rt-thread/bsp/microchip/same54/applications/can_demo.c

334 lines
8.6 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Email Notes
* 2019-07-16 Kevin.Liu kevin.liu.mchp@gmail.com First Release
*/
#include <rtthread.h>
#ifdef RT_USING_FINSH
#include <finsh.h>
#include <shell.h>
#endif
#include "atmel_start.h"
#include "driver_init.h"
#include "utils.h"
#include "can_demo.h"
#ifdef SAM_CAN_EXAMPLE
static volatile enum can_async_interrupt_type can_errors;
static rt_sem_t can_txdone;
static rt_sem_t can_rxdone;
static rt_uint8_t can_stack[ 512 ];
static struct rt_thread can_thread;
/**
* @brief Callback function and should be invoked after call can_async_write.
*
* @note
*
* @param descr is CAN device description.
*
* @return None.
*/
static void can_tx_callback(struct can_async_descriptor *const descr)
{
rt_err_t result;
rt_interrupt_enter();
result = rt_sem_release(can_txdone);
if (RT_EOK != result)
{
#ifndef RT_USING_FINSH
rt_kprintf("rt_sem_release failed in %s %d\r\n",__FUNCTION__, __LINE__);
#endif
}
rt_interrupt_leave();
}
/**
* @brief Callback function and should be invoked after remote device send.
*
* @note This callback function will be called in CAN interrupt function
*
* @param descr is CAN device description.
*
* @return None.
*/
static void can_rx_callback(struct can_async_descriptor *const descr)
{
rt_err_t result;
rt_interrupt_enter();
result = rt_sem_release(can_rxdone);
if (RT_EOK != result)
{
#ifndef RT_USING_FINSH
rt_kprintf("rt_sem_release failed in %s %d\r\n",__FUNCTION__, __LINE__);
#endif
}
rt_interrupt_leave();
}
/**
* @brief Callback function and should be invoked after CAN device IRQ handler detects errors happened.
*
* @note This callback function will be called in CAN interrupt function
*
* @param descr is CAN device description.
*
* @return None.
*/
static void can_err_callback(struct can_async_descriptor *const descr,
enum can_async_interrupt_type type)
{
rt_err_t result;
if (type == CAN_IRQ_EW)
{
/* Error warning, Error counter has reached the error warning limit of 96,
* An error count value greater than about 96 indicates a heavily disturbed
* bus. It may be of advantage to provide means to test for this condition.
*/
}
else if (type == CAN_IRQ_EA)
{
/* Error Active State, The CAN node normally take part in bus communication
* and sends an ACTIVE ERROR FLAG when an error has been detected.
*/
}
else if (type == CAN_IRQ_EP)
{
/* Error Passive State, The Can node goes into error passive state if at least
* one of its error counters is greater than 127. It still takes part in bus
* activities, but it sends a passive error frame only, on errors.
*/
}
else if (type == CAN_IRQ_BO)
{
/* Bus Off State, The CAN node is 'bus off' when the TRANSMIT ERROR COUNT is
* greater than or equal to 256.
*/
/* Suspend CAN task and re-initialize CAN module. */
can_errors = type;
rt_interrupt_enter();
result = rt_sem_release(can_rxdone);
if (RT_EOK != result)
{
#ifndef RT_USING_FINSH
rt_kprintf("rt_sem_release failed in %s %d\r\n",__FUNCTION__, __LINE__);
#endif
}
rt_interrupt_leave();
}
else if (type == CAN_IRQ_DO)
{
/* Data Overrun in receive queue. A message was lost because the messages in
* the queue was not reading and releasing fast enough. There is not enough
* space for a new message in receive queue.
*/
/* Suggest to delete CAN task and re-initialize it. */
can_errors = type;
rt_interrupt_enter();
result = rt_sem_release(can_rxdone);
if (RT_EOK != result)
{
#ifndef RT_USING_FINSH
rt_kprintf("rt_sem_release failed in %s %d\r\n",__FUNCTION__, __LINE__);
#endif
}
rt_interrupt_leave();
}
};
/**
* @brief Initialize CAN module before task run.
*
* @note This function will set CAN Tx/Rx callback function and filters.
*
* @param None.
*
* @return None.
*/
static inline void can_demo_init(void)
{
struct can_filter filter;
/**
* CAN_Node0_tx_callback callback should be invoked after call
* can_async_write, and remote device should receive message with ID=0x45A
*/
can_async_register_callback(&CAN_0, CAN_ASYNC_TX_CB, (FUNC_PTR)can_tx_callback);
/**
* CAN_0_rx_callback callback should be invoked after call
* can_async_set_filter and remote device send CAN Message with the same
* content as the filter.
*/
can_async_register_callback(&CAN_0, CAN_ASYNC_RX_CB, (FUNC_PTR)can_rx_callback);
/* Should set at least one CAN standard & message filter before enable it. */
filter.id = 0x469;
filter.mask = 0;
can_async_set_filter(&CAN_0, 0, CAN_FMT_STDID, &filter);
/* If set second standard message filter, should increase filter index
* and filter algorithm
* For example: index should set to 1, otherwise it will replace filter 0.
* can_async_set_filter(&CAN_0, 1, CAN_FMT_STDID, &filter); */
filter.id = 0x10000096;
filter.mask = 0;
can_async_set_filter(&CAN_0, 0, CAN_FMT_EXTID, &filter);
can_async_enable(&CAN_0);
}
/**
* @brief CAN task.
*
* @note This task will waiting for CAN RX semaphore and then process input.
*
* @param parameter - task input parameter.
*
* @return None.
*/
static void can_thread_entry(void* parameter)
{
int32_t ret;
rt_err_t result;
uint8_t data[64];
uint32_t count=0;
struct can_message msg;
while (1)
{
#ifndef RT_USING_FINSH
rt_kprintf("can task run count : %d\r\n",count);
#endif
count++;
result = rt_sem_take(can_rxdone, RT_WAITING_FOREVER);
if (RT_EOK != result)
continue;
do
{
/* Process the incoming packet. */
ret = can_async_read(&CAN_0, &msg);
if (ret == ERR_NONE)
{
#ifndef RT_USING_FINSH
rt_kprintf("CAN RX Message is % frame\r\n",
msg.type == CAN_TYPE_DATA ? "data" : "remote");
rt_kprintf("CAN RX Message is % frame\r\n",
msg.type == CAN_FMT_STDID ? "Standard" : "Extended");
rt_kprintf("can RX Message ID: 0x%X length: %d\r\n", msg.id, msg.len);
rt_kprintf("CAN RX Message content: ");
for (uint8_t i = 0; i < msg.len; i++)
rt_kprintf("0x%02X ", data[i]);
rt_kprintf("\r\n");
#endif
}
} while (ret == ERR_NONE); /* Get all data stored in CAN RX FIFO */
/* CAN task got CAN error message, handler CAN Error Status */
if ((can_errors == CAN_IRQ_BO) || (can_errors == CAN_IRQ_DO))
{
can_async_init(&CAN_0, CAN1);
}
}
}
/**
* @brief Call this function will to send a CAN message.
*
* @note
*
* @param msg - message to be sent, timeouts - wait timeouts for Tx completion.
*
* @return RT_OK or RT_ERROR.
*/
rt_err_t can_send_message(struct can_message *msg, rt_uint32_t timeouts)
{
rt_err_t result;
if (RT_NULL == msg)
{
rt_kprintf("can_send_message input message error\r\n");
return RT_ERROR;
}
can_async_write(&CAN_0, msg);
result = rt_sem_take(can_rxdone, timeouts);
return result;
}
/**
* @brief Call this function will create a CAN task.
*
* @note Should create Tx/Rx semaphore before run task.
*
* @param None.
*
* @return RT_OK or -RT_ERROR.
*/
rt_err_t can_demo_run(void)
{
rt_err_t result;
can_rxdone = rt_sem_create("can_rx", 0, RT_IPC_FLAG_FIFO);
if (RT_NULL == can_rxdone)
{
rt_kprintf("can_rx semaphore create failed\r\n");
return (-RT_ERROR);
}
can_txdone = rt_sem_create("can_tx", 0, RT_IPC_FLAG_FIFO);
if (RT_NULL == can_txdone)
{
rt_kprintf("can_tx semaphore create failed\r\n");
return (-RT_ERROR);
}
can_demo_init();
/* initialize CAN thread */
result = rt_thread_init(&can_thread,
"can",
can_thread_entry,
RT_NULL,
(rt_uint8_t*)&can_stack[0],
sizeof(can_stack),
RT_THREAD_PRIORITY_MAX/3,
5);
if (result == RT_EOK)
{
rt_thread_startup(&can_thread);
}
return result;
}
#endif
/*@}*/