT_ASSERT(spi != RT_NULL);
RT_ASSERT(ptr != RT_NULL);
rt_base_t level;
level = rt_hw_interrupt_disable();
if ((spi->tx_dma.base == ptr) && spi->tx_dma.channel == channel)
{
dma_mgr_disable_chn_irq(&spi->tx_dma, DMA_MGR_INTERRUPT_MASK_TC);
rt_sem_release(spi->txdma_xfer_done_sem);
}
if ((spi->rx_dma.base == ptr) && spi->rx_dma.channel == channel)
{
dma_mgr_disable_chn_irq(&spi->rx_dma, DMA_MGR_INTERRUPT_MASK_TC);
rt_sem_release(spi->rxdma_xfer_done_sem);
}
rt_hw_interrupt_enable(level);
}
static rt_err_t hpm_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
spi_timing_config_t timing_config = { 0 };
spi_format_config_t format_config = { 0 };
struct hpm_spi *spi = RT_NULL;
spi = (struct hpm_spi *) (device->bus->parent.user_data);
RT_ASSERT(spi != RT_NULL);
if (cfg->data_width != 8 && cfg->data_width != 16 && cfg->data_width != 32)
{
return -RT_EINVAL;
}
spi_master_get_default_timing_config(&timing_config);
spi_master_get_default_format_config(&format_config);
init_spi_pins_with_gpio_as_cs(spi->spi_base);
timing_config.master_config.clk_src_freq_in_hz = board_init_spi_clock(spi->spi_base);
format_config.common_config.data_len_in_bits = cfg->data_width;
format_config.common_config.cpha = cfg->mode & RT_SPI_CPHA ? 1 : 0;
format_config.common_config.cpol = cfg->mode & RT_SPI_CPOL ? 1 : 0;
format_config.common_config.lsb = cfg->mode & RT_SPI_MSB ? false : true;
format_config.common_config.mosi_bidir = cfg->mode & RT_SPI_3WIRE ? true : false;
spi_format_init(spi->spi_base, &format_config);
if (cfg->max_hz > timing_config.master_config.clk_src_freq_in_hz)
{
cfg->max_hz = timing_config.master_config.clk_src_freq_in_hz;
}
timing_config.master_config.sclk_freq_in_hz = cfg->max_hz;
spi_master_timing_init(spi->spi_base, &timing_config);
spi_master_get_default_control_config(&spi->control_config);
spi->control_config.master_config.addr_enable = false;
spi->control_config.master_config.cmd_enable = false;
spi->control_config.master_config.token_enable = false;
spi->control_config.common_config.trans_mode = spi_trans_write_read_together;
return RT_EOK;
}
static hpm_stat_t hpm_spi_xfer_polling(struct rt_spi_device *device, struct rt_spi_message *msg)
{
struct hpm_spi *spi = (struct hpm_spi *) (device->bus->parent.user_data);
hpm_stat_t spi_stat = status_success;
uint32_t remaining_size = msg->length;
uint32_t transfer_len;
uint8_t *tx_buf = (uint8_t*) msg->send_buf;
uint8_t *rx_buf = (uint8_t*) msg->recv_buf;
while (remaining_size > 0)
{
transfer_len = MIN(SPI_SOC_TRANSFER_COUNT_MAX, remaining_size);
spi->control_config.common_config.tx_dma_enable = false;
spi->control_config.common_config.rx_dma_enable = false;
if (msg->send_buf != NULL && msg->recv_buf != NULL)
{
spi->control_config.common_config.trans_mode = spi_trans_write_read_together;
spi_stat = spi_transfer(spi->spi_base, &spi->control_config,
NULL,
NULL, tx_buf, transfer_len, rx_buf, transfer_len);
}
else if (msg->send_buf != NULL)
{
spi->control_config.common_config.trans_mode = spi_trans_write_only;
spi_stat = spi_transfer(spi->spi_base, &spi->control_config,
NULL,
NULL, (uint8_t*) tx_buf, transfer_len,
NULL, 0);
}
else
{
spi->control_config.common_config.trans_mode = spi_trans_read_only;
spi_stat = spi_transfer(spi->spi_base, &spi->control_config,
NULL,
NULL,
NULL, 0, rx_buf, transfer_len);
}
if (spi_stat != status_success)
{
break;
}
if (tx_buf != NULL)
{
tx_buf += transfer_len;
}
if (rx_buf != NULL)
{
rx_buf += transfer_len;
}
remaining_size -= transfer_len;
}
return spi_stat;
}
hpm_stat_t spi_tx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, SPI_Type *spi_ptr, uint32_t src, uint8_t data_width, uint32_t size)
{
dma_handshake_config_t config;
config.ch_index = ch_num;
config.dst = (uint32_t)&spi_ptr->DATA;
config.dst_fixed = true;
config.src = src;
config.src_fixed = false;
config.data_width = data_width;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
hpm_stat_t spi_rx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, SPI_Type *spi_ptr, uint32_t dst, uint8_t data_width, uint32_t size)
{
dma_handshake_config_t config;
config.ch_index = ch_num;
config.dst = dst;
config.dst_fixed = false;
config.src = (uint32_t)&spi_ptr->DATA;
config.src_fixed = true;
config.data_width = data_width;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
static rt_uint32_t hpm_spi_xfer_dma(struct rt_spi_device *device, struct rt_spi_message *msg)
{
struct hpm_spi *spi = (struct hpm_spi *) (device->bus->parent.user_data);
hpm_stat_t spi_stat = status_success;
uint32_t remaining_size = msg->length;
uint32_t transfer_len;
uint8_t *raw_alloc_tx_buf = RT_NULL;
uint8_t *raw_alloc_rx_buf = RT_NULL;
uint8_t *aligned_tx_buf = RT_NULL;
uint8_t *aligned_rx_buf = RT_NULL;
uint32_t aligned_len = 0;
if (msg->length <= 0)
{
return status_invalid_argument;
}
aligned_len = (msg->length + HPM_L1C_CACHELINE_SIZE - 1U) & ~(HPM_L1C_CACHELINE_SIZE - 1U);
if (msg->send_buf != RT_NULL)
{
if (l1c_dc_is_enabled())
{
/* The allocated pointer is always RT_ALIGN_SIZE aligned */
raw_alloc_tx_buf = (uint8_t*)rt_malloc(aligned_len + HPM_L1C_CACHELINE_SIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_tx_buf != RT_NULL);
aligned_tx_buf = (uint8_t*)HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)raw_alloc_tx_buf);
rt_memcpy(aligned_tx_buf, msg->send_buf, msg->length);
l1c_dc_flush((uint32_t) aligned_tx_buf, aligned_len);
}
else
{
aligned_tx_buf = (uint8_t*) msg->send_buf;
}
}
if (msg->recv_buf != RT_NULL)
{
if (l1c_dc_is_enabled())
{
/* The allocated pointer is always RT_ALIGN_SIZE aligned */
raw_alloc_rx_buf = (uint8_t*)rt_malloc(aligned_len + HPM_L1C_CACHELINE_SIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_rx_buf != RT_NULL);
aligned_rx_buf = (uint8_t*)HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)raw_alloc_rx_buf);
}
else
{
aligned_rx_buf = msg->recv_buf;
}
}
uint8_t *tx_buf = aligned_tx_buf;
uint8_t *rx_buf = aligned_rx_buf;
uint32_t core_id = read_csr(CSR_MHARTID);
spi->spi_base->CTRL &= ~(SPI_CTRL_TXDMAEN_MASK | SPI_CTRL_RXDMAEN_MASK);
spi->control_config.common_config.tx_dma_enable = false;
spi->control_config.common_config.rx_dma_enable = false;
spi_disable_interrupt(spi->spi_base, spi_end_int);
while (remaining_size > 0)
{
transfer_len = MIN(SPI_SOC_TRANSFER_COUNT_MAX, remaining_size);
if (msg->send_buf != NULL && msg->recv_buf != NULL)
{
spi_enable_interrupt(spi->spi_base, spi_end_int);
spi->control_config.common_config.tx_dma_enable = true;
spi->control_config.common_config.rx_dma_enable = true;
spi->control_config.common_config.trans_mode = spi_trans_write_read_together;
spi_stat = spi_setup_dma_transfer(spi->spi_base, &spi->control_config, NULL, NULL, transfer_len,
transfer_len);
if (spi_stat != status_success)
{
break;
}
dmamux_config(HPM_DMAMUX, spi->tx_dma.channel, spi->tx_dmamux, true);
spi_stat = spi_tx_trigger_dma(spi->tx_dma.base, spi->tx_dma.channel, spi->spi_base,
core_local_mem_to_sys_address(core_id, (uint32_t) tx_buf),
DMA_TRANSFER_WIDTH_BYTE, transfer_len);
/* setup spi rx trigger dma transfer*/
dmamux_config(HPM_DMAMUX, spi->rx_dma.channel, spi->rx_dmamux, true);
spi_stat = spi_rx_trigger_dma(spi->rx_dma.base, spi->rx_dma.channel, spi->spi_base,
core_local_mem_to_sys_address(core_id, (uint32_t) rx_buf),
DMA_TRANSFER_WIDTH_BYTE, transfer_len);
if (spi_stat != status_success)
{
break;
}
dma_mgr_enable_chn_irq(&spi->tx_dma, DMA_MGR_INTERRUPT_MASK_TC);
dma_mgr_enable_chn_irq(&spi->rx_dma, DMA_MGR_INTERRUPT_MASK_TC);
rt_sem_take(spi->spi_xfer_done_sem, RT_WAITING_FOREVER);
rt_sem_take(spi->txdma_xfer_done_sem, RT_WAITING_FOREVER);
rt_sem_take(spi->rxdma_xfer_done_sem, RT_WAITING_FOREVER);
}
else if (msg->send_buf != NULL)
{
spi_enable_interrupt(spi->spi_base, spi_end_int);
spi->control_config.common_config.tx_dma_enable = true;
spi->control_config.common_config.trans_mode = spi_trans_write_only;
spi_stat = spi_setup_dma_transfer(spi->spi_base, &spi->control_config, NULL, NULL, transfer_len, 0);
if (spi_stat != status_success)
{
break;
}
dmamux_config(HPM_DMAMUX, spi->tx_dma.channel, spi->tx_dmamux, true);
spi_stat = spi_tx_trigger_dma(spi->tx_dma.base, spi->tx_dma.channel, spi->spi_base,
core_local_mem_to_sys_address(core_id, (uint32_t) tx_buf),
DMA_TRANSFER_WIDTH_BYTE, transfer_len);
if (spi_stat != status_success)
{
break;
}
dma_mgr_enable_chn_irq(&spi->tx_dma, DMA_MGR_INTERRUPT_MASK_TC);
rt_sem_take(spi->spi_xfer_done_sem, RT_WAITING_FOREVER);
rt_sem_take(spi->txdma_xfer_done_sem, RT_WAITING_FOREVER);
}
else
{
spi->control_config.common_config.rx_dma_enable = true;
spi->control_config.common_config.trans_mode = spi_trans_read_only;
spi_stat = spi_setup_dma_transfer(spi->spi_base, &spi->control_config, NULL, NULL, 0, transfer_len);
if (spi_stat != status_success)
{
break;
}
/* setup spi rx trigger dma transfer*/
dmamux_config(HPM_DMAMUX, spi->rx_dma.channel, spi->rx_dmamux, true);
spi_stat = spi_rx_trigger_dma(spi->rx_dma.base, spi->rx_dma.channel, spi->spi_base,
core_local_mem_to_sys_address(core_id, (uint32_t) rx_buf),
DMA_TRANSFER_WIDTH_BYTE, transfer_len);
if (spi_stat != status_success)
{
break;
}
spi_enable_interrupt(spi->spi_base, spi_end_int);
dma_mgr_enable_chn_irq(&spi->rx_dma, DMA_MGR_INTERRUPT_MASK_TC);
rt_sem_take(spi->spi_xfer_done_sem, RT_WAITING_FOREVER);
rt_sem_take(spi->rxdma_xfer_done_sem, RT_WAITING_FOREVER);
}
if (tx_buf != NULL)
{
tx_buf += transfer_len;
}
if (rx_buf != NULL)
{
rx_buf += transfer_len;
}
remaining_size -= transfer_len;
spi->spi_base->CTRL &= ~(SPI_CTRL_TXDMAEN_MASK | SPI_CTRL_RXDMAEN_MASK);
}
if (l1c_dc_is_enabled() && (msg->length > 0))
{
/* cache invalidate for receive buff */
if (aligned_tx_buf != RT_NULL)
{
rt_free(raw_alloc_tx_buf);
raw_alloc_tx_buf = RT_NULL;
aligned_tx_buf = RT_NULL;
}
if (aligned_rx_buf != RT_NULL)
{
l1c_dc_invalidate((uint32_t) aligned_rx_buf, aligned_len);
rt_memcpy(msg->recv_buf, aligned_rx_buf, msg->length);
rt_free(raw_alloc_rx_buf);
raw_alloc_rx_buf = RT_NULL;
aligned_rx_buf = RT_NULL;
}
}
return spi_stat;
}
static rt_ssize_t hpm_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *msg)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(msg != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
cs_ctrl_callback_t cs_pin_control = (cs_ctrl_callback_t) device->parent.user_data;
struct hpm_spi *spi = (struct hpm_spi *) (device->bus->parent.user_data);
hpm_stat_t spi_stat = status_success;
if ((cs_pin_control != NULL) && msg->cs_take)
{
cs_pin_control(SPI_CS_TAKE);
}
if (spi->enable_dma)
{
spi_stat = hpm_spi_xfer_dma(device, msg);
}
else
{
spi_stat = hpm_spi_xfer_polling(device, msg);
}
if (spi_stat != status_success)
{
msg->length = 0;
}
if ((cs_pin_control != NULL) && msg->cs_release)
{
cs_pin_control(SPI_CS_RELEASE);
}
return msg->length;
}
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, cs_ctrl_callback_t callback)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *) rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void*)callback);
RT_ASSERT(result == RT_EOK);
return result;
}
int rt_hw_spi_init(void)
{
rt_err_t ret = RT_EOK;
hpm_stat_t stat;
for (uint32_t i = 0; i < sizeof(hpm_spis) / sizeof(hpm_spis[0]); i++)
{
struct hpm_spi *spi = &hpm_spis[i];
spi->spi_bus.parent.user_data = spi;
if (spi->enable_dma)
{
stat = dma_mgr_request_resource(&spi->tx_dma);
dma_mgr_install_chn_tc_callback(&spi->tx_dma, spi_dma_channel_tc_callback, (void *)&hpm_spis[i]);
if (stat != status_success)
{
return -RT_ERROR;
}
stat = dma_mgr_request_resource(&spi->rx_dma);
dma_mgr_install_chn_tc_callback(&spi->rx_dma, spi_dma_channel_tc_callback, (void *)&hpm_spis[i]);
if (stat != status_success)
{
return -RT_ERROR;
}
intc_m_enable_irq_with_priority(hpm_spis[i].spi_irq, 2);
dma_mgr_enable_dma_irq_with_priority(&spi->tx_dma, 1);
dma_mgr_enable_dma_irq_with_priority(&spi->rx_dma, 1);
}
ret = rt_spi_bus_register(&spi->spi_bus, spi->bus_name, &hpm_spi_ops);
if (ret != RT_EOK)
{
break;
}
char sem_name[RT_NAME_MAX];
rt_sprintf(sem_name, "%s_s", hpm_spis[i].bus_name);
hpm_spis[i].xfer_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (hpm_spis[i].xfer_sem == RT_NULL)
{
ret = RT_ENOMEM;
break;
}
rt_sprintf(sem_name, "%s_ds", hpm_spis[i].bus_name);
hpm_spis[i].spi_xfer_done_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (hpm_spis[i].spi_xfer_done_sem == RT_NULL)
{
ret = RT_ENOMEM;
break;
}
rt_sprintf(sem_name, "%s_rds", hpm_spis[i].bus_name);
hpm_spis[i].rxdma_xfer_done_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (hpm_spis[i].rxdma_xfer_done_sem == RT_NULL)
{
ret = RT_ENOMEM;
break;
}
rt_sprintf(sem_name, "%s_tds", hpm_spis[i].bus_name);
hpm_spis[i].txdma_xfer_done_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (hpm_spis[i].txdma_xfer_done_sem == RT_NULL)
{
ret = RT_ENOMEM;
break;
}
}
return ret;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /*BSP_USING_SPI*/