2019-03-11 13:10:36 +08:00
/******************************************************************************
* @ file arm_math . h
* @ brief Public header file for CMSIS DSP LibraryU
* @ version V1 .5 .3
* @ date 10. January 2018
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* Copyright ( c ) 2010 - 2018 Arm Limited or its affiliates . All rights reserved .
*
* SPDX - License - Identifier : Apache - 2.0
*
* Licensed under the Apache License , Version 2.0 ( the License ) ; you may
* not use this file except in compliance with the License .
* You may obtain a copy of the License at
*
* www . apache . org / licenses / LICENSE - 2.0
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an AS IS BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied .
* See the License for the specific language governing permissions and
* limitations under the License .
*/
/**
\ mainpage CMSIS DSP Software Library
*
* Introduction
* - - - - - - - - - - - -
*
* This user manual describes the CMSIS DSP software library ,
* a suite of common signal processing functions for use on Cortex - M processor based devices .
*
* The library is divided into a number of functions each covering a specific category :
* - Basic math functions
* - Fast math functions
* - Complex math functions
* - Filters
* - Matrix functions
* - Transforms
* - Motor control functions
* - Statistical functions
* - Support functions
* - Interpolation functions
*
* The library has separate functions for operating on 8 - bit integers , 16 - bit integers ,
* 32 - bit integer and 32 - bit floating - point values .
*
* Using the Library
* - - - - - - - - - - - -
*
* The library installer contains prebuilt versions of the libraries in the < code > Lib < / code > folder .
* - arm_cortexM7lfdp_math . lib ( Cortex - M7 , Little endian , Double Precision Floating Point Unit )
* - arm_cortexM7bfdp_math . lib ( Cortex - M7 , Big endian , Double Precision Floating Point Unit )
* - arm_cortexM7lfsp_math . lib ( Cortex - M7 , Little endian , Single Precision Floating Point Unit )
* - arm_cortexM7bfsp_math . lib ( Cortex - M7 , Big endian and Single Precision Floating Point Unit on )
* - arm_cortexM7l_math . lib ( Cortex - M7 , Little endian )
* - arm_cortexM7b_math . lib ( Cortex - M7 , Big endian )
* - arm_cortexM4lf_math . lib ( Cortex - M4 , Little endian , Floating Point Unit )
* - arm_cortexM4bf_math . lib ( Cortex - M4 , Big endian , Floating Point Unit )
* - arm_cortexM4l_math . lib ( Cortex - M4 , Little endian )
* - arm_cortexM4b_math . lib ( Cortex - M4 , Big endian )
* - arm_cortexM3l_math . lib ( Cortex - M3 , Little endian )
* - arm_cortexM3b_math . lib ( Cortex - M3 , Big endian )
* - arm_cortexM0l_math . lib ( Cortex - M0 / Cortex - M0 + , Little endian )
* - arm_cortexM0b_math . lib ( Cortex - M0 / Cortex - M0 + , Big endian )
* - arm_ARMv8MBLl_math . lib ( Armv8 - M Baseline , Little endian )
* - arm_ARMv8MMLl_math . lib ( Armv8 - M Mainline , Little endian )
* - arm_ARMv8MMLlfsp_math . lib ( Armv8 - M Mainline , Little endian , Single Precision Floating Point Unit )
* - arm_ARMv8MMLld_math . lib ( Armv8 - M Mainline , Little endian , DSP instructions )
* - arm_ARMv8MMLldfsp_math . lib ( Armv8 - M Mainline , Little endian , DSP instructions , Single Precision Floating Point Unit )
*
* The library functions are declared in the public file < code > arm_math . h < / code > which is placed in the < code > Include < / code > folder .
* Simply include this file and link the appropriate library in the application and begin calling the library functions . The Library supports single
* public header file < code > arm_math . h < / code > for Cortex - M cores with little endian and big endian . Same header file will be used for floating point unit ( FPU ) variants .
* Define the appropriate preprocessor macro ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application .
* For Armv8 - M cores define preprocessor macro ARM_MATH_ARMV8MBL or ARM_MATH_ARMV8MML .
* Set preprocessor macro __DSP_PRESENT if Armv8 - M Mainline core supports DSP instructions .
2023-02-10 19:13:40 -05:00
*
2019-03-11 13:10:36 +08:00
*
* Examples
* - - - - - - - -
*
* The library ships with a number of examples which demonstrate how to use the library functions .
*
* Toolchain Support
* - - - - - - - - - - - -
*
* The library has been developed and tested with MDK version 5.14 .0 .0
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly .
*
* Building the Library
* - - - - - - - - - - - -
*
* The library installer contains a project file to rebuild libraries on MDK toolchain in the < code > CMSIS \ \ DSP_Lib \ \ Source \ \ ARM < / code > folder .
* - arm_cortexM_math . uvprojx
*
*
* The libraries can be built by opening the arm_cortexM_math . uvprojx project in MDK - ARM , selecting a specific target , and defining the optional preprocessor macros detailed above .
*
* Preprocessor Macros
* - - - - - - - - - - - -
*
* Each library project have different preprocessor macros .
*
* - UNALIGNED_SUPPORT_DISABLE :
*
* Define macro UNALIGNED_SUPPORT_DISABLE , If the silicon does not support unaligned memory access
*
* - ARM_MATH_BIG_ENDIAN :
*
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets . By default library builds for little endian targets .
*
* - ARM_MATH_MATRIX_CHECK :
*
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
*
* - ARM_MATH_ROUNDING :
*
* Define macro ARM_MATH_ROUNDING for rounding on support functions
*
* - ARM_MATH_CMx :
*
* Define macro ARM_MATH_CM4 for building the library on Cortex - M4 target , ARM_MATH_CM3 for building library on Cortex - M3 target
* and ARM_MATH_CM0 for building library on Cortex - M0 target , ARM_MATH_CM0PLUS for building library on Cortex - M0 + target , and
* ARM_MATH_CM7 for building the library on cortex - M7 .
*
* - ARM_MATH_ARMV8MxL :
*
* Define macro ARM_MATH_ARMV8MBL for building the library on Armv8 - M Baseline target , ARM_MATH_ARMV8MML for building library
* on Armv8 - M Mainline target .
*
* - __FPU_PRESENT :
*
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets . Enable this macro for floating point libraries .
*
* - __DSP_PRESENT :
*
* Initialize macro __DSP_PRESENT = 1 when Armv8 - M Mainline core supports DSP instructions .
*
* < hr >
* CMSIS - DSP in ARM : : CMSIS Pack
* - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
*
* The following files relevant to CMSIS - DSP are present in the < b > ARM : : CMSIS < / b > Pack directories :
* | File / Folder | Content |
* | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
* | \ b CMSIS \ \ Documentation \ \ DSP | This documentation |
* | \ b CMSIS \ \ DSP_Lib | Software license agreement ( license . txt ) |
* | \ b CMSIS \ \ DSP_Lib \ \ Examples | Example projects demonstrating the usage of the library functions |
* | \ b CMSIS \ \ DSP_Lib \ \ Source | Source files for rebuilding the library |
*
* < hr >
* Revision History of CMSIS - DSP
* - - - - - - - - - - - -
* Please refer to \ ref ChangeLog_pg .
*
* Copyright Notice
* - - - - - - - - - - - -
*
* Copyright ( C ) 2010 - 2015 Arm Limited . All rights reserved .
*/
/**
* @ defgroup groupMath Basic Math Functions
*/
/**
* @ defgroup groupFastMath Fast Math Functions
* This set of functions provides a fast approximation to sine , cosine , and square root .
* As compared to most of the other functions in the CMSIS math library , the fast math functions
* operate on individual values and not arrays .
* There are separate functions for Q15 , Q31 , and floating - point data .
*
*/
/**
* @ defgroup groupCmplxMath Complex Math Functions
* This set of functions operates on complex data vectors .
* The data in the complex arrays is stored in an interleaved fashion
* ( real , imag , real , imag , . . . ) .
* In the API functions , the number of samples in a complex array refers
* to the number of complex values ; the array contains twice this number of
* real values .
*/
/**
* @ defgroup groupFilters Filtering Functions
*/
/**
* @ defgroup groupMatrix Matrix Functions
*
* This set of functions provides basic matrix math operations .
* The functions operate on matrix data structures . For example ,
* the type
* definition for the floating - point matrix structure is shown
* below :
* < pre >
* typedef struct
* {
* uint16_t numRows ; // number of rows of the matrix.
* uint16_t numCols ; // number of columns of the matrix.
* float32_t * pData ; // points to the data of the matrix.
* } arm_matrix_instance_f32 ;
* < / pre >
* There are similar definitions for Q15 and Q31 data types .
*
* The structure specifies the size of the matrix and then points to
* an array of data . The array is of size < code > numRows X numCols < / code >
* and the values are arranged in row order . That is , the
* matrix element ( i , j ) is stored at :
* < pre >
* pData [ i * numCols + j ]
* < / pre >
*
* \ par Init Functions
* There is an associated initialization function for each type of matrix
* data structure .
* The initialization function sets the values of the internal structure fields .
* Refer to the function < code > arm_mat_init_f32 ( ) < / code > , < code > arm_mat_init_q31 ( ) < / code >
* and < code > arm_mat_init_q15 ( ) < / code > for floating - point , Q31 and Q15 types , respectively .
*
* \ par
* Use of the initialization function is optional . However , if initialization function is used
* then the instance structure cannot be placed into a const data section .
* To place the instance structure in a const data
* section , manually initialize the data structure . For example :
* < pre >
* < code > arm_matrix_instance_f32 S = { nRows , nColumns , pData } ; < / code >
* < code > arm_matrix_instance_q31 S = { nRows , nColumns , pData } ; < / code >
* < code > arm_matrix_instance_q15 S = { nRows , nColumns , pData } ; < / code >
* < / pre >
* where < code > nRows < / code > specifies the number of rows , < code > nColumns < / code >
* specifies the number of columns , and < code > pData < / code > points to the
* data array .
*
* \ par Size Checking
* By default all of the matrix functions perform size checking on the input and
* output matrices . For example , the matrix addition function verifies that the
* two input matrices and the output matrix all have the same number of rows and
* columns . If the size check fails the functions return :
* < pre >
* ARM_MATH_SIZE_MISMATCH
* < / pre >
* Otherwise the functions return
* < pre >
* ARM_MATH_SUCCESS
* < / pre >
* There is some overhead associated with this matrix size checking .
* The matrix size checking is enabled via the \ # define
* < pre >
* ARM_MATH_MATRIX_CHECK
* < / pre >
* within the library project settings . By default this macro is defined
* and size checking is enabled . By changing the project settings and
* undefining this macro size checking is eliminated and the functions
* run a bit faster . With size checking disabled the functions always
* return < code > ARM_MATH_SUCCESS < / code > .
*/
/**
* @ defgroup groupTransforms Transform Functions
*/
/**
* @ defgroup groupController Controller Functions
*/
/**
* @ defgroup groupStats Statistics Functions
*/
/**
* @ defgroup groupSupport Support Functions
*/
/**
* @ defgroup groupInterpolation Interpolation Functions
* These functions perform 1 - and 2 - dimensional interpolation of data .
* Linear interpolation is used for 1 - dimensional data and
* bilinear interpolation is used for 2 - dimensional data .
*/
/**
* @ defgroup groupExamples Examples
*/
# ifndef _ARM_MATH_H
# define _ARM_MATH_H
/* Compiler specific diagnostic adjustment */
# if defined ( __CC_ARM )
# elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
# elif defined ( __GNUC__ )
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wsign-conversion"
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wunused-parameter"
# elif defined ( __ICCARM__ )
# elif defined ( __TI_ARM__ )
# elif defined ( __CSMC__ )
# elif defined ( __TASKING__ )
# else
# error Unknown compiler
# endif
# define __CMSIS_GENERIC /* disable NVIC and Systick functions */
# if defined(ARM_MATH_CM7)
# include "core_cm7.h"
# define ARM_MATH_DSP
# elif defined (ARM_MATH_CM4)
# include "core_cm4.h"
# define ARM_MATH_DSP
2019-06-12 15:01:12 +08:00
# elif defined (ARM_MATH_CM33)
# include "core_cm33.h"
# define ARM_MATH_DSP
2019-03-11 13:10:36 +08:00
# elif defined (ARM_MATH_CM3)
# include "core_cm3.h"
# elif defined (ARM_MATH_CM0)
# include "core_cm0.h"
# define ARM_MATH_CM0_FAMILY
# elif defined (ARM_MATH_CM0PLUS)
# include "core_cm0plus.h"
# define ARM_MATH_CM0_FAMILY
# elif defined (ARM_MATH_ARMV8MBL)
# include "core_armv8mbl.h"
# define ARM_MATH_CM0_FAMILY
# elif defined (ARM_MATH_ARMV8MML)
# include "core_armv8mml.h"
# if (defined (__DSP_PRESENT) && (__DSP_PRESENT == 1))
# define ARM_MATH_DSP
# endif
# else
# error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS, ARM_MATH_CM0, ARM_MATH_ARMV8MBL, ARM_MATH_ARMV8MML"
# endif
# undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
# include "string.h"
# include "math.h"
# ifdef __cplusplus
extern " C "
{
# endif
/**
* @ brief Macros required for reciprocal calculation in Normalized LMS
*/
# define DELTA_Q31 (0x100)
# define DELTA_Q15 0x5
# define INDEX_MASK 0x0000003F
# ifndef PI
# define PI 3.14159265358979f
# endif
/**
* @ brief Macros required for SINE and COSINE Fast math approximations
*/
# define FAST_MATH_TABLE_SIZE 512
# define FAST_MATH_Q31_SHIFT (32 - 10)
# define FAST_MATH_Q15_SHIFT (16 - 10)
# define CONTROLLER_Q31_SHIFT (32 - 9)
# define TABLE_SPACING_Q31 0x400000
# define TABLE_SPACING_Q15 0x80
/**
* @ brief Macros required for SINE and COSINE Controller functions
*/
/* 1.31(q31) Fixed value of 2/360 */
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
# define INPUT_SPACING 0xB60B61
/**
* @ brief Macro for Unaligned Support
*/
# ifndef UNALIGNED_SUPPORT_DISABLE
# define ALIGN4
# else
# if defined (__GNUC__)
# define ALIGN4 __attribute__((aligned(4)))
# else
# define ALIGN4 __align(4)
# endif
# endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
/**
* @ brief Error status returned by some functions in the library .
*/
typedef enum
{
ARM_MATH_SUCCESS = 0 , /**< No error */
ARM_MATH_ARGUMENT_ERROR = - 1 , /**< One or more arguments are incorrect */
ARM_MATH_LENGTH_ERROR = - 2 , /**< Length of data buffer is incorrect */
ARM_MATH_SIZE_MISMATCH = - 3 , /**< Size of matrices is not compatible with the operation. */
ARM_MATH_NANINF = - 4 , /**< Not-a-number (NaN) or infinity is generated */
ARM_MATH_SINGULAR = - 5 , /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
ARM_MATH_TEST_FAILURE = - 6 /**< Test Failed */
} arm_status ;
/**
* @ brief 8 - bit fractional data type in 1.7 format .
*/
typedef int8_t q7_t ;
/**
* @ brief 16 - bit fractional data type in 1.15 format .
*/
typedef int16_t q15_t ;
/**
* @ brief 32 - bit fractional data type in 1.31 format .
*/
typedef int32_t q31_t ;
/**
* @ brief 64 - bit fractional data type in 1.63 format .
*/
typedef int64_t q63_t ;
/**
* @ brief 32 - bit floating - point type definition .
*/
typedef float float32_t ;
/**
* @ brief 64 - bit floating - point type definition .
*/
typedef double float64_t ;
/**
* @ brief definition to read / write two 16 bit values .
*/
# if defined ( __CC_ARM )
# define __SIMD32_TYPE int32_t __packed
# define CMSIS_UNUSED __attribute__((unused))
# define CMSIS_INLINE __attribute__((always_inline))
# elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
# define __SIMD32_TYPE int32_t
# define CMSIS_UNUSED __attribute__((unused))
# define CMSIS_INLINE __attribute__((always_inline))
# elif defined ( __GNUC__ )
# define __SIMD32_TYPE int32_t
# define CMSIS_UNUSED __attribute__((unused))
# define CMSIS_INLINE __attribute__((always_inline))
# elif defined ( __ICCARM__ )
# define __SIMD32_TYPE int32_t __packed
# define CMSIS_UNUSED
# define CMSIS_INLINE
# elif defined ( __TI_ARM__ )
# define __SIMD32_TYPE int32_t
# define CMSIS_UNUSED __attribute__((unused))
# define CMSIS_INLINE
# elif defined ( __CSMC__ )
# define __SIMD32_TYPE int32_t
# define CMSIS_UNUSED
# define CMSIS_INLINE
# elif defined ( __TASKING__ )
# define __SIMD32_TYPE __unaligned int32_t
# define CMSIS_UNUSED
# define CMSIS_INLINE
# else
# error Unknown compiler
# endif
# define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
# define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
# define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
# define __SIMD64(addr) (*(int64_t **) & (addr))
# if !defined (ARM_MATH_DSP)
/**
* @ brief definition to pack two 16 bit values .
*/
# define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
( ( ( int32_t ) ( ARG2 ) < < ARG3 ) & ( int32_t ) 0xFFFF0000 ) )
# define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
( ( ( int32_t ) ( ARG2 ) > > ARG3 ) & ( int32_t ) 0x0000FFFF ) )
# endif /* !defined (ARM_MATH_DSP) */
/**
* @ brief definition to pack four 8 bit values .
*/
# ifndef ARM_MATH_BIG_ENDIAN
# define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
( ( ( int32_t ) ( v1 ) < < 8 ) & ( int32_t ) 0x0000FF00 ) | \
( ( ( int32_t ) ( v2 ) < < 16 ) & ( int32_t ) 0x00FF0000 ) | \
( ( ( int32_t ) ( v3 ) < < 24 ) & ( int32_t ) 0xFF000000 ) )
# else
# define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
( ( ( int32_t ) ( v2 ) < < 8 ) & ( int32_t ) 0x0000FF00 ) | \
( ( ( int32_t ) ( v1 ) < < 16 ) & ( int32_t ) 0x00FF0000 ) | \
( ( ( int32_t ) ( v0 ) < < 24 ) & ( int32_t ) 0xFF000000 ) )
# endif
/**
* @ brief Clips Q63 to Q31 values .
*/
CMSIS_INLINE __STATIC_INLINE q31_t clip_q63_to_q31 (
q63_t x )
{
return ( ( q31_t ) ( x > > 32 ) ! = ( ( q31_t ) x > > 31 ) ) ?
( ( 0x7FFFFFFF ^ ( ( q31_t ) ( x > > 63 ) ) ) ) : ( q31_t ) x ;
}
/**
* @ brief Clips Q63 to Q15 values .
*/
CMSIS_INLINE __STATIC_INLINE q15_t clip_q63_to_q15 (
q63_t x )
{
return ( ( q31_t ) ( x > > 32 ) ! = ( ( q31_t ) x > > 31 ) ) ?
( ( 0x7FFF ^ ( ( q15_t ) ( x > > 63 ) ) ) ) : ( q15_t ) ( x > > 15 ) ;
}
/**
* @ brief Clips Q31 to Q7 values .
*/
CMSIS_INLINE __STATIC_INLINE q7_t clip_q31_to_q7 (
q31_t x )
{
return ( ( q31_t ) ( x > > 24 ) ! = ( ( q31_t ) x > > 23 ) ) ?
( ( 0x7F ^ ( ( q7_t ) ( x > > 31 ) ) ) ) : ( q7_t ) x ;
}
/**
* @ brief Clips Q31 to Q15 values .
*/
CMSIS_INLINE __STATIC_INLINE q15_t clip_q31_to_q15 (
q31_t x )
{
return ( ( q31_t ) ( x > > 16 ) ! = ( ( q31_t ) x > > 15 ) ) ?
( ( 0x7FFF ^ ( ( q15_t ) ( x > > 31 ) ) ) ) : ( q15_t ) x ;
}
/**
* @ brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format .
*/
CMSIS_INLINE __STATIC_INLINE q63_t mult32x64 (
q63_t x ,
q31_t y )
{
return ( ( ( ( q63_t ) ( x & 0x00000000FFFFFFFF ) * y ) > > 32 ) +
( ( ( q63_t ) ( x > > 32 ) * y ) ) ) ;
}
/**
* @ brief Function to Calculates 1 / in ( reciprocal ) value of Q31 Data type .
*/
CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q31 (
q31_t in ,
q31_t * dst ,
q31_t * pRecipTable )
{
q31_t out ;
uint32_t tempVal ;
uint32_t index , i ;
uint32_t signBits ;
if ( in > 0 )
{
signBits = ( ( uint32_t ) ( __CLZ ( in ) - 1 ) ) ;
}
else
{
signBits = ( ( uint32_t ) ( __CLZ ( - in ) - 1 ) ) ;
}
/* Convert input sample to 1.31 format */
in = ( in < < signBits ) ;
/* calculation of index for initial approximated Val */
index = ( uint32_t ) ( in > > 24 ) ;
index = ( index & INDEX_MASK ) ;
/* 1.31 with exp 1 */
out = pRecipTable [ index ] ;
/* calculation of reciprocal value */
/* running approximation for two iterations */
for ( i = 0U ; i < 2U ; i + + )
{
tempVal = ( uint32_t ) ( ( ( q63_t ) in * out ) > > 31 ) ;
tempVal = 0x7FFFFFFFu - tempVal ;
/* 1.31 with exp 1 */
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
out = clip_q63_to_q31 ( ( ( q63_t ) out * tempVal ) > > 30 ) ;
}
/* write output */
* dst = out ;
/* return num of signbits of out = 1/in value */
return ( signBits + 1U ) ;
}
/**
* @ brief Function to Calculates 1 / in ( reciprocal ) value of Q15 Data type .
*/
CMSIS_INLINE __STATIC_INLINE uint32_t arm_recip_q15 (
q15_t in ,
q15_t * dst ,
q15_t * pRecipTable )
{
q15_t out = 0 ;
uint32_t tempVal = 0 ;
uint32_t index = 0 , i = 0 ;
uint32_t signBits = 0 ;
if ( in > 0 )
{
signBits = ( ( uint32_t ) ( __CLZ ( in ) - 17 ) ) ;
}
else
{
signBits = ( ( uint32_t ) ( __CLZ ( - in ) - 17 ) ) ;
}
/* Convert input sample to 1.15 format */
in = ( in < < signBits ) ;
/* calculation of index for initial approximated Val */
index = ( uint32_t ) ( in > > 8 ) ;
index = ( index & INDEX_MASK ) ;
/* 1.15 with exp 1 */
out = pRecipTable [ index ] ;
/* calculation of reciprocal value */
/* running approximation for two iterations */
for ( i = 0U ; i < 2U ; i + + )
{
tempVal = ( uint32_t ) ( ( ( q31_t ) in * out ) > > 15 ) ;
tempVal = 0x7FFFu - tempVal ;
/* 1.15 with exp 1 */
out = ( q15_t ) ( ( ( q31_t ) out * tempVal ) > > 14 ) ;
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
}
/* write output */
* dst = out ;
/* return num of signbits of out = 1/in value */
return ( signBits + 1 ) ;
}
/*
* @ brief C custom defined intrinsic function for M3 and M0 processors
*/
# if !defined (ARM_MATH_DSP)
/*
* @ brief C custom defined QADD8 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QADD8 (
uint32_t x ,
uint32_t y )
{
q31_t r , s , t , u ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 24 ) > > 24 ) + ( ( ( q31_t ) y < < 24 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
s = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 24 ) + ( ( ( q31_t ) y < < 16 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
t = __SSAT ( ( ( ( ( q31_t ) x < < 8 ) > > 24 ) + ( ( ( q31_t ) y < < 8 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
u = __SSAT ( ( ( ( ( q31_t ) x ) > > 24 ) + ( ( ( q31_t ) y ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
return ( ( uint32_t ) ( ( u < < 24 ) | ( t < < 16 ) | ( s < < 8 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined QSUB8 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB8 (
uint32_t x ,
uint32_t y )
{
q31_t r , s , t , u ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 24 ) > > 24 ) - ( ( ( q31_t ) y < < 24 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
s = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 24 ) - ( ( ( q31_t ) y < < 16 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
t = __SSAT ( ( ( ( ( q31_t ) x < < 8 ) > > 24 ) - ( ( ( q31_t ) y < < 8 ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
u = __SSAT ( ( ( ( ( q31_t ) x ) > > 24 ) - ( ( ( q31_t ) y ) > > 24 ) ) , 8 ) & ( int32_t ) 0x000000FF ;
return ( ( uint32_t ) ( ( u < < 24 ) | ( t < < 16 ) | ( s < < 8 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined QADD16 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QADD16 (
uint32_t x ,
uint32_t y )
{
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
q31_t r = 0 , s = 0 ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) + ( ( ( q31_t ) y < < 16 ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
s = __SSAT ( ( ( ( ( q31_t ) x ) > > 16 ) + ( ( ( q31_t ) y ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined SHADD16 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SHADD16 (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) + ( ( ( q31_t ) y < < 16 ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
s = ( ( ( ( ( q31_t ) x ) > > 16 ) + ( ( ( q31_t ) y ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined QSUB16 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QSUB16 (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) - ( ( ( q31_t ) y < < 16 ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
s = __SSAT ( ( ( ( ( q31_t ) x ) > > 16 ) - ( ( ( q31_t ) y ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined SHSUB16 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SHSUB16 (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) - ( ( ( q31_t ) y < < 16 ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
s = ( ( ( ( ( q31_t ) x ) > > 16 ) - ( ( ( q31_t ) y ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined QASX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QASX (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) - ( ( ( q31_t ) y ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
s = __SSAT ( ( ( ( ( q31_t ) x ) > > 16 ) + ( ( ( q31_t ) y < < 16 ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined SHASX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SHASX (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) - ( ( ( q31_t ) y ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
s = ( ( ( ( ( q31_t ) x ) > > 16 ) + ( ( ( q31_t ) y < < 16 ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined QSAX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __QSAX (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = __SSAT ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) + ( ( ( q31_t ) y ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
s = __SSAT ( ( ( ( ( q31_t ) x ) > > 16 ) - ( ( ( q31_t ) y < < 16 ) > > 16 ) ) , 16 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined SHSAX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SHSAX (
uint32_t x ,
uint32_t y )
{
q31_t r , s ;
r = ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) + ( ( ( q31_t ) y ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
s = ( ( ( ( ( q31_t ) x ) > > 16 ) - ( ( ( q31_t ) y < < 16 ) > > 16 ) ) > > 1 ) & ( int32_t ) 0x0000FFFF ;
return ( ( uint32_t ) ( ( s < < 16 ) | ( r ) ) ) ;
}
/*
* @ brief C custom defined SMUSDX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSDX (
uint32_t x ,
uint32_t y )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) -
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) ) ) ;
}
/*
* @ brief C custom defined SMUADX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMUADX (
uint32_t x ,
uint32_t y )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) ) ) ;
}
/*
* @ brief C custom defined QADD for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE int32_t __QADD (
int32_t x ,
int32_t y )
{
return ( ( int32_t ) ( clip_q63_to_q31 ( ( q63_t ) x + ( q31_t ) y ) ) ) ;
}
/*
* @ brief C custom defined QSUB for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE int32_t __QSUB (
int32_t x ,
int32_t y )
{
return ( ( int32_t ) ( clip_q63_to_q31 ( ( q63_t ) x - ( q31_t ) y ) ) ) ;
}
/*
* @ brief C custom defined SMLAD for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMLAD (
uint32_t x ,
uint32_t y ,
uint32_t sum )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) +
( ( ( q31_t ) sum ) ) ) ) ;
}
/*
* @ brief C custom defined SMLADX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMLADX (
uint32_t x ,
uint32_t y ,
uint32_t sum )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( q31_t ) sum ) ) ) ) ;
}
/*
* @ brief C custom defined SMLSDX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMLSDX (
uint32_t x ,
uint32_t y ,
uint32_t sum )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) -
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( q31_t ) sum ) ) ) ) ;
}
/*
* @ brief C custom defined SMLALD for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALD (
uint32_t x ,
uint32_t y ,
uint64_t sum )
{
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
return ( ( uint64_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) +
( ( ( q63_t ) sum ) ) ) ) ;
}
/*
* @ brief C custom defined SMLALDX for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint64_t __SMLALDX (
uint32_t x ,
uint32_t y ,
uint64_t sum )
{
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
return ( ( uint64_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( q63_t ) sum ) ) ) ) ;
}
/*
* @ brief C custom defined SMUAD for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMUAD (
uint32_t x ,
uint32_t y )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) +
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) ) ) ;
}
/*
* @ brief C custom defined SMUSD for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SMUSD (
uint32_t x ,
uint32_t y )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 16 ) > > 16 ) * ( ( ( q31_t ) y < < 16 ) > > 16 ) ) -
( ( ( ( q31_t ) x ) > > 16 ) * ( ( ( q31_t ) y ) > > 16 ) ) ) ) ;
}
/*
* @ brief C custom defined SXTB16 for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE uint32_t __SXTB16 (
uint32_t x )
{
return ( ( uint32_t ) ( ( ( ( ( q31_t ) x < < 24 ) > > 24 ) & ( q31_t ) 0x0000FFFF ) |
( ( ( ( q31_t ) x < < 8 ) > > 8 ) & ( q31_t ) 0xFFFF0000 ) ) ) ;
}
/*
* @ brief C custom defined SMMLA for M3 and M0 processors
*/
CMSIS_INLINE __STATIC_INLINE int32_t __SMMLA (
int32_t x ,
int32_t y ,
int32_t sum )
{
return ( sum + ( int32_t ) ( ( ( int64_t ) x * y ) > > 32 ) ) ;
}
# endif /* !defined (ARM_MATH_DSP) */
/**
* @ brief Instance structure for the Q7 FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of filter coefficients in the filter. */
q7_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q7_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q7 ;
/**
* @ brief Instance structure for the Q15 FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of filter coefficients in the filter. */
q15_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
} arm_fir_instance_q15 ;
/**
* @ brief Instance structure for the Q31 FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of filter coefficients in the filter. */
q31_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_q31 ;
/**
* @ brief Instance structure for the floating - point FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of filter coefficients in the filter. */
float32_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
} arm_fir_instance_f32 ;
/**
* @ brief Processing function for the Q7 FIR filter .
* @ param [ in ] S points to an instance of the Q7 FIR filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_q7 (
const arm_fir_instance_q7 * S ,
q7_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q7 FIR filter .
* @ param [ in , out ] S points to an instance of the Q7 FIR structure .
* @ param [ in ] numTaps Number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of samples that are processed .
*/
void arm_fir_init_q7 (
arm_fir_instance_q7 * S ,
uint16_t numTaps ,
q7_t * pCoeffs ,
q7_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q15 FIR filter .
* @ param [ in ] S points to an instance of the Q15 FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_q15 (
const arm_fir_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the fast Q15 FIR filter for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q15 FIR filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_fast_q15 (
const arm_fir_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 FIR filter .
* @ param [ in , out ] S points to an instance of the Q15 FIR filter structure .
* @ param [ in ] numTaps Number of filter coefficients in the filter . Must be even and greater than or equal to 4.
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of samples that are processed at a time .
* @ return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
* < code > numTaps < / code > is not a supported value .
*/
arm_status arm_fir_init_q15 (
arm_fir_instance_q15 * S ,
uint16_t numTaps ,
q15_t * pCoeffs ,
q15_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 FIR filter .
* @ param [ in ] S points to an instance of the Q31 FIR filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_q31 (
const arm_fir_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the fast Q31 FIR filter for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q31 FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_fast_q31 (
const arm_fir_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 FIR filter .
* @ param [ in , out ] S points to an instance of the Q31 FIR structure .
* @ param [ in ] numTaps Number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of samples that are processed at a time .
*/
void arm_fir_init_q31 (
arm_fir_instance_q31 * S ,
uint16_t numTaps ,
q31_t * pCoeffs ,
q31_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the floating - point FIR filter .
* @ param [ in ] S points to an instance of the floating - point FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_f32 (
const arm_fir_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point FIR filter .
* @ param [ in , out ] S points to an instance of the floating - point FIR filter structure .
* @ param [ in ] numTaps Number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of samples that are processed at a time .
*/
void arm_fir_init_f32 (
arm_fir_instance_f32 * S ,
uint16_t numTaps ,
float32_t * pCoeffs ,
float32_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q15 Biquad cascade filter .
*/
typedef struct
{
int8_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q15_t * pState ; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q15_t * pCoeffs ; /**< Points to the array of coefficients. The array is of length 5*numStages. */
int8_t postShift ; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q15 ;
/**
* @ brief Instance structure for the Q31 Biquad cascade filter .
*/
typedef struct
{
uint32_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q31_t * pState ; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
q31_t * pCoeffs ; /**< Points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift ; /**< Additional shift, in bits, applied to each output sample. */
} arm_biquad_casd_df1_inst_q31 ;
/**
* @ brief Instance structure for the floating - point Biquad cascade filter .
*/
typedef struct
{
uint32_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t * pState ; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
float32_t * pCoeffs ; /**< Points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_casd_df1_inst_f32 ;
/**
* @ brief Processing function for the Q15 Biquad cascade filter .
* @ param [ in ] S points to an instance of the Q15 Biquad cascade structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df1_q15 (
const arm_biquad_casd_df1_inst_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the Q15 Biquad cascade structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] postShift Shift to be applied to the output . Varies according to the coefficients format
*/
void arm_biquad_cascade_df1_init_q15 (
arm_biquad_casd_df1_inst_q15 * S ,
uint8_t numStages ,
q15_t * pCoeffs ,
q15_t * pState ,
int8_t postShift ) ;
/**
* @ brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q15 Biquad cascade structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df1_fast_q15 (
const arm_biquad_casd_df1_inst_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 Biquad cascade filter
* @ param [ in ] S points to an instance of the Q31 Biquad cascade structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df1_q31 (
const arm_biquad_casd_df1_inst_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q31 Biquad cascade structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df1_fast_q31 (
const arm_biquad_casd_df1_inst_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the Q31 Biquad cascade structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] postShift Shift to be applied to the output . Varies according to the coefficients format
*/
void arm_biquad_cascade_df1_init_q31 (
arm_biquad_casd_df1_inst_q31 * S ,
uint8_t numStages ,
q31_t * pCoeffs ,
q31_t * pState ,
int8_t postShift ) ;
/**
* @ brief Processing function for the floating - point Biquad cascade filter .
* @ param [ in ] S points to an instance of the floating - point Biquad cascade structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df1_f32 (
const arm_biquad_casd_df1_inst_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the floating - point Biquad cascade structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
*/
void arm_biquad_cascade_df1_init_f32 (
arm_biquad_casd_df1_inst_f32 * S ,
uint8_t numStages ,
float32_t * pCoeffs ,
float32_t * pState ) ;
/**
* @ brief Instance structure for the floating - point matrix structure .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows of the matrix. */
uint16_t numCols ; /**< number of columns of the matrix. */
float32_t * pData ; /**< points to the data of the matrix. */
} arm_matrix_instance_f32 ;
/**
* @ brief Instance structure for the floating - point matrix structure .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows of the matrix. */
uint16_t numCols ; /**< number of columns of the matrix. */
float64_t * pData ; /**< points to the data of the matrix. */
} arm_matrix_instance_f64 ;
/**
* @ brief Instance structure for the Q15 matrix structure .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows of the matrix. */
uint16_t numCols ; /**< number of columns of the matrix. */
q15_t * pData ; /**< points to the data of the matrix. */
} arm_matrix_instance_q15 ;
/**
* @ brief Instance structure for the Q31 matrix structure .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows of the matrix. */
uint16_t numCols ; /**< number of columns of the matrix. */
q31_t * pData ; /**< points to the data of the matrix. */
} arm_matrix_instance_q31 ;
/**
* @ brief Floating - point matrix addition .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_add_f32 (
const arm_matrix_instance_f32 * pSrcA ,
const arm_matrix_instance_f32 * pSrcB ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 matrix addition .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_add_q15 (
const arm_matrix_instance_q15 * pSrcA ,
const arm_matrix_instance_q15 * pSrcB ,
arm_matrix_instance_q15 * pDst ) ;
/**
* @ brief Q31 matrix addition .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_add_q31 (
const arm_matrix_instance_q31 * pSrcA ,
const arm_matrix_instance_q31 * pSrcB ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Floating - point , complex , matrix multiplication .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_cmplx_mult_f32 (
const arm_matrix_instance_f32 * pSrcA ,
const arm_matrix_instance_f32 * pSrcB ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 , complex , matrix multiplication .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_cmplx_mult_q15 (
const arm_matrix_instance_q15 * pSrcA ,
const arm_matrix_instance_q15 * pSrcB ,
arm_matrix_instance_q15 * pDst ,
q15_t * pScratch ) ;
/**
* @ brief Q31 , complex , matrix multiplication .
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_cmplx_mult_q31 (
const arm_matrix_instance_q31 * pSrcA ,
const arm_matrix_instance_q31 * pSrcB ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Floating - point matrix transpose .
* @ param [ in ] pSrc points to the input matrix
* @ param [ out ] pDst points to the output matrix
* @ return The function returns either < code > ARM_MATH_SIZE_MISMATCH < / code >
* or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_trans_f32 (
const arm_matrix_instance_f32 * pSrc ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 matrix transpose .
* @ param [ in ] pSrc points to the input matrix
* @ param [ out ] pDst points to the output matrix
* @ return The function returns either < code > ARM_MATH_SIZE_MISMATCH < / code >
* or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_trans_q15 (
const arm_matrix_instance_q15 * pSrc ,
arm_matrix_instance_q15 * pDst ) ;
/**
* @ brief Q31 matrix transpose .
* @ param [ in ] pSrc points to the input matrix
* @ param [ out ] pDst points to the output matrix
* @ return The function returns either < code > ARM_MATH_SIZE_MISMATCH < / code >
* or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_trans_q31 (
const arm_matrix_instance_q31 * pSrc ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Floating - point matrix multiplication
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_mult_f32 (
const arm_matrix_instance_f32 * pSrcA ,
const arm_matrix_instance_f32 * pSrcB ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 matrix multiplication
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ param [ in ] pState points to the array for storing intermediate results
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_mult_q15 (
const arm_matrix_instance_q15 * pSrcA ,
const arm_matrix_instance_q15 * pSrcB ,
arm_matrix_instance_q15 * pDst ,
q15_t * pState ) ;
/**
* @ brief Q15 matrix multiplication ( fast variant ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ param [ in ] pState points to the array for storing intermediate results
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_mult_fast_q15 (
const arm_matrix_instance_q15 * pSrcA ,
const arm_matrix_instance_q15 * pSrcB ,
arm_matrix_instance_q15 * pDst ,
q15_t * pState ) ;
/**
* @ brief Q31 matrix multiplication
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_mult_q31 (
const arm_matrix_instance_q31 * pSrcA ,
const arm_matrix_instance_q31 * pSrcB ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Q31 matrix multiplication ( fast variant ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_mult_fast_q31 (
const arm_matrix_instance_q31 * pSrcA ,
const arm_matrix_instance_q31 * pSrcB ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Floating - point matrix subtraction
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_sub_f32 (
const arm_matrix_instance_f32 * pSrcA ,
const arm_matrix_instance_f32 * pSrcB ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 matrix subtraction
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_sub_q15 (
const arm_matrix_instance_q15 * pSrcA ,
const arm_matrix_instance_q15 * pSrcB ,
arm_matrix_instance_q15 * pDst ) ;
/**
* @ brief Q31 matrix subtraction
* @ param [ in ] pSrcA points to the first input matrix structure
* @ param [ in ] pSrcB points to the second input matrix structure
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_sub_q31 (
const arm_matrix_instance_q31 * pSrcA ,
const arm_matrix_instance_q31 * pSrcB ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Floating - point matrix scaling .
* @ param [ in ] pSrc points to the input matrix
* @ param [ in ] scale scale factor
* @ param [ out ] pDst points to the output matrix
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_scale_f32 (
const arm_matrix_instance_f32 * pSrc ,
float32_t scale ,
arm_matrix_instance_f32 * pDst ) ;
/**
* @ brief Q15 matrix scaling .
* @ param [ in ] pSrc points to input matrix
* @ param [ in ] scaleFract fractional portion of the scale factor
* @ param [ in ] shift number of bits to shift the result by
* @ param [ out ] pDst points to output matrix
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_scale_q15 (
const arm_matrix_instance_q15 * pSrc ,
q15_t scaleFract ,
int32_t shift ,
arm_matrix_instance_q15 * pDst ) ;
/**
* @ brief Q31 matrix scaling .
* @ param [ in ] pSrc points to input matrix
* @ param [ in ] scaleFract fractional portion of the scale factor
* @ param [ in ] shift number of bits to shift the result by
* @ param [ out ] pDst points to output matrix structure
* @ return The function returns either
* < code > ARM_MATH_SIZE_MISMATCH < / code > or < code > ARM_MATH_SUCCESS < / code > based on the outcome of size checking .
*/
arm_status arm_mat_scale_q31 (
const arm_matrix_instance_q31 * pSrc ,
q31_t scaleFract ,
int32_t shift ,
arm_matrix_instance_q31 * pDst ) ;
/**
* @ brief Q31 matrix initialization .
* @ param [ in , out ] S points to an instance of the floating - point matrix structure .
* @ param [ in ] nRows number of rows in the matrix .
* @ param [ in ] nColumns number of columns in the matrix .
* @ param [ in ] pData points to the matrix data array .
*/
void arm_mat_init_q31 (
arm_matrix_instance_q31 * S ,
uint16_t nRows ,
uint16_t nColumns ,
q31_t * pData ) ;
/**
* @ brief Q15 matrix initialization .
* @ param [ in , out ] S points to an instance of the floating - point matrix structure .
* @ param [ in ] nRows number of rows in the matrix .
* @ param [ in ] nColumns number of columns in the matrix .
* @ param [ in ] pData points to the matrix data array .
*/
void arm_mat_init_q15 (
arm_matrix_instance_q15 * S ,
uint16_t nRows ,
uint16_t nColumns ,
q15_t * pData ) ;
/**
* @ brief Floating - point matrix initialization .
* @ param [ in , out ] S points to an instance of the floating - point matrix structure .
* @ param [ in ] nRows number of rows in the matrix .
* @ param [ in ] nColumns number of columns in the matrix .
* @ param [ in ] pData points to the matrix data array .
*/
void arm_mat_init_f32 (
arm_matrix_instance_f32 * S ,
uint16_t nRows ,
uint16_t nColumns ,
float32_t * pData ) ;
/**
* @ brief Instance structure for the Q15 PID Control .
*/
typedef struct
{
q15_t A0 ; /**< The derived gain, A0 = Kp + Ki + Kd . */
# if !defined (ARM_MATH_DSP)
q15_t A1 ;
q15_t A2 ;
# else
q31_t A1 ; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
# endif
q15_t state [ 3 ] ; /**< The state array of length 3. */
q15_t Kp ; /**< The proportional gain. */
q15_t Ki ; /**< The integral gain. */
q15_t Kd ; /**< The derivative gain. */
} arm_pid_instance_q15 ;
/**
* @ brief Instance structure for the Q31 PID Control .
*/
typedef struct
{
q31_t A0 ; /**< The derived gain, A0 = Kp + Ki + Kd . */
q31_t A1 ; /**< The derived gain, A1 = -Kp - 2Kd. */
q31_t A2 ; /**< The derived gain, A2 = Kd . */
q31_t state [ 3 ] ; /**< The state array of length 3. */
q31_t Kp ; /**< The proportional gain. */
q31_t Ki ; /**< The integral gain. */
q31_t Kd ; /**< The derivative gain. */
} arm_pid_instance_q31 ;
/**
* @ brief Instance structure for the floating - point PID Control .
*/
typedef struct
{
float32_t A0 ; /**< The derived gain, A0 = Kp + Ki + Kd . */
float32_t A1 ; /**< The derived gain, A1 = -Kp - 2Kd. */
float32_t A2 ; /**< The derived gain, A2 = Kd . */
float32_t state [ 3 ] ; /**< The state array of length 3. */
float32_t Kp ; /**< The proportional gain. */
float32_t Ki ; /**< The integral gain. */
float32_t Kd ; /**< The derivative gain. */
} arm_pid_instance_f32 ;
/**
* @ brief Initialization function for the floating - point PID Control .
* @ param [ in , out ] S points to an instance of the PID structure .
* @ param [ in ] resetStateFlag flag to reset the state . 0 = no change in state 1 = reset the state .
*/
void arm_pid_init_f32 (
arm_pid_instance_f32 * S ,
int32_t resetStateFlag ) ;
/**
* @ brief Reset function for the floating - point PID Control .
* @ param [ in , out ] S is an instance of the floating - point PID Control structure
*/
void arm_pid_reset_f32 (
arm_pid_instance_f32 * S ) ;
/**
* @ brief Initialization function for the Q31 PID Control .
* @ param [ in , out ] S points to an instance of the Q15 PID structure .
* @ param [ in ] resetStateFlag flag to reset the state . 0 = no change in state 1 = reset the state .
*/
void arm_pid_init_q31 (
arm_pid_instance_q31 * S ,
int32_t resetStateFlag ) ;
/**
* @ brief Reset function for the Q31 PID Control .
* @ param [ in , out ] S points to an instance of the Q31 PID Control structure
*/
void arm_pid_reset_q31 (
arm_pid_instance_q31 * S ) ;
/**
* @ brief Initialization function for the Q15 PID Control .
* @ param [ in , out ] S points to an instance of the Q15 PID structure .
* @ param [ in ] resetStateFlag flag to reset the state . 0 = no change in state 1 = reset the state .
*/
void arm_pid_init_q15 (
arm_pid_instance_q15 * S ,
int32_t resetStateFlag ) ;
/**
* @ brief Reset function for the Q15 PID Control .
* @ param [ in , out ] S points to an instance of the q15 PID Control structure
*/
void arm_pid_reset_q15 (
arm_pid_instance_q15 * S ) ;
/**
* @ brief Instance structure for the floating - point Linear Interpolate function .
*/
typedef struct
{
uint32_t nValues ; /**< nValues */
float32_t x1 ; /**< x1 */
float32_t xSpacing ; /**< xSpacing */
float32_t * pYData ; /**< pointer to the table of Y values */
} arm_linear_interp_instance_f32 ;
/**
* @ brief Instance structure for the floating - point bilinear interpolation function .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows in the data table. */
uint16_t numCols ; /**< number of columns in the data table. */
float32_t * pData ; /**< points to the data table. */
} arm_bilinear_interp_instance_f32 ;
/**
* @ brief Instance structure for the Q31 bilinear interpolation function .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows in the data table. */
uint16_t numCols ; /**< number of columns in the data table. */
q31_t * pData ; /**< points to the data table. */
} arm_bilinear_interp_instance_q31 ;
/**
* @ brief Instance structure for the Q15 bilinear interpolation function .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows in the data table. */
uint16_t numCols ; /**< number of columns in the data table. */
q15_t * pData ; /**< points to the data table. */
} arm_bilinear_interp_instance_q15 ;
/**
* @ brief Instance structure for the Q15 bilinear interpolation function .
*/
typedef struct
{
uint16_t numRows ; /**< number of rows in the data table. */
uint16_t numCols ; /**< number of columns in the data table. */
q7_t * pData ; /**< points to the data table. */
} arm_bilinear_interp_instance_q7 ;
/**
* @ brief Q7 vector multiplication .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_mult_q7 (
q7_t * pSrcA ,
q7_t * pSrcB ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q15 vector multiplication .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_mult_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q31 vector multiplication .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_mult_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Floating - point vector multiplication .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_mult_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q15 CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q15_t * pTwiddle ; /**< points to the Sin twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix2_instance_q15 ;
/* Deprecated */
arm_status arm_cfft_radix2_init_q15 (
arm_cfft_radix2_instance_q15 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/* Deprecated */
void arm_cfft_radix2_q15 (
const arm_cfft_radix2_instance_q15 * S ,
q15_t * pSrc ) ;
/**
* @ brief Instance structure for the Q15 CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q15_t * pTwiddle ; /**< points to the twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q15 ;
/* Deprecated */
arm_status arm_cfft_radix4_init_q15 (
arm_cfft_radix4_instance_q15 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/* Deprecated */
void arm_cfft_radix4_q15 (
const arm_cfft_radix4_instance_q15 * S ,
q15_t * pSrc ) ;
/**
* @ brief Instance structure for the Radix - 2 Q31 CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q31_t * pTwiddle ; /**< points to the Twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix2_instance_q31 ;
/* Deprecated */
arm_status arm_cfft_radix2_init_q31 (
arm_cfft_radix2_instance_q31 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/* Deprecated */
void arm_cfft_radix2_q31 (
const arm_cfft_radix2_instance_q31 * S ,
q31_t * pSrc ) ;
/**
* @ brief Instance structure for the Q31 CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
q31_t * pTwiddle ; /**< points to the twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
} arm_cfft_radix4_instance_q31 ;
/* Deprecated */
void arm_cfft_radix4_q31 (
const arm_cfft_radix4_instance_q31 * S ,
q31_t * pSrc ) ;
/* Deprecated */
arm_status arm_cfft_radix4_init_q31 (
arm_cfft_radix4_instance_q31 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/**
* @ brief Instance structure for the floating - point CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
float32_t * pTwiddle ; /**< points to the Twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
float32_t onebyfftLen ; /**< value of 1/fftLen. */
} arm_cfft_radix2_instance_f32 ;
/* Deprecated */
arm_status arm_cfft_radix2_init_f32 (
arm_cfft_radix2_instance_f32 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/* Deprecated */
void arm_cfft_radix2_f32 (
const arm_cfft_radix2_instance_f32 * S ,
float32_t * pSrc ) ;
/**
* @ brief Instance structure for the floating - point CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
uint8_t ifftFlag ; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
uint8_t bitReverseFlag ; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
float32_t * pTwiddle ; /**< points to the Twiddle factor table. */
uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t twidCoefModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
uint16_t bitRevFactor ; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
float32_t onebyfftLen ; /**< value of 1/fftLen. */
} arm_cfft_radix4_instance_f32 ;
/* Deprecated */
arm_status arm_cfft_radix4_init_f32 (
arm_cfft_radix4_instance_f32 * S ,
uint16_t fftLen ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/* Deprecated */
void arm_cfft_radix4_f32 (
const arm_cfft_radix4_instance_f32 * S ,
float32_t * pSrc ) ;
/**
* @ brief Instance structure for the fixed - point CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
const q15_t * pTwiddle ; /**< points to the Twiddle factor table. */
const uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t bitRevLength ; /**< bit reversal table length. */
} arm_cfft_instance_q15 ;
void arm_cfft_q15 (
const arm_cfft_instance_q15 * S ,
q15_t * p1 ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/**
* @ brief Instance structure for the fixed - point CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
const q31_t * pTwiddle ; /**< points to the Twiddle factor table. */
const uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t bitRevLength ; /**< bit reversal table length. */
} arm_cfft_instance_q31 ;
void arm_cfft_q31 (
const arm_cfft_instance_q31 * S ,
q31_t * p1 ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/**
* @ brief Instance structure for the floating - point CFFT / CIFFT function .
*/
typedef struct
{
uint16_t fftLen ; /**< length of the FFT. */
const float32_t * pTwiddle ; /**< points to the Twiddle factor table. */
const uint16_t * pBitRevTable ; /**< points to the bit reversal table. */
uint16_t bitRevLength ; /**< bit reversal table length. */
} arm_cfft_instance_f32 ;
void arm_cfft_f32 (
const arm_cfft_instance_f32 * S ,
float32_t * p1 ,
uint8_t ifftFlag ,
uint8_t bitReverseFlag ) ;
/**
* @ brief Instance structure for the Q15 RFFT / RIFFT function .
*/
typedef struct
{
uint32_t fftLenReal ; /**< length of the real FFT. */
uint8_t ifftFlagR ; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR ; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q15_t * pTwiddleAReal ; /**< points to the real twiddle factor table. */
q15_t * pTwiddleBReal ; /**< points to the imag twiddle factor table. */
const arm_cfft_instance_q15 * pCfft ; /**< points to the complex FFT instance. */
} arm_rfft_instance_q15 ;
arm_status arm_rfft_init_q15 (
arm_rfft_instance_q15 * S ,
uint32_t fftLenReal ,
uint32_t ifftFlagR ,
uint32_t bitReverseFlag ) ;
void arm_rfft_q15 (
const arm_rfft_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ) ;
/**
* @ brief Instance structure for the Q31 RFFT / RIFFT function .
*/
typedef struct
{
uint32_t fftLenReal ; /**< length of the real FFT. */
uint8_t ifftFlagR ; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR ; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
q31_t * pTwiddleAReal ; /**< points to the real twiddle factor table. */
q31_t * pTwiddleBReal ; /**< points to the imag twiddle factor table. */
const arm_cfft_instance_q31 * pCfft ; /**< points to the complex FFT instance. */
} arm_rfft_instance_q31 ;
arm_status arm_rfft_init_q31 (
arm_rfft_instance_q31 * S ,
uint32_t fftLenReal ,
uint32_t ifftFlagR ,
uint32_t bitReverseFlag ) ;
void arm_rfft_q31 (
const arm_rfft_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ) ;
/**
* @ brief Instance structure for the floating - point RFFT / RIFFT function .
*/
typedef struct
{
uint32_t fftLenReal ; /**< length of the real FFT. */
uint16_t fftLenBy2 ; /**< length of the complex FFT. */
uint8_t ifftFlagR ; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
uint8_t bitReverseFlagR ; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
uint32_t twidCoefRModifier ; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
float32_t * pTwiddleAReal ; /**< points to the real twiddle factor table. */
float32_t * pTwiddleBReal ; /**< points to the imag twiddle factor table. */
arm_cfft_radix4_instance_f32 * pCfft ; /**< points to the complex FFT instance. */
} arm_rfft_instance_f32 ;
arm_status arm_rfft_init_f32 (
arm_rfft_instance_f32 * S ,
arm_cfft_radix4_instance_f32 * S_CFFT ,
uint32_t fftLenReal ,
uint32_t ifftFlagR ,
uint32_t bitReverseFlag ) ;
void arm_rfft_f32 (
const arm_rfft_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ) ;
/**
* @ brief Instance structure for the floating - point RFFT / RIFFT function .
*/
typedef struct
{
arm_cfft_instance_f32 Sint ; /**< Internal CFFT structure. */
uint16_t fftLenRFFT ; /**< length of the real sequence */
float32_t * pTwiddleRFFT ; /**< Twiddle factors real stage */
} arm_rfft_fast_instance_f32 ;
arm_status arm_rfft_fast_init_f32 (
arm_rfft_fast_instance_f32 * S ,
uint16_t fftLen ) ;
void arm_rfft_fast_f32 (
arm_rfft_fast_instance_f32 * S ,
float32_t * p , float32_t * pOut ,
uint8_t ifftFlag ) ;
/**
* @ brief Instance structure for the floating - point DCT4 / IDCT4 function .
*/
typedef struct
{
uint16_t N ; /**< length of the DCT4. */
uint16_t Nby2 ; /**< half of the length of the DCT4. */
float32_t normalize ; /**< normalizing factor. */
float32_t * pTwiddle ; /**< points to the twiddle factor table. */
float32_t * pCosFactor ; /**< points to the cosFactor table. */
arm_rfft_instance_f32 * pRfft ; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_f32 * pCfft ; /**< points to the complex FFT instance. */
} arm_dct4_instance_f32 ;
/**
* @ brief Initialization function for the floating - point DCT4 / IDCT4 .
* @ param [ in , out ] S points to an instance of floating - point DCT4 / IDCT4 structure .
* @ param [ in ] S_RFFT points to an instance of floating - point RFFT / RIFFT structure .
* @ param [ in ] S_CFFT points to an instance of floating - point CFFT / CIFFT structure .
* @ param [ in ] N length of the DCT4 .
* @ param [ in ] Nby2 half of the length of the DCT4 .
* @ param [ in ] normalize normalizing factor .
* @ return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if < code > fftLenReal < / code > is not a supported transform length .
*/
arm_status arm_dct4_init_f32 (
arm_dct4_instance_f32 * S ,
arm_rfft_instance_f32 * S_RFFT ,
arm_cfft_radix4_instance_f32 * S_CFFT ,
uint16_t N ,
uint16_t Nby2 ,
float32_t normalize ) ;
/**
* @ brief Processing function for the floating - point DCT4 / IDCT4 .
* @ param [ in ] S points to an instance of the floating - point DCT4 / IDCT4 structure .
* @ param [ in ] pState points to state buffer .
* @ param [ in , out ] pInlineBuffer points to the in - place input and output buffer .
*/
void arm_dct4_f32 (
const arm_dct4_instance_f32 * S ,
float32_t * pState ,
float32_t * pInlineBuffer ) ;
/**
* @ brief Instance structure for the Q31 DCT4 / IDCT4 function .
*/
typedef struct
{
uint16_t N ; /**< length of the DCT4. */
uint16_t Nby2 ; /**< half of the length of the DCT4. */
q31_t normalize ; /**< normalizing factor. */
q31_t * pTwiddle ; /**< points to the twiddle factor table. */
q31_t * pCosFactor ; /**< points to the cosFactor table. */
arm_rfft_instance_q31 * pRfft ; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q31 * pCfft ; /**< points to the complex FFT instance. */
} arm_dct4_instance_q31 ;
/**
* @ brief Initialization function for the Q31 DCT4 / IDCT4 .
* @ param [ in , out ] S points to an instance of Q31 DCT4 / IDCT4 structure .
* @ param [ in ] S_RFFT points to an instance of Q31 RFFT / RIFFT structure
* @ param [ in ] S_CFFT points to an instance of Q31 CFFT / CIFFT structure
* @ param [ in ] N length of the DCT4 .
* @ param [ in ] Nby2 half of the length of the DCT4 .
* @ param [ in ] normalize normalizing factor .
* @ return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if < code > N < / code > is not a supported transform length .
*/
arm_status arm_dct4_init_q31 (
arm_dct4_instance_q31 * S ,
arm_rfft_instance_q31 * S_RFFT ,
arm_cfft_radix4_instance_q31 * S_CFFT ,
uint16_t N ,
uint16_t Nby2 ,
q31_t normalize ) ;
/**
* @ brief Processing function for the Q31 DCT4 / IDCT4 .
* @ param [ in ] S points to an instance of the Q31 DCT4 structure .
* @ param [ in ] pState points to state buffer .
* @ param [ in , out ] pInlineBuffer points to the in - place input and output buffer .
*/
void arm_dct4_q31 (
const arm_dct4_instance_q31 * S ,
q31_t * pState ,
q31_t * pInlineBuffer ) ;
/**
* @ brief Instance structure for the Q15 DCT4 / IDCT4 function .
*/
typedef struct
{
uint16_t N ; /**< length of the DCT4. */
uint16_t Nby2 ; /**< half of the length of the DCT4. */
q15_t normalize ; /**< normalizing factor. */
q15_t * pTwiddle ; /**< points to the twiddle factor table. */
q15_t * pCosFactor ; /**< points to the cosFactor table. */
arm_rfft_instance_q15 * pRfft ; /**< points to the real FFT instance. */
arm_cfft_radix4_instance_q15 * pCfft ; /**< points to the complex FFT instance. */
} arm_dct4_instance_q15 ;
/**
* @ brief Initialization function for the Q15 DCT4 / IDCT4 .
* @ param [ in , out ] S points to an instance of Q15 DCT4 / IDCT4 structure .
* @ param [ in ] S_RFFT points to an instance of Q15 RFFT / RIFFT structure .
* @ param [ in ] S_CFFT points to an instance of Q15 CFFT / CIFFT structure .
* @ param [ in ] N length of the DCT4 .
* @ param [ in ] Nby2 half of the length of the DCT4 .
* @ param [ in ] normalize normalizing factor .
* @ return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if < code > N < / code > is not a supported transform length .
*/
arm_status arm_dct4_init_q15 (
arm_dct4_instance_q15 * S ,
arm_rfft_instance_q15 * S_RFFT ,
arm_cfft_radix4_instance_q15 * S_CFFT ,
uint16_t N ,
uint16_t Nby2 ,
q15_t normalize ) ;
/**
* @ brief Processing function for the Q15 DCT4 / IDCT4 .
* @ param [ in ] S points to an instance of the Q15 DCT4 structure .
* @ param [ in ] pState points to state buffer .
* @ param [ in , out ] pInlineBuffer points to the in - place input and output buffer .
*/
void arm_dct4_q15 (
const arm_dct4_instance_q15 * S ,
q15_t * pState ,
q15_t * pInlineBuffer ) ;
/**
* @ brief Floating - point vector addition .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_add_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q7 vector addition .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_add_q7 (
q7_t * pSrcA ,
q7_t * pSrcB ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q15 vector addition .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_add_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q31 vector addition .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_add_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Floating - point vector subtraction .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_sub_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q7 vector subtraction .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_sub_q7 (
q7_t * pSrcA ,
q7_t * pSrcB ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q15 vector subtraction .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_sub_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q31 vector subtraction .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_sub_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Multiplies a floating - point vector by a scalar .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] scale scale factor to be applied
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_scale_f32 (
float32_t * pSrc ,
float32_t scale ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Multiplies a Q7 vector by a scalar .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] scaleFract fractional portion of the scale value
* @ param [ in ] shift number of bits to shift the result by
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_scale_q7 (
q7_t * pSrc ,
q7_t scaleFract ,
int8_t shift ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Multiplies a Q15 vector by a scalar .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] scaleFract fractional portion of the scale value
* @ param [ in ] shift number of bits to shift the result by
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_scale_q15 (
q15_t * pSrc ,
q15_t scaleFract ,
int8_t shift ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Multiplies a Q31 vector by a scalar .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] scaleFract fractional portion of the scale value
* @ param [ in ] shift number of bits to shift the result by
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_scale_q31 (
q31_t * pSrc ,
q31_t scaleFract ,
int8_t shift ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q7 vector absolute value .
* @ param [ in ] pSrc points to the input buffer
* @ param [ out ] pDst points to the output buffer
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_abs_q7 (
q7_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Floating - point vector absolute value .
* @ param [ in ] pSrc points to the input buffer
* @ param [ out ] pDst points to the output buffer
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_abs_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q15 vector absolute value .
* @ param [ in ] pSrc points to the input buffer
* @ param [ out ] pDst points to the output buffer
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_abs_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Q31 vector absolute value .
* @ param [ in ] pSrc points to the input buffer
* @ param [ out ] pDst points to the output buffer
* @ param [ in ] blockSize number of samples in each vector
*/
void arm_abs_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Dot product of floating - point vectors .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] blockSize number of samples in each vector
* @ param [ out ] result output result returned here
*/
void arm_dot_prod_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
uint32_t blockSize ,
float32_t * result ) ;
/**
* @ brief Dot product of Q7 vectors .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] blockSize number of samples in each vector
* @ param [ out ] result output result returned here
*/
void arm_dot_prod_q7 (
q7_t * pSrcA ,
q7_t * pSrcB ,
uint32_t blockSize ,
q31_t * result ) ;
/**
* @ brief Dot product of Q15 vectors .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] blockSize number of samples in each vector
* @ param [ out ] result output result returned here
*/
void arm_dot_prod_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
uint32_t blockSize ,
q63_t * result ) ;
/**
* @ brief Dot product of Q31 vectors .
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] blockSize number of samples in each vector
* @ param [ out ] result output result returned here
*/
void arm_dot_prod_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
uint32_t blockSize ,
q63_t * result ) ;
/**
* @ brief Shifts the elements of a Q7 vector a specified number of bits .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] shiftBits number of bits to shift . A positive value shifts left ; a negative value shifts right .
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_shift_q7 (
q7_t * pSrc ,
int8_t shiftBits ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Shifts the elements of a Q15 vector a specified number of bits .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] shiftBits number of bits to shift . A positive value shifts left ; a negative value shifts right .
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_shift_q15 (
q15_t * pSrc ,
int8_t shiftBits ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Shifts the elements of a Q31 vector a specified number of bits .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] shiftBits number of bits to shift . A positive value shifts left ; a negative value shifts right .
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_shift_q31 (
q31_t * pSrc ,
int8_t shiftBits ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Adds a constant offset to a floating - point vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] offset is the offset to be added
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_offset_f32 (
float32_t * pSrc ,
float32_t offset ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Adds a constant offset to a Q7 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] offset is the offset to be added
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_offset_q7 (
q7_t * pSrc ,
q7_t offset ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Adds a constant offset to a Q15 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] offset is the offset to be added
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_offset_q15 (
q15_t * pSrc ,
q15_t offset ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Adds a constant offset to a Q31 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ in ] offset is the offset to be added
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_offset_q31 (
q31_t * pSrc ,
q31_t offset ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Negates the elements of a floating - point vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_negate_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Negates the elements of a Q7 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_negate_q7 (
q7_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Negates the elements of a Q15 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_negate_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Negates the elements of a Q31 vector .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] blockSize number of samples in the vector
*/
void arm_negate_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Copies the elements of a floating - point vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_copy_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Copies the elements of a Q7 vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_copy_q7 (
q7_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Copies the elements of a Q15 vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_copy_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Copies the elements of a Q31 vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_copy_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Fills a constant value into a floating - point vector .
* @ param [ in ] value input value to be filled
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_fill_f32 (
float32_t value ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Fills a constant value into a Q7 vector .
* @ param [ in ] value input value to be filled
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_fill_q7 (
q7_t value ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Fills a constant value into a Q15 vector .
* @ param [ in ] value input value to be filled
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_fill_q15 (
q15_t value ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Fills a constant value into a Q31 vector .
* @ param [ in ] value input value to be filled
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_fill_q31 (
q31_t value ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Convolution of floating - point sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the location where the output result is written . Length srcALen + srcBLen - 1.
*/
void arm_conv_f32 (
float32_t * pSrcA ,
uint32_t srcALen ,
float32_t * pSrcB ,
uint32_t srcBLen ,
float32_t * pDst ) ;
/**
* @ brief Convolution of Q15 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
* @ param [ in ] pScratch1 points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer of size min ( srcALen , srcBLen ) .
*/
void arm_conv_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Convolution of Q15 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the location where the output result is written . Length srcALen + srcBLen - 1.
*/
void arm_conv_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ) ;
/**
* @ brief Convolution of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
*/
void arm_conv_fast_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ) ;
/**
* @ brief Convolution of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
* @ param [ in ] pScratch1 points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer of size min ( srcALen , srcBLen ) .
*/
void arm_conv_fast_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Convolution of Q31 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
*/
void arm_conv_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ) ;
/**
* @ brief Convolution of Q31 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
*/
void arm_conv_fast_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ) ;
/**
* @ brief Convolution of Q7 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
* @ param [ in ] pScratch1 points to scratch buffer ( of type q15_t ) of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer ( of type q15_t ) of size min ( srcALen , srcBLen ) .
*/
void arm_conv_opt_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Convolution of Q7 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length srcALen + srcBLen - 1.
*/
void arm_conv_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ) ;
/**
* @ brief Partial convolution of floating - point sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_f32 (
float32_t * pSrcA ,
uint32_t srcALen ,
float32_t * pSrcB ,
uint32_t srcBLen ,
float32_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Partial convolution of Q15 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ param [ in ] pScratch1 points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer of size min ( srcALen , srcBLen ) .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Partial convolution of Q15 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Partial convolution of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_fast_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Partial convolution of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ param [ in ] pScratch1 points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer of size min ( srcALen , srcBLen ) .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_fast_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Partial convolution of Q31 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Partial convolution of Q31 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_fast_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Partial convolution of Q7 sequences
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ param [ in ] pScratch1 points to scratch buffer ( of type q15_t ) of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer ( of type q15_t ) of size min ( srcALen , srcBLen ) .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_opt_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Partial convolution of Q7 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] firstIndex is the first output sample to start with .
* @ param [ in ] numPoints is the number of output points to be computed .
* @ return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [ 0 srcALen + srcBLen - 2 ] .
*/
arm_status arm_conv_partial_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ,
uint32_t firstIndex ,
uint32_t numPoints ) ;
/**
* @ brief Instance structure for the Q15 FIR decimator .
*/
typedef struct
{
uint8_t M ; /**< decimation factor. */
uint16_t numTaps ; /**< number of coefficients in the filter. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
q15_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q15 ;
/**
* @ brief Instance structure for the Q31 FIR decimator .
*/
typedef struct
{
uint8_t M ; /**< decimation factor. */
uint16_t numTaps ; /**< number of coefficients in the filter. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
q31_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q31 ;
/**
* @ brief Instance structure for the floating - point FIR decimator .
*/
typedef struct
{
uint8_t M ; /**< decimation factor. */
uint16_t numTaps ; /**< number of coefficients in the filter. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
float32_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_f32 ;
/**
* @ brief Processing function for the floating - point FIR decimator .
* @ param [ in ] S points to an instance of the floating - point FIR decimator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_decimate_f32 (
const arm_fir_decimate_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point FIR decimator .
* @ param [ in , out ] S points to an instance of the floating - point FIR decimator structure .
* @ param [ in ] numTaps number of coefficients in the filter .
* @ param [ in ] M decimation factor .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* < code > blockSize < / code > is not a multiple of < code > M < / code > .
*/
arm_status arm_fir_decimate_init_f32 (
arm_fir_decimate_instance_f32 * S ,
uint16_t numTaps ,
uint8_t M ,
float32_t * pCoeffs ,
float32_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q15 FIR decimator .
* @ param [ in ] S points to an instance of the Q15 FIR decimator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_decimate_q15 (
const arm_fir_decimate_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q15 FIR decimator ( fast variant ) for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q15 FIR decimator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_decimate_fast_q15 (
const arm_fir_decimate_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 FIR decimator .
* @ param [ in , out ] S points to an instance of the Q15 FIR decimator structure .
* @ param [ in ] numTaps number of coefficients in the filter .
* @ param [ in ] M decimation factor .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* < code > blockSize < / code > is not a multiple of < code > M < / code > .
*/
arm_status arm_fir_decimate_init_q15 (
arm_fir_decimate_instance_q15 * S ,
uint16_t numTaps ,
uint8_t M ,
q15_t * pCoeffs ,
q15_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 FIR decimator .
* @ param [ in ] S points to an instance of the Q31 FIR decimator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_decimate_q31 (
const arm_fir_decimate_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 FIR decimator ( fast variant ) for Cortex - M3 and Cortex - M4 .
* @ param [ in ] S points to an instance of the Q31 FIR decimator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_decimate_fast_q31 (
arm_fir_decimate_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 FIR decimator .
* @ param [ in , out ] S points to an instance of the Q31 FIR decimator structure .
* @ param [ in ] numTaps number of coefficients in the filter .
* @ param [ in ] M decimation factor .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* < code > blockSize < / code > is not a multiple of < code > M < / code > .
*/
arm_status arm_fir_decimate_init_q31 (
arm_fir_decimate_instance_q31 * S ,
uint16_t numTaps ,
uint8_t M ,
q31_t * pCoeffs ,
q31_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q15 FIR interpolator .
*/
typedef struct
{
uint8_t L ; /**< upsample factor. */
uint16_t phaseLength ; /**< length of each polyphase filter component. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length L*phaseLength. */
q15_t * pState ; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q15 ;
/**
* @ brief Instance structure for the Q31 FIR interpolator .
*/
typedef struct
{
uint8_t L ; /**< upsample factor. */
uint16_t phaseLength ; /**< length of each polyphase filter component. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length L*phaseLength. */
q31_t * pState ; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q31 ;
/**
* @ brief Instance structure for the floating - point FIR interpolator .
*/
typedef struct
{
uint8_t L ; /**< upsample factor. */
uint16_t phaseLength ; /**< length of each polyphase filter component. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length L*phaseLength. */
float32_t * pState ; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
} arm_fir_interpolate_instance_f32 ;
/**
* @ brief Processing function for the Q15 FIR interpolator .
* @ param [ in ] S points to an instance of the Q15 FIR interpolator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_interpolate_q15 (
const arm_fir_interpolate_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 FIR interpolator .
* @ param [ in , out ] S points to an instance of the Q15 FIR interpolator structure .
* @ param [ in ] L upsample factor .
* @ param [ in ] numTaps number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficient buffer .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length < code > numTaps < / code > is not a multiple of the interpolation factor < code > L < / code > .
*/
arm_status arm_fir_interpolate_init_q15 (
arm_fir_interpolate_instance_q15 * S ,
uint8_t L ,
uint16_t numTaps ,
q15_t * pCoeffs ,
q15_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 FIR interpolator .
* @ param [ in ] S points to an instance of the Q15 FIR interpolator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_interpolate_q31 (
const arm_fir_interpolate_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 FIR interpolator .
* @ param [ in , out ] S points to an instance of the Q31 FIR interpolator structure .
* @ param [ in ] L upsample factor .
* @ param [ in ] numTaps number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficient buffer .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length < code > numTaps < / code > is not a multiple of the interpolation factor < code > L < / code > .
*/
arm_status arm_fir_interpolate_init_q31 (
arm_fir_interpolate_instance_q31 * S ,
uint8_t L ,
uint16_t numTaps ,
q31_t * pCoeffs ,
q31_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the floating - point FIR interpolator .
* @ param [ in ] S points to an instance of the floating - point FIR interpolator structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_interpolate_f32 (
const arm_fir_interpolate_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point FIR interpolator .
* @ param [ in , out ] S points to an instance of the floating - point FIR interpolator structure .
* @ param [ in ] L upsample factor .
* @ param [ in ] numTaps number of filter coefficients in the filter .
* @ param [ in ] pCoeffs points to the filter coefficient buffer .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] blockSize number of input samples to process per call .
* @ return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length < code > numTaps < / code > is not a multiple of the interpolation factor < code > L < / code > .
*/
arm_status arm_fir_interpolate_init_f32 (
arm_fir_interpolate_instance_f32 * S ,
uint8_t L ,
uint16_t numTaps ,
float32_t * pCoeffs ,
float32_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the high precision Q31 Biquad cascade filter .
*/
typedef struct
{
uint8_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q63_t * pState ; /**< points to the array of state coefficients. The array is of length 4*numStages. */
q31_t * pCoeffs ; /**< points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift ; /**< additional shift, in bits, applied to each output sample. */
} arm_biquad_cas_df1_32x64_ins_q31 ;
/**
* @ param [ in ] S points to an instance of the high precision Q31 Biquad cascade filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cas_df1_32x64_q31 (
const arm_biquad_cas_df1_32x64_ins_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ param [ in , out ] S points to an instance of the high precision Q31 Biquad cascade filter structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] postShift shift to be applied to the output . Varies according to the coefficients format
*/
void arm_biquad_cas_df1_32x64_init_q31 (
arm_biquad_cas_df1_32x64_ins_q31 * S ,
uint8_t numStages ,
q31_t * pCoeffs ,
q63_t * pState ,
uint8_t postShift ) ;
/**
* @ brief Instance structure for the floating - point transposed direct form II Biquad cascade filter .
*/
typedef struct
{
uint8_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t * pState ; /**< points to the array of state coefficients. The array is of length 2*numStages. */
float32_t * pCoeffs ; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_df2T_instance_f32 ;
/**
* @ brief Instance structure for the floating - point transposed direct form II Biquad cascade filter .
*/
typedef struct
{
uint8_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float32_t * pState ; /**< points to the array of state coefficients. The array is of length 4*numStages. */
float32_t * pCoeffs ; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_stereo_df2T_instance_f32 ;
/**
* @ brief Instance structure for the floating - point transposed direct form II Biquad cascade filter .
*/
typedef struct
{
uint8_t numStages ; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
float64_t * pState ; /**< points to the array of state coefficients. The array is of length 2*numStages. */
float64_t * pCoeffs ; /**< points to the array of coefficients. The array is of length 5*numStages. */
} arm_biquad_cascade_df2T_instance_f64 ;
/**
* @ brief Processing function for the floating - point transposed direct form II Biquad cascade filter .
* @ param [ in ] S points to an instance of the filter data structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df2T_f32 (
const arm_biquad_cascade_df2T_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the floating - point transposed direct form II Biquad cascade filter . 2 channels
* @ param [ in ] S points to an instance of the filter data structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_stereo_df2T_f32 (
const arm_biquad_cascade_stereo_df2T_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the floating - point transposed direct form II Biquad cascade filter .
* @ param [ in ] S points to an instance of the filter data structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_biquad_cascade_df2T_f64 (
const arm_biquad_cascade_df2T_instance_f64 * S ,
float64_t * pSrc ,
float64_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point transposed direct form II Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the filter data structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
*/
void arm_biquad_cascade_df2T_init_f32 (
arm_biquad_cascade_df2T_instance_f32 * S ,
uint8_t numStages ,
float32_t * pCoeffs ,
float32_t * pState ) ;
/**
* @ brief Initialization function for the floating - point transposed direct form II Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the filter data structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
*/
void arm_biquad_cascade_stereo_df2T_init_f32 (
arm_biquad_cascade_stereo_df2T_instance_f32 * S ,
uint8_t numStages ,
float32_t * pCoeffs ,
float32_t * pState ) ;
/**
* @ brief Initialization function for the floating - point transposed direct form II Biquad cascade filter .
* @ param [ in , out ] S points to an instance of the filter data structure .
* @ param [ in ] numStages number of 2 nd order stages in the filter .
* @ param [ in ] pCoeffs points to the filter coefficients .
* @ param [ in ] pState points to the state buffer .
*/
void arm_biquad_cascade_df2T_init_f64 (
arm_biquad_cascade_df2T_instance_f64 * S ,
uint8_t numStages ,
float64_t * pCoeffs ,
float64_t * pState ) ;
/**
* @ brief Instance structure for the Q15 FIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of filter stages. */
q15_t * pState ; /**< points to the state variable array. The array is of length numStages. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q15 ;
/**
* @ brief Instance structure for the Q31 FIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of filter stages. */
q31_t * pState ; /**< points to the state variable array. The array is of length numStages. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_q31 ;
/**
* @ brief Instance structure for the floating - point FIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of filter stages. */
float32_t * pState ; /**< points to the state variable array. The array is of length numStages. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numStages. */
} arm_fir_lattice_instance_f32 ;
/**
* @ brief Initialization function for the Q15 FIR lattice filter .
* @ param [ in ] S points to an instance of the Q15 FIR lattice structure .
* @ param [ in ] numStages number of filter stages .
* @ param [ in ] pCoeffs points to the coefficient buffer . The array is of length numStages .
* @ param [ in ] pState points to the state buffer . The array is of length numStages .
*/
void arm_fir_lattice_init_q15 (
arm_fir_lattice_instance_q15 * S ,
uint16_t numStages ,
q15_t * pCoeffs ,
q15_t * pState ) ;
/**
* @ brief Processing function for the Q15 FIR lattice filter .
* @ param [ in ] S points to an instance of the Q15 FIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_lattice_q15 (
const arm_fir_lattice_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 FIR lattice filter .
* @ param [ in ] S points to an instance of the Q31 FIR lattice structure .
* @ param [ in ] numStages number of filter stages .
* @ param [ in ] pCoeffs points to the coefficient buffer . The array is of length numStages .
* @ param [ in ] pState points to the state buffer . The array is of length numStages .
*/
void arm_fir_lattice_init_q31 (
arm_fir_lattice_instance_q31 * S ,
uint16_t numStages ,
q31_t * pCoeffs ,
q31_t * pState ) ;
/**
* @ brief Processing function for the Q31 FIR lattice filter .
* @ param [ in ] S points to an instance of the Q31 FIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_lattice_q31 (
const arm_fir_lattice_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point FIR lattice filter .
* @ param [ in ] S points to an instance of the floating - point FIR lattice structure .
* @ param [ in ] numStages number of filter stages .
* @ param [ in ] pCoeffs points to the coefficient buffer . The array is of length numStages .
* @ param [ in ] pState points to the state buffer . The array is of length numStages .
*/
void arm_fir_lattice_init_f32 (
arm_fir_lattice_instance_f32 * S ,
uint16_t numStages ,
float32_t * pCoeffs ,
float32_t * pState ) ;
/**
* @ brief Processing function for the floating - point FIR lattice filter .
* @ param [ in ] S points to an instance of the floating - point FIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] blockSize number of samples to process .
*/
void arm_fir_lattice_f32 (
const arm_fir_lattice_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q15 IIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of stages in the filter. */
q15_t * pState ; /**< points to the state variable array. The array is of length numStages+blockSize. */
q15_t * pkCoeffs ; /**< points to the reflection coefficient array. The array is of length numStages. */
q15_t * pvCoeffs ; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q15 ;
/**
* @ brief Instance structure for the Q31 IIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of stages in the filter. */
q31_t * pState ; /**< points to the state variable array. The array is of length numStages+blockSize. */
q31_t * pkCoeffs ; /**< points to the reflection coefficient array. The array is of length numStages. */
q31_t * pvCoeffs ; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_q31 ;
/**
* @ brief Instance structure for the floating - point IIR lattice filter .
*/
typedef struct
{
uint16_t numStages ; /**< number of stages in the filter. */
float32_t * pState ; /**< points to the state variable array. The array is of length numStages+blockSize. */
float32_t * pkCoeffs ; /**< points to the reflection coefficient array. The array is of length numStages. */
float32_t * pvCoeffs ; /**< points to the ladder coefficient array. The array is of length numStages+1. */
} arm_iir_lattice_instance_f32 ;
/**
* @ brief Processing function for the floating - point IIR lattice filter .
* @ param [ in ] S points to an instance of the floating - point IIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_iir_lattice_f32 (
const arm_iir_lattice_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point IIR lattice filter .
* @ param [ in ] S points to an instance of the floating - point IIR lattice structure .
* @ param [ in ] numStages number of stages in the filter .
* @ param [ in ] pkCoeffs points to the reflection coefficient buffer . The array is of length numStages .
* @ param [ in ] pvCoeffs points to the ladder coefficient buffer . The array is of length numStages + 1.
* @ param [ in ] pState points to the state buffer . The array is of length numStages + blockSize - 1.
* @ param [ in ] blockSize number of samples to process .
*/
void arm_iir_lattice_init_f32 (
arm_iir_lattice_instance_f32 * S ,
uint16_t numStages ,
float32_t * pkCoeffs ,
float32_t * pvCoeffs ,
float32_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 IIR lattice filter .
* @ param [ in ] S points to an instance of the Q31 IIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_iir_lattice_q31 (
const arm_iir_lattice_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 IIR lattice filter .
* @ param [ in ] S points to an instance of the Q31 IIR lattice structure .
* @ param [ in ] numStages number of stages in the filter .
* @ param [ in ] pkCoeffs points to the reflection coefficient buffer . The array is of length numStages .
* @ param [ in ] pvCoeffs points to the ladder coefficient buffer . The array is of length numStages + 1.
* @ param [ in ] pState points to the state buffer . The array is of length numStages + blockSize .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_iir_lattice_init_q31 (
arm_iir_lattice_instance_q31 * S ,
uint16_t numStages ,
q31_t * pkCoeffs ,
q31_t * pvCoeffs ,
q31_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q15 IIR lattice filter .
* @ param [ in ] S points to an instance of the Q15 IIR lattice structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_iir_lattice_q15 (
const arm_iir_lattice_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 IIR lattice filter .
* @ param [ in ] S points to an instance of the fixed - point Q15 IIR lattice structure .
* @ param [ in ] numStages number of stages in the filter .
* @ param [ in ] pkCoeffs points to reflection coefficient buffer . The array is of length numStages .
* @ param [ in ] pvCoeffs points to ladder coefficient buffer . The array is of length numStages + 1.
* @ param [ in ] pState points to state buffer . The array is of length numStages + blockSize .
* @ param [ in ] blockSize number of samples to process per call .
*/
void arm_iir_lattice_init_q15 (
arm_iir_lattice_instance_q15 * S ,
uint16_t numStages ,
q15_t * pkCoeffs ,
q15_t * pvCoeffs ,
q15_t * pState ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the floating - point LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
float32_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
float32_t mu ; /**< step size that controls filter coefficient updates. */
} arm_lms_instance_f32 ;
/**
* @ brief Processing function for floating - point LMS filter .
* @ param [ in ] S points to an instance of the floating - point LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_f32 (
const arm_lms_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pRef ,
float32_t * pOut ,
float32_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for floating - point LMS filter .
* @ param [ in ] S points to an instance of the floating - point LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to the coefficient buffer .
* @ param [ in ] pState points to state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_init_f32 (
arm_lms_instance_f32 * S ,
uint16_t numTaps ,
float32_t * pCoeffs ,
float32_t * pState ,
float32_t mu ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q15 LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
q15_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
q15_t mu ; /**< step size that controls filter coefficient updates. */
uint32_t postShift ; /**< bit shift applied to coefficients. */
} arm_lms_instance_q15 ;
/**
* @ brief Initialization function for the Q15 LMS filter .
* @ param [ in ] S points to an instance of the Q15 LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to the coefficient buffer .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
* @ param [ in ] postShift bit shift applied to coefficients .
*/
void arm_lms_init_q15 (
arm_lms_instance_q15 * S ,
uint16_t numTaps ,
q15_t * pCoeffs ,
q15_t * pState ,
q15_t mu ,
uint32_t blockSize ,
uint32_t postShift ) ;
/**
* @ brief Processing function for Q15 LMS filter .
* @ param [ in ] S points to an instance of the Q15 LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_q15 (
const arm_lms_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pRef ,
q15_t * pOut ,
q15_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q31 LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
q31_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
q31_t mu ; /**< step size that controls filter coefficient updates. */
uint32_t postShift ; /**< bit shift applied to coefficients. */
} arm_lms_instance_q31 ;
/**
* @ brief Processing function for Q31 LMS filter .
* @ param [ in ] S points to an instance of the Q15 LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_q31 (
const arm_lms_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pRef ,
q31_t * pOut ,
q31_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for Q31 LMS filter .
* @ param [ in ] S points to an instance of the Q31 LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to coefficient buffer .
* @ param [ in ] pState points to state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
* @ param [ in ] postShift bit shift applied to coefficients .
*/
void arm_lms_init_q31 (
arm_lms_instance_q31 * S ,
uint16_t numTaps ,
q31_t * pCoeffs ,
q31_t * pState ,
q31_t mu ,
uint32_t blockSize ,
uint32_t postShift ) ;
/**
* @ brief Instance structure for the floating - point normalized LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
float32_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
float32_t mu ; /**< step size that control filter coefficient updates. */
float32_t energy ; /**< saves previous frame energy. */
float32_t x0 ; /**< saves previous input sample. */
} arm_lms_norm_instance_f32 ;
/**
* @ brief Processing function for floating - point normalized LMS filter .
* @ param [ in ] S points to an instance of the floating - point normalized LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_norm_f32 (
arm_lms_norm_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pRef ,
float32_t * pOut ,
float32_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for floating - point normalized LMS filter .
* @ param [ in ] S points to an instance of the floating - point LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to coefficient buffer .
* @ param [ in ] pState points to state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_norm_init_f32 (
arm_lms_norm_instance_f32 * S ,
uint16_t numTaps ,
float32_t * pCoeffs ,
float32_t * pState ,
float32_t mu ,
uint32_t blockSize ) ;
/**
* @ brief Instance structure for the Q31 normalized LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
q31_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
q31_t mu ; /**< step size that controls filter coefficient updates. */
uint8_t postShift ; /**< bit shift applied to coefficients. */
q31_t * recipTable ; /**< points to the reciprocal initial value table. */
q31_t energy ; /**< saves previous frame energy. */
q31_t x0 ; /**< saves previous input sample. */
} arm_lms_norm_instance_q31 ;
/**
* @ brief Processing function for Q31 normalized LMS filter .
* @ param [ in ] S points to an instance of the Q31 normalized LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_norm_q31 (
arm_lms_norm_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pRef ,
q31_t * pOut ,
q31_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for Q31 normalized LMS filter .
* @ param [ in ] S points to an instance of the Q31 normalized LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to coefficient buffer .
* @ param [ in ] pState points to state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
* @ param [ in ] postShift bit shift applied to coefficients .
*/
void arm_lms_norm_init_q31 (
arm_lms_norm_instance_q31 * S ,
uint16_t numTaps ,
q31_t * pCoeffs ,
q31_t * pState ,
q31_t mu ,
uint32_t blockSize ,
uint8_t postShift ) ;
/**
* @ brief Instance structure for the Q15 normalized LMS filter .
*/
typedef struct
{
uint16_t numTaps ; /**< Number of coefficients in the filter. */
q15_t * pState ; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps. */
q15_t mu ; /**< step size that controls filter coefficient updates. */
uint8_t postShift ; /**< bit shift applied to coefficients. */
q15_t * recipTable ; /**< Points to the reciprocal initial value table. */
q15_t energy ; /**< saves previous frame energy. */
q15_t x0 ; /**< saves previous input sample. */
} arm_lms_norm_instance_q15 ;
/**
* @ brief Processing function for Q15 normalized LMS filter .
* @ param [ in ] S points to an instance of the Q15 normalized LMS filter structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ in ] pRef points to the block of reference data .
* @ param [ out ] pOut points to the block of output data .
* @ param [ out ] pErr points to the block of error data .
* @ param [ in ] blockSize number of samples to process .
*/
void arm_lms_norm_q15 (
arm_lms_norm_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pRef ,
q15_t * pOut ,
q15_t * pErr ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for Q15 normalized LMS filter .
* @ param [ in ] S points to an instance of the Q15 normalized LMS filter structure .
* @ param [ in ] numTaps number of filter coefficients .
* @ param [ in ] pCoeffs points to coefficient buffer .
* @ param [ in ] pState points to state buffer .
* @ param [ in ] mu step size that controls filter coefficient updates .
* @ param [ in ] blockSize number of samples to process .
* @ param [ in ] postShift bit shift applied to coefficients .
*/
void arm_lms_norm_init_q15 (
arm_lms_norm_instance_q15 * S ,
uint16_t numTaps ,
q15_t * pCoeffs ,
q15_t * pState ,
q15_t mu ,
uint32_t blockSize ,
uint8_t postShift ) ;
/**
* @ brief Correlation of floating - point sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_f32 (
float32_t * pSrcA ,
uint32_t srcALen ,
float32_t * pSrcB ,
uint32_t srcBLen ,
float32_t * pDst ) ;
/**
* @ brief Correlation of Q15 sequences
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
* @ param [ in ] pScratch points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
*/
void arm_correlate_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
q15_t * pScratch ) ;
/**
* @ brief Correlation of Q15 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ) ;
/**
* @ brief Correlation of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4 .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_fast_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ) ;
/**
* @ brief Correlation of Q15 sequences ( fast version ) for Cortex - M3 and Cortex - M4 .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
* @ param [ in ] pScratch points to scratch buffer of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
*/
void arm_correlate_fast_opt_q15 (
q15_t * pSrcA ,
uint32_t srcALen ,
q15_t * pSrcB ,
uint32_t srcBLen ,
q15_t * pDst ,
q15_t * pScratch ) ;
/**
* @ brief Correlation of Q31 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ) ;
/**
* @ brief Correlation of Q31 sequences ( fast version ) for Cortex - M3 and Cortex - M4
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_fast_q31 (
q31_t * pSrcA ,
uint32_t srcALen ,
q31_t * pSrcB ,
uint32_t srcBLen ,
q31_t * pDst ) ;
/**
* @ brief Correlation of Q7 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
* @ param [ in ] pScratch1 points to scratch buffer ( of type q15_t ) of size max ( srcALen , srcBLen ) + 2 * min ( srcALen , srcBLen ) - 2.
* @ param [ in ] pScratch2 points to scratch buffer ( of type q15_t ) of size min ( srcALen , srcBLen ) .
*/
void arm_correlate_opt_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ,
q15_t * pScratch1 ,
q15_t * pScratch2 ) ;
/**
* @ brief Correlation of Q7 sequences .
* @ param [ in ] pSrcA points to the first input sequence .
* @ param [ in ] srcALen length of the first input sequence .
* @ param [ in ] pSrcB points to the second input sequence .
* @ param [ in ] srcBLen length of the second input sequence .
* @ param [ out ] pDst points to the block of output data Length 2 * max ( srcALen , srcBLen ) - 1.
*/
void arm_correlate_q7 (
q7_t * pSrcA ,
uint32_t srcALen ,
q7_t * pSrcB ,
uint32_t srcBLen ,
q7_t * pDst ) ;
/**
* @ brief Instance structure for the floating - point sparse FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
uint16_t stateIndex ; /**< state buffer index. Points to the oldest sample in the state buffer. */
float32_t * pState ; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
float32_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay ; /**< maximum offset specified by the pTapDelay array. */
int32_t * pTapDelay ; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_f32 ;
/**
* @ brief Instance structure for the Q31 sparse FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
uint16_t stateIndex ; /**< state buffer index. Points to the oldest sample in the state buffer. */
q31_t * pState ; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q31_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay ; /**< maximum offset specified by the pTapDelay array. */
int32_t * pTapDelay ; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q31 ;
/**
* @ brief Instance structure for the Q15 sparse FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
uint16_t stateIndex ; /**< state buffer index. Points to the oldest sample in the state buffer. */
q15_t * pState ; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q15_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay ; /**< maximum offset specified by the pTapDelay array. */
int32_t * pTapDelay ; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q15 ;
/**
* @ brief Instance structure for the Q7 sparse FIR filter .
*/
typedef struct
{
uint16_t numTaps ; /**< number of coefficients in the filter. */
uint16_t stateIndex ; /**< state buffer index. Points to the oldest sample in the state buffer. */
q7_t * pState ; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
q7_t * pCoeffs ; /**< points to the coefficient array. The array is of length numTaps.*/
uint16_t maxDelay ; /**< maximum offset specified by the pTapDelay array. */
int32_t * pTapDelay ; /**< points to the array of delay values. The array is of length numTaps. */
} arm_fir_sparse_instance_q7 ;
/**
* @ brief Processing function for the floating - point sparse FIR filter .
* @ param [ in ] S points to an instance of the floating - point sparse FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] pScratchIn points to a temporary buffer of size blockSize .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_sparse_f32 (
arm_fir_sparse_instance_f32 * S ,
float32_t * pSrc ,
float32_t * pDst ,
float32_t * pScratchIn ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the floating - point sparse FIR filter .
* @ param [ in , out ] S points to an instance of the floating - point sparse FIR structure .
* @ param [ in ] numTaps number of nonzero coefficients in the filter .
* @ param [ in ] pCoeffs points to the array of filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] pTapDelay points to the array of offset times .
* @ param [ in ] maxDelay maximum offset time supported .
* @ param [ in ] blockSize number of samples that will be processed per block .
*/
void arm_fir_sparse_init_f32 (
arm_fir_sparse_instance_f32 * S ,
uint16_t numTaps ,
float32_t * pCoeffs ,
float32_t * pState ,
int32_t * pTapDelay ,
uint16_t maxDelay ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q31 sparse FIR filter .
* @ param [ in ] S points to an instance of the Q31 sparse FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] pScratchIn points to a temporary buffer of size blockSize .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_sparse_q31 (
arm_fir_sparse_instance_q31 * S ,
q31_t * pSrc ,
q31_t * pDst ,
q31_t * pScratchIn ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q31 sparse FIR filter .
* @ param [ in , out ] S points to an instance of the Q31 sparse FIR structure .
* @ param [ in ] numTaps number of nonzero coefficients in the filter .
* @ param [ in ] pCoeffs points to the array of filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] pTapDelay points to the array of offset times .
* @ param [ in ] maxDelay maximum offset time supported .
* @ param [ in ] blockSize number of samples that will be processed per block .
*/
void arm_fir_sparse_init_q31 (
arm_fir_sparse_instance_q31 * S ,
uint16_t numTaps ,
q31_t * pCoeffs ,
q31_t * pState ,
int32_t * pTapDelay ,
uint16_t maxDelay ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q15 sparse FIR filter .
* @ param [ in ] S points to an instance of the Q15 sparse FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] pScratchIn points to a temporary buffer of size blockSize .
* @ param [ in ] pScratchOut points to a temporary buffer of size blockSize .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_sparse_q15 (
arm_fir_sparse_instance_q15 * S ,
q15_t * pSrc ,
q15_t * pDst ,
q15_t * pScratchIn ,
q31_t * pScratchOut ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q15 sparse FIR filter .
* @ param [ in , out ] S points to an instance of the Q15 sparse FIR structure .
* @ param [ in ] numTaps number of nonzero coefficients in the filter .
* @ param [ in ] pCoeffs points to the array of filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] pTapDelay points to the array of offset times .
* @ param [ in ] maxDelay maximum offset time supported .
* @ param [ in ] blockSize number of samples that will be processed per block .
*/
void arm_fir_sparse_init_q15 (
arm_fir_sparse_instance_q15 * S ,
uint16_t numTaps ,
q15_t * pCoeffs ,
q15_t * pState ,
int32_t * pTapDelay ,
uint16_t maxDelay ,
uint32_t blockSize ) ;
/**
* @ brief Processing function for the Q7 sparse FIR filter .
* @ param [ in ] S points to an instance of the Q7 sparse FIR structure .
* @ param [ in ] pSrc points to the block of input data .
* @ param [ out ] pDst points to the block of output data
* @ param [ in ] pScratchIn points to a temporary buffer of size blockSize .
* @ param [ in ] pScratchOut points to a temporary buffer of size blockSize .
* @ param [ in ] blockSize number of input samples to process per call .
*/
void arm_fir_sparse_q7 (
arm_fir_sparse_instance_q7 * S ,
q7_t * pSrc ,
q7_t * pDst ,
q7_t * pScratchIn ,
q31_t * pScratchOut ,
uint32_t blockSize ) ;
/**
* @ brief Initialization function for the Q7 sparse FIR filter .
* @ param [ in , out ] S points to an instance of the Q7 sparse FIR structure .
* @ param [ in ] numTaps number of nonzero coefficients in the filter .
* @ param [ in ] pCoeffs points to the array of filter coefficients .
* @ param [ in ] pState points to the state buffer .
* @ param [ in ] pTapDelay points to the array of offset times .
* @ param [ in ] maxDelay maximum offset time supported .
* @ param [ in ] blockSize number of samples that will be processed per block .
*/
void arm_fir_sparse_init_q7 (
arm_fir_sparse_instance_q7 * S ,
uint16_t numTaps ,
q7_t * pCoeffs ,
q7_t * pState ,
int32_t * pTapDelay ,
uint16_t maxDelay ,
uint32_t blockSize ) ;
/**
* @ brief Floating - point sin_cos function .
* @ param [ in ] theta input value in degrees
* @ param [ out ] pSinVal points to the processed sine output .
* @ param [ out ] pCosVal points to the processed cos output .
*/
void arm_sin_cos_f32 (
float32_t theta ,
float32_t * pSinVal ,
float32_t * pCosVal ) ;
/**
* @ brief Q31 sin_cos function .
* @ param [ in ] theta scaled input value in degrees
* @ param [ out ] pSinVal points to the processed sine output .
* @ param [ out ] pCosVal points to the processed cosine output .
*/
void arm_sin_cos_q31 (
q31_t theta ,
q31_t * pSinVal ,
q31_t * pCosVal ) ;
/**
* @ brief Floating - point complex conjugate .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q31 complex conjugate .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q15 complex conjugate .
* @ param [ in ] pSrc points to the input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_conj_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Floating - point complex magnitude squared
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q31 complex magnitude squared
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q15 complex magnitude squared
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_squared_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t numSamples ) ;
/**
* @ ingroup groupController
*/
/**
* @ defgroup PID PID Motor Control
*
* A Proportional Integral Derivative ( PID ) controller is a generic feedback control
* loop mechanism widely used in industrial control systems .
* A PID controller is the most commonly used type of feedback controller .
*
* This set of functions implements ( PID ) controllers
* for Q15 , Q31 , and floating - point data types . The functions operate on a single sample
* of data and each call to the function returns a single processed value .
* < code > S < / code > points to an instance of the PID control data structure . < code > in < / code >
* is the input sample value . The functions return the output value .
*
* \ par Algorithm :
* < pre >
* y [ n ] = y [ n - 1 ] + A0 * x [ n ] + A1 * x [ n - 1 ] + A2 * x [ n - 2 ]
* A0 = Kp + Ki + Kd
* A1 = ( - Kp ) - ( 2 * Kd )
* A2 = Kd < / pre >
*
* \ par
* where \ c Kp is proportional constant , \ c Ki is Integral constant and \ c Kd is Derivative constant
*
* \ par
* \ image html PID . gif " Proportional Integral Derivative Controller "
*
* \ par
* The PID controller calculates an " error " value as the difference between
* the measured output and the reference input .
* The controller attempts to minimize the error by adjusting the process control inputs .
* The proportional value determines the reaction to the current error ,
* the integral value determines the reaction based on the sum of recent errors ,
* and the derivative value determines the reaction based on the rate at which the error has been changing .
*
* \ par Instance Structure
* The Gains A0 , A1 , A2 and state variables for a PID controller are stored together in an instance data structure .
* A separate instance structure must be defined for each PID Controller .
* There are separate instance structure declarations for each of the 3 supported data types .
*
* \ par Reset Functions
* There is also an associated reset function for each data type which clears the state array .
*
* \ par Initialization Functions
* There is also an associated initialization function for each data type .
* The initialization function performs the following operations :
* - Initializes the Gains A0 , A1 , A2 from Kp , Ki , Kd gains .
* - Zeros out the values in the state buffer .
*
* \ par
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function .
*
* \ par Fixed - Point Behavior
* Care must be taken when using the fixed - point versions of the PID Controller functions .
* In particular , the overflow and saturation behavior of the accumulator used in each function must be considered .
* Refer to the function specific documentation below for usage guidelines .
*/
/**
* @ addtogroup PID
* @ {
*/
/**
* @ brief Process function for the floating - point PID Control .
* @ param [ in , out ] S is an instance of the floating - point PID Control structure
* @ param [ in ] in input sample to process
* @ return out processed output sample .
*/
CMSIS_INLINE __STATIC_INLINE float32_t arm_pid_f32 (
arm_pid_instance_f32 * S ,
float32_t in )
{
float32_t out ;
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
out = ( S - > A0 * in ) +
( S - > A1 * S - > state [ 0 ] ) + ( S - > A2 * S - > state [ 1 ] ) + ( S - > state [ 2 ] ) ;
/* Update state */
S - > state [ 1 ] = S - > state [ 0 ] ;
S - > state [ 0 ] = in ;
S - > state [ 2 ] = out ;
/* return to application */
return ( out ) ;
}
/**
* @ brief Process function for the Q31 PID Control .
* @ param [ in , out ] S points to an instance of the Q31 PID Control structure
* @ param [ in ] in input sample to process
* @ return out processed output sample .
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using an internal 64 - bit accumulator .
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit .
* Thus , if the accumulator result overflows it wraps around rather than clip .
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions .
* After all multiply - accumulates are performed , the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format .
*/
CMSIS_INLINE __STATIC_INLINE q31_t arm_pid_q31 (
arm_pid_instance_q31 * S ,
q31_t in )
{
q63_t acc ;
q31_t out ;
/* acc = A0 * x[n] */
acc = ( q63_t ) S - > A0 * in ;
/* acc += A1 * x[n-1] */
acc + = ( q63_t ) S - > A1 * S - > state [ 0 ] ;
/* acc += A2 * x[n-2] */
acc + = ( q63_t ) S - > A2 * S - > state [ 1 ] ;
/* convert output to 1.31 format to add y[n-1] */
out = ( q31_t ) ( acc > > 31U ) ;
/* out += y[n-1] */
out + = S - > state [ 2 ] ;
/* Update state */
S - > state [ 1 ] = S - > state [ 0 ] ;
S - > state [ 0 ] = in ;
S - > state [ 2 ] = out ;
/* return to application */
return ( out ) ;
}
/**
* @ brief Process function for the Q15 PID Control .
* @ param [ in , out ] S points to an instance of the Q15 PID Control structure
* @ param [ in ] in input sample to process
* @ return out processed output sample .
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using a 64 - bit internal accumulator .
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result .
* The 2.30 intermediate results are accumulated in a 64 - bit accumulator in 34.30 format .
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved .
* After all additions have been performed , the accumulator is truncated to 34.15 format by discarding low 15 bits .
* Lastly , the accumulator is saturated to yield a result in 1.15 format .
*/
CMSIS_INLINE __STATIC_INLINE q15_t arm_pid_q15 (
arm_pid_instance_q15 * S ,
q15_t in )
{
q63_t acc ;
q15_t out ;
# if defined (ARM_MATH_DSP)
__SIMD32_TYPE * vstate ;
/* Implementation of PID controller */
/* acc = A0 * x[n] */
acc = ( q31_t ) __SMUAD ( ( uint32_t ) S - > A0 , ( uint32_t ) in ) ;
/* acc += A1 * x[n-1] + A2 * x[n-2] */
vstate = __SIMD32_CONST ( S - > state ) ;
acc = ( q63_t ) __SMLALD ( ( uint32_t ) S - > A1 , ( uint32_t ) * vstate , ( uint64_t ) acc ) ;
# else
/* acc = A0 * x[n] */
acc = ( ( q31_t ) S - > A0 ) * in ;
/* acc += A1 * x[n-1] + A2 * x[n-2] */
acc + = ( q31_t ) S - > A1 * S - > state [ 0 ] ;
acc + = ( q31_t ) S - > A2 * S - > state [ 1 ] ;
# endif
/* acc += y[n-1] */
acc + = ( q31_t ) S - > state [ 2 ] < < 15 ;
/* saturate the output */
out = ( q15_t ) ( __SSAT ( ( acc > > 15 ) , 16 ) ) ;
/* Update state */
S - > state [ 1 ] = S - > state [ 0 ] ;
S - > state [ 0 ] = in ;
S - > state [ 2 ] = out ;
/* return to application */
return ( out ) ;
}
/**
* @ } end of PID group
*/
/**
* @ brief Floating - point matrix inverse .
* @ param [ in ] src points to the instance of the input floating - point matrix structure .
* @ param [ out ] dst points to the instance of the output floating - point matrix structure .
* @ return The function returns ARM_MATH_SIZE_MISMATCH , if the dimensions do not match .
* If the input matrix is singular ( does not have an inverse ) , then the algorithm terminates and returns error status ARM_MATH_SINGULAR .
*/
arm_status arm_mat_inverse_f32 (
const arm_matrix_instance_f32 * src ,
arm_matrix_instance_f32 * dst ) ;
/**
* @ brief Floating - point matrix inverse .
* @ param [ in ] src points to the instance of the input floating - point matrix structure .
* @ param [ out ] dst points to the instance of the output floating - point matrix structure .
* @ return The function returns ARM_MATH_SIZE_MISMATCH , if the dimensions do not match .
* If the input matrix is singular ( does not have an inverse ) , then the algorithm terminates and returns error status ARM_MATH_SINGULAR .
*/
arm_status arm_mat_inverse_f64 (
const arm_matrix_instance_f64 * src ,
arm_matrix_instance_f64 * dst ) ;
/**
* @ ingroup groupController
*/
/**
* @ defgroup clarke Vector Clarke Transform
* Forward Clarke transform converts the instantaneous stator phases into a two - coordinate time invariant vector .
* Generally the Clarke transform uses three - phase currents < code > Ia , Ib and Ic < / code > to calculate currents
* in the two - phase orthogonal stator axis < code > Ialpha < / code > and < code > Ibeta < / code > .
* When < code > Ialpha < / code > is superposed with < code > Ia < / code > as shown in the figure below
* \ image html clarke . gif Stator current space vector and its components in ( a , b ) .
* and < code > Ia + Ib + Ic = 0 < / code > , in this condition < code > Ialpha < / code > and < code > Ibeta < / code >
* can be calculated using only < code > Ia < / code > and < code > Ib < / code > .
*
* The function operates on a single sample of data and each call to the function returns the processed output .
* The library provides separate functions for Q31 and floating - point data types .
* \ par Algorithm
* \ image html clarkeFormula . gif
* where < code > Ia < / code > and < code > Ib < / code > are the instantaneous stator phases and
* < code > pIalpha < / code > and < code > pIbeta < / code > are the two coordinates of time invariant vector .
* \ par Fixed - Point Behavior
* Care must be taken when using the Q31 version of the Clarke transform .
* In particular , the overflow and saturation behavior of the accumulator used must be considered .
* Refer to the function specific documentation below for usage guidelines .
*/
/**
* @ addtogroup clarke
* @ {
*/
/**
*
* @ brief Floating - point Clarke transform
* @ param [ in ] Ia input three - phase coordinate < code > a < / code >
* @ param [ in ] Ib input three - phase coordinate < code > b < / code >
* @ param [ out ] pIalpha points to output two - phase orthogonal vector axis alpha
* @ param [ out ] pIbeta points to output two - phase orthogonal vector axis beta
*/
CMSIS_INLINE __STATIC_INLINE void arm_clarke_f32 (
float32_t Ia ,
float32_t Ib ,
float32_t * pIalpha ,
float32_t * pIbeta )
{
/* Calculate pIalpha using the equation, pIalpha = Ia */
* pIalpha = Ia ;
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
* pIbeta = ( ( float32_t ) 0.57735026919 * Ia + ( float32_t ) 1.15470053838 * Ib ) ;
}
/**
* @ brief Clarke transform for Q31 version
* @ param [ in ] Ia input three - phase coordinate < code > a < / code >
* @ param [ in ] Ib input three - phase coordinate < code > b < / code >
* @ param [ out ] pIalpha points to output two - phase orthogonal vector axis alpha
* @ param [ out ] pIbeta points to output two - phase orthogonal vector axis beta
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using an internal 32 - bit accumulator .
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format .
* There is saturation on the addition , hence there is no risk of overflow .
*/
CMSIS_INLINE __STATIC_INLINE void arm_clarke_q31 (
q31_t Ia ,
q31_t Ib ,
q31_t * pIalpha ,
q31_t * pIbeta )
{
q31_t product1 , product2 ; /* Temporary variables used to store intermediate results */
/* Calculating pIalpha from Ia by equation pIalpha = Ia */
* pIalpha = Ia ;
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
product1 = ( q31_t ) ( ( ( q63_t ) Ia * 0x24F34E8B ) > > 30 ) ;
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
product2 = ( q31_t ) ( ( ( q63_t ) Ib * 0x49E69D16 ) > > 30 ) ;
/* pIbeta is calculated by adding the intermediate products */
* pIbeta = __QADD ( product1 , product2 ) ;
}
/**
* @ } end of clarke group
*/
/**
* @ brief Converts the elements of the Q7 vector to Q31 vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_q7_to_q31 (
q7_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ ingroup groupController
*/
/**
* @ defgroup inv_clarke Vector Inverse Clarke Transform
* Inverse Clarke transform converts the two - coordinate time invariant vector into instantaneous stator phases .
*
* The function operates on a single sample of data and each call to the function returns the processed output .
* The library provides separate functions for Q31 and floating - point data types .
* \ par Algorithm
* \ image html clarkeInvFormula . gif
* where < code > pIa < / code > and < code > pIb < / code > are the instantaneous stator phases and
* < code > Ialpha < / code > and < code > Ibeta < / code > are the two coordinates of time invariant vector .
* \ par Fixed - Point Behavior
* Care must be taken when using the Q31 version of the Clarke transform .
* In particular , the overflow and saturation behavior of the accumulator used must be considered .
* Refer to the function specific documentation below for usage guidelines .
*/
/**
* @ addtogroup inv_clarke
* @ {
*/
/**
* @ brief Floating - point Inverse Clarke transform
* @ param [ in ] Ialpha input two - phase orthogonal vector axis alpha
* @ param [ in ] Ibeta input two - phase orthogonal vector axis beta
* @ param [ out ] pIa points to output three - phase coordinate < code > a < / code >
* @ param [ out ] pIb points to output three - phase coordinate < code > b < / code >
*/
CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_f32 (
float32_t Ialpha ,
float32_t Ibeta ,
float32_t * pIa ,
float32_t * pIb )
{
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
* pIa = Ialpha ;
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
* pIb = - 0.5f * Ialpha + 0.8660254039f * Ibeta ;
}
/**
* @ brief Inverse Clarke transform for Q31 version
* @ param [ in ] Ialpha input two - phase orthogonal vector axis alpha
* @ param [ in ] Ibeta input two - phase orthogonal vector axis beta
* @ param [ out ] pIa points to output three - phase coordinate < code > a < / code >
* @ param [ out ] pIb points to output three - phase coordinate < code > b < / code >
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using an internal 32 - bit accumulator .
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format .
* There is saturation on the subtraction , hence there is no risk of overflow .
*/
CMSIS_INLINE __STATIC_INLINE void arm_inv_clarke_q31 (
q31_t Ialpha ,
q31_t Ibeta ,
q31_t * pIa ,
q31_t * pIb )
{
q31_t product1 , product2 ; /* Temporary variables used to store intermediate results */
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
* pIa = Ialpha ;
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
product1 = ( q31_t ) ( ( ( q63_t ) ( Ialpha ) * ( 0x40000000 ) ) > > 31 ) ;
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
product2 = ( q31_t ) ( ( ( q63_t ) ( Ibeta ) * ( 0x6ED9EBA1 ) ) > > 31 ) ;
/* pIb is calculated by subtracting the products */
* pIb = __QSUB ( product2 , product1 ) ;
}
/**
* @ } end of inv_clarke group
*/
/**
* @ brief Converts the elements of the Q7 vector to Q15 vector .
* @ param [ in ] pSrc input pointer
* @ param [ out ] pDst output pointer
* @ param [ in ] blockSize number of samples to process
*/
void arm_q7_to_q15 (
q7_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ ingroup groupController
*/
/**
* @ defgroup park Vector Park Transform
*
* Forward Park transform converts the input two - coordinate vector to flux and torque components .
* The Park transform can be used to realize the transformation of the < code > Ialpha < / code > and the < code > Ibeta < / code > currents
* from the stationary to the moving reference frame and control the spatial relationship between
* the stator vector current and rotor flux vector .
* If we consider the d axis aligned with the rotor flux , the diagram below shows the
* current vector and the relationship from the two reference frames :
* \ image html park . gif " Stator current space vector and its component in (a,b) and in the d,q rotating reference frame "
*
* The function operates on a single sample of data and each call to the function returns the processed output .
* The library provides separate functions for Q31 and floating - point data types .
* \ par Algorithm
* \ image html parkFormula . gif
* where < code > Ialpha < / code > and < code > Ibeta < / code > are the stator vector components ,
* < code > pId < / code > and < code > pIq < / code > are rotor vector components and < code > cosVal < / code > and < code > sinVal < / code > are the
* cosine and sine values of theta ( rotor flux position ) .
* \ par Fixed - Point Behavior
* Care must be taken when using the Q31 version of the Park transform .
* In particular , the overflow and saturation behavior of the accumulator used must be considered .
* Refer to the function specific documentation below for usage guidelines .
*/
/**
* @ addtogroup park
* @ {
*/
/**
* @ brief Floating - point Park transform
* @ param [ in ] Ialpha input two - phase vector coordinate alpha
* @ param [ in ] Ibeta input two - phase vector coordinate beta
* @ param [ out ] pId points to output rotor reference frame d
* @ param [ out ] pIq points to output rotor reference frame q
* @ param [ in ] sinVal sine value of rotation angle theta
* @ param [ in ] cosVal cosine value of rotation angle theta
*
* The function implements the forward Park transform .
*
*/
CMSIS_INLINE __STATIC_INLINE void arm_park_f32 (
float32_t Ialpha ,
float32_t Ibeta ,
float32_t * pId ,
float32_t * pIq ,
float32_t sinVal ,
float32_t cosVal )
{
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
* pId = Ialpha * cosVal + Ibeta * sinVal ;
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
* pIq = - Ialpha * sinVal + Ibeta * cosVal ;
}
/**
* @ brief Park transform for Q31 version
* @ param [ in ] Ialpha input two - phase vector coordinate alpha
* @ param [ in ] Ibeta input two - phase vector coordinate beta
* @ param [ out ] pId points to output rotor reference frame d
* @ param [ out ] pIq points to output rotor reference frame q
* @ param [ in ] sinVal sine value of rotation angle theta
* @ param [ in ] cosVal cosine value of rotation angle theta
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using an internal 32 - bit accumulator .
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format .
* There is saturation on the addition and subtraction , hence there is no risk of overflow .
*/
CMSIS_INLINE __STATIC_INLINE void arm_park_q31 (
q31_t Ialpha ,
q31_t Ibeta ,
q31_t * pId ,
q31_t * pIq ,
q31_t sinVal ,
q31_t cosVal )
{
q31_t product1 , product2 ; /* Temporary variables used to store intermediate results */
q31_t product3 , product4 ; /* Temporary variables used to store intermediate results */
/* Intermediate product is calculated by (Ialpha * cosVal) */
product1 = ( q31_t ) ( ( ( q63_t ) ( Ialpha ) * ( cosVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Ibeta * sinVal) */
product2 = ( q31_t ) ( ( ( q63_t ) ( Ibeta ) * ( sinVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Ialpha * sinVal) */
product3 = ( q31_t ) ( ( ( q63_t ) ( Ialpha ) * ( sinVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Ibeta * cosVal) */
product4 = ( q31_t ) ( ( ( q63_t ) ( Ibeta ) * ( cosVal ) ) > > 31 ) ;
/* Calculate pId by adding the two intermediate products 1 and 2 */
* pId = __QADD ( product1 , product2 ) ;
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */
* pIq = __QSUB ( product4 , product3 ) ;
}
/**
* @ } end of park group
*/
/**
* @ brief Converts the elements of the Q7 vector to floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q7_to_float (
q7_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ ingroup groupController
*/
/**
* @ defgroup inv_park Vector Inverse Park transform
* Inverse Park transform converts the input flux and torque components to two - coordinate vector .
*
* The function operates on a single sample of data and each call to the function returns the processed output .
* The library provides separate functions for Q31 and floating - point data types .
* \ par Algorithm
* \ image html parkInvFormula . gif
* where < code > pIalpha < / code > and < code > pIbeta < / code > are the stator vector components ,
* < code > Id < / code > and < code > Iq < / code > are rotor vector components and < code > cosVal < / code > and < code > sinVal < / code > are the
* cosine and sine values of theta ( rotor flux position ) .
* \ par Fixed - Point Behavior
* Care must be taken when using the Q31 version of the Park transform .
* In particular , the overflow and saturation behavior of the accumulator used must be considered .
* Refer to the function specific documentation below for usage guidelines .
*/
/**
* @ addtogroup inv_park
* @ {
*/
/**
* @ brief Floating - point Inverse Park transform
* @ param [ in ] Id input coordinate of rotor reference frame d
* @ param [ in ] Iq input coordinate of rotor reference frame q
* @ param [ out ] pIalpha points to output two - phase orthogonal vector axis alpha
* @ param [ out ] pIbeta points to output two - phase orthogonal vector axis beta
* @ param [ in ] sinVal sine value of rotation angle theta
* @ param [ in ] cosVal cosine value of rotation angle theta
*/
CMSIS_INLINE __STATIC_INLINE void arm_inv_park_f32 (
float32_t Id ,
float32_t Iq ,
float32_t * pIalpha ,
float32_t * pIbeta ,
float32_t sinVal ,
float32_t cosVal )
{
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
* pIalpha = Id * cosVal - Iq * sinVal ;
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
* pIbeta = Id * sinVal + Iq * cosVal ;
}
/**
* @ brief Inverse Park transform for Q31 version
* @ param [ in ] Id input coordinate of rotor reference frame d
* @ param [ in ] Iq input coordinate of rotor reference frame q
* @ param [ out ] pIalpha points to output two - phase orthogonal vector axis alpha
* @ param [ out ] pIbeta points to output two - phase orthogonal vector axis beta
* @ param [ in ] sinVal sine value of rotation angle theta
* @ param [ in ] cosVal cosine value of rotation angle theta
*
* < b > Scaling and Overflow Behavior : < / b >
* \ par
* The function is implemented using an internal 32 - bit accumulator .
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format .
* There is saturation on the addition , hence there is no risk of overflow .
*/
CMSIS_INLINE __STATIC_INLINE void arm_inv_park_q31 (
q31_t Id ,
q31_t Iq ,
q31_t * pIalpha ,
q31_t * pIbeta ,
q31_t sinVal ,
q31_t cosVal )
{
q31_t product1 , product2 ; /* Temporary variables used to store intermediate results */
q31_t product3 , product4 ; /* Temporary variables used to store intermediate results */
/* Intermediate product is calculated by (Id * cosVal) */
product1 = ( q31_t ) ( ( ( q63_t ) ( Id ) * ( cosVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Iq * sinVal) */
product2 = ( q31_t ) ( ( ( q63_t ) ( Iq ) * ( sinVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Id * sinVal) */
product3 = ( q31_t ) ( ( ( q63_t ) ( Id ) * ( sinVal ) ) > > 31 ) ;
/* Intermediate product is calculated by (Iq * cosVal) */
product4 = ( q31_t ) ( ( ( q63_t ) ( Iq ) * ( cosVal ) ) > > 31 ) ;
/* Calculate pIalpha by using the two intermediate products 1 and 2 */
* pIalpha = __QSUB ( product1 , product2 ) ;
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
* pIbeta = __QADD ( product4 , product3 ) ;
}
/**
* @ } end of Inverse park group
*/
/**
* @ brief Converts the elements of the Q31 vector to floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q31_to_float (
q31_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ ingroup groupInterpolation
*/
/**
* @ defgroup LinearInterpolate Linear Interpolation
*
* Linear interpolation is a method of curve fitting using linear polynomials .
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
*
* \ par
* \ image html LinearInterp . gif " Linear interpolation "
*
* \ par
* A Linear Interpolate function calculates an output value ( y ) , for the input ( x )
* using linear interpolation of the input values x0 , x1 ( nearest input values ) and the output values y0 and y1 ( nearest output values )
*
* \ par Algorithm :
* < pre >
* y = y0 + ( x - x0 ) * ( ( y1 - y0 ) / ( x1 - x0 ) )
* where x0 , x1 are nearest values of input x
* y0 , y1 are nearest values to output y
* < / pre >
*
* \ par
* This set of functions implements Linear interpolation process
* for Q7 , Q15 , Q31 , and floating - point data types . The functions operate on a single
* sample of data and each call to the function returns a single processed value .
* < code > S < / code > points to an instance of the Linear Interpolate function data structure .
* < code > x < / code > is the input sample value . The functions returns the output value .
*
* \ par
* if x is outside of the table boundary , Linear interpolation returns first value of the table
* if x is below input range and returns last value of table if x is above range .
*/
/**
* @ addtogroup LinearInterpolate
* @ {
*/
/**
* @ brief Process function for the floating - point Linear Interpolation Function .
* @ param [ in , out ] S is an instance of the floating - point Linear Interpolation structure
* @ param [ in ] x input sample to process
* @ return y processed output sample .
*
*/
CMSIS_INLINE __STATIC_INLINE float32_t arm_linear_interp_f32 (
arm_linear_interp_instance_f32 * S ,
float32_t x )
{
float32_t y ;
float32_t x0 , x1 ; /* Nearest input values */
float32_t y0 , y1 ; /* Nearest output values */
float32_t xSpacing = S - > xSpacing ; /* spacing between input values */
int32_t i ; /* Index variable */
float32_t * pYData = S - > pYData ; /* pointer to output table */
/* Calculation of index */
i = ( int32_t ) ( ( x - S - > x1 ) / xSpacing ) ;
if ( i < 0 )
{
/* Iniatilize output for below specified range as least output value of table */
y = pYData [ 0 ] ;
}
else if ( ( uint32_t ) i > = S - > nValues )
{
/* Iniatilize output for above specified range as last output value of table */
y = pYData [ S - > nValues - 1 ] ;
}
else
{
/* Calculation of nearest input values */
x0 = S - > x1 + i * xSpacing ;
x1 = S - > x1 + ( i + 1 ) * xSpacing ;
/* Read of nearest output values */
y0 = pYData [ i ] ;
y1 = pYData [ i + 1 ] ;
/* Calculation of output */
y = y0 + ( x - x0 ) * ( ( y1 - y0 ) / ( x1 - x0 ) ) ;
}
/* returns output value */
return ( y ) ;
}
/**
*
* @ brief Process function for the Q31 Linear Interpolation Function .
* @ param [ in ] pYData pointer to Q31 Linear Interpolation table
* @ param [ in ] x input sample to process
* @ param [ in ] nValues number of table values
* @ return y processed output sample .
*
* \ par
* Input sample < code > x < / code > is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part .
* This function can support maximum of table size 2 ^ 12.
*
*/
CMSIS_INLINE __STATIC_INLINE q31_t arm_linear_interp_q31 (
q31_t * pYData ,
q31_t x ,
uint32_t nValues )
{
q31_t y ; /* output */
q31_t y0 , y1 ; /* Nearest output values */
q31_t fract ; /* fractional part */
int32_t index ; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
index = ( ( x & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
if ( index > = ( int32_t ) ( nValues - 1 ) )
{
return ( pYData [ nValues - 1 ] ) ;
}
else if ( index < 0 )
{
return ( pYData [ 0 ] ) ;
}
else
{
/* 20 bits for the fractional part */
/* shift left by 11 to keep fract in 1.31 format */
fract = ( x & 0x000FFFFF ) < < 11 ;
/* Read two nearest output values from the index in 1.31(q31) format */
y0 = pYData [ index ] ;
y1 = pYData [ index + 1 ] ;
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
y = ( ( q31_t ) ( ( q63_t ) y0 * ( 0x7FFFFFFF - fract ) > > 32 ) ) ;
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
y + = ( ( q31_t ) ( ( ( q63_t ) y1 * fract ) > > 32 ) ) ;
/* Convert y to 1.31 format */
return ( y < < 1U ) ;
}
}
/**
*
* @ brief Process function for the Q15 Linear Interpolation Function .
* @ param [ in ] pYData pointer to Q15 Linear Interpolation table
* @ param [ in ] x input sample to process
* @ param [ in ] nValues number of table values
* @ return y processed output sample .
*
* \ par
* Input sample < code > x < / code > is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part .
* This function can support maximum of table size 2 ^ 12.
*
*/
CMSIS_INLINE __STATIC_INLINE q15_t arm_linear_interp_q15 (
q15_t * pYData ,
q31_t x ,
uint32_t nValues )
{
q63_t y ; /* output */
q15_t y0 , y1 ; /* Nearest output values */
q31_t fract ; /* fractional part */
int32_t index ; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
index = ( ( x & ( int32_t ) 0xFFF00000 ) > > 20 ) ;
if ( index > = ( int32_t ) ( nValues - 1 ) )
{
return ( pYData [ nValues - 1 ] ) ;
}
else if ( index < 0 )
{
return ( pYData [ 0 ] ) ;
}
else
{
/* 20 bits for the fractional part */
/* fract is in 12.20 format */
fract = ( x & 0x000FFFFF ) ;
/* Read two nearest output values from the index */
y0 = pYData [ index ] ;
y1 = pYData [ index + 1 ] ;
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
y = ( ( q63_t ) y0 * ( 0xFFFFF - fract ) ) ;
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
y + = ( ( q63_t ) y1 * ( fract ) ) ;
/* convert y to 1.15 format */
return ( q15_t ) ( y > > 20 ) ;
}
}
/**
*
* @ brief Process function for the Q7 Linear Interpolation Function .
* @ param [ in ] pYData pointer to Q7 Linear Interpolation table
* @ param [ in ] x input sample to process
* @ param [ in ] nValues number of table values
* @ return y processed output sample .
*
* \ par
* Input sample < code > x < / code > is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part .
* This function can support maximum of table size 2 ^ 12.
*/
CMSIS_INLINE __STATIC_INLINE q7_t arm_linear_interp_q7 (
q7_t * pYData ,
q31_t x ,
uint32_t nValues )
{
q31_t y ; /* output */
q7_t y0 , y1 ; /* Nearest output values */
q31_t fract ; /* fractional part */
uint32_t index ; /* Index to read nearest output values */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
if ( x < 0 )
{
return ( pYData [ 0 ] ) ;
}
index = ( x > > 20 ) & 0xfff ;
if ( index > = ( nValues - 1 ) )
{
return ( pYData [ nValues - 1 ] ) ;
}
else
{
/* 20 bits for the fractional part */
/* fract is in 12.20 format */
fract = ( x & 0x000FFFFF ) ;
/* Read two nearest output values from the index and are in 1.7(q7) format */
y0 = pYData [ index ] ;
y1 = pYData [ index + 1 ] ;
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
y = ( ( y0 * ( 0xFFFFF - fract ) ) ) ;
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
y + = ( y1 * fract ) ;
/* convert y to 1.7(q7) format */
return ( q7_t ) ( y > > 20 ) ;
}
}
/**
* @ } end of LinearInterpolate group
*/
/**
* @ brief Fast approximation to the trigonometric sine function for floating - point data .
* @ param [ in ] x input value in radians .
* @ return sin ( x ) .
*/
float32_t arm_sin_f32 (
float32_t x ) ;
/**
* @ brief Fast approximation to the trigonometric sine function for Q31 data .
* @ param [ in ] x Scaled input value in radians .
* @ return sin ( x ) .
*/
q31_t arm_sin_q31 (
q31_t x ) ;
/**
* @ brief Fast approximation to the trigonometric sine function for Q15 data .
* @ param [ in ] x Scaled input value in radians .
* @ return sin ( x ) .
*/
q15_t arm_sin_q15 (
q15_t x ) ;
/**
* @ brief Fast approximation to the trigonometric cosine function for floating - point data .
* @ param [ in ] x input value in radians .
* @ return cos ( x ) .
*/
float32_t arm_cos_f32 (
float32_t x ) ;
/**
* @ brief Fast approximation to the trigonometric cosine function for Q31 data .
* @ param [ in ] x Scaled input value in radians .
* @ return cos ( x ) .
*/
q31_t arm_cos_q31 (
q31_t x ) ;
/**
* @ brief Fast approximation to the trigonometric cosine function for Q15 data .
* @ param [ in ] x Scaled input value in radians .
* @ return cos ( x ) .
*/
q15_t arm_cos_q15 (
q15_t x ) ;
/**
* @ ingroup groupFastMath
*/
/**
* @ defgroup SQRT Square Root
*
* Computes the square root of a number .
* There are separate functions for Q15 , Q31 , and floating - point data types .
* The square root function is computed using the Newton - Raphson algorithm .
* This is an iterative algorithm of the form :
* < pre >
* x1 = x0 - f ( x0 ) / f ' ( x0 )
* < / pre >
* where < code > x1 < / code > is the current estimate ,
* < code > x0 < / code > is the previous estimate , and
* < code > f ' ( x0 ) < / code > is the derivative of < code > f ( ) < / code > evaluated at < code > x0 < / code > .
* For the square root function , the algorithm reduces to :
* < pre >
* x0 = in / 2 [ initial guess ]
* x1 = 1 / 2 * ( x0 + in / x0 ) [ each iteration ]
* < / pre >
*/
/**
* @ addtogroup SQRT
* @ {
*/
/**
* @ brief Floating - point square root function .
* @ param [ in ] in input value .
* @ param [ out ] pOut square root of input value .
* @ return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* < code > in < / code > is negative value and returns zero output for negative values .
*/
CMSIS_INLINE __STATIC_INLINE arm_status arm_sqrt_f32 (
float32_t in ,
float32_t * pOut )
{
if ( in > = 0.0f )
{
# if (__FPU_USED == 1) && defined ( __CC_ARM )
* pOut = __sqrtf ( in ) ;
# elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
* pOut = __builtin_sqrtf ( in ) ;
# elif (__FPU_USED == 1) && defined(__GNUC__)
* pOut = __builtin_sqrtf ( in ) ;
# elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
__ASM ( " VSQRT.F32 %0,%1 " : " =t " ( * pOut ) : " t " ( in ) ) ;
# else
* pOut = sqrtf ( in ) ;
# endif
return ( ARM_MATH_SUCCESS ) ;
}
else
{
* pOut = 0.0f ;
return ( ARM_MATH_ARGUMENT_ERROR ) ;
}
}
/**
* @ brief Q31 square root function .
* @ param [ in ] in input value . The range of the input value is [ 0 + 1 ) or 0x00000000 to 0x7FFFFFFF .
* @ param [ out ] pOut square root of input value .
* @ return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* < code > in < / code > is negative value and returns zero output for negative values .
*/
arm_status arm_sqrt_q31 (
q31_t in ,
q31_t * pOut ) ;
/**
* @ brief Q15 square root function .
* @ param [ in ] in input value . The range of the input value is [ 0 + 1 ) or 0x0000 to 0x7FFF .
* @ param [ out ] pOut square root of input value .
* @ return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
* < code > in < / code > is negative value and returns zero output for negative values .
*/
arm_status arm_sqrt_q15 (
q15_t in ,
q15_t * pOut ) ;
/**
* @ } end of SQRT group
*/
/**
* @ brief floating - point Circular write function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_f32 (
int32_t * circBuffer ,
int32_t L ,
uint16_t * writeOffset ,
int32_t bufferInc ,
const int32_t * src ,
int32_t srcInc ,
uint32_t blockSize )
{
uint32_t i = 0U ;
int32_t wOffset ;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = * writeOffset ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the input sample to the circular buffer */
circBuffer [ wOffset ] = * src ;
/* Update the input pointer */
src + = srcInc ;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset + = bufferInc ;
if ( wOffset > = L )
wOffset - = L ;
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* writeOffset = ( uint16_t ) wOffset ;
}
/**
* @ brief floating - point Circular Read function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularRead_f32 (
int32_t * circBuffer ,
int32_t L ,
int32_t * readOffset ,
int32_t bufferInc ,
int32_t * dst ,
int32_t * dst_base ,
int32_t dst_length ,
int32_t dstInc ,
uint32_t blockSize )
{
uint32_t i = 0U ;
int32_t rOffset , dst_end ;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = * readOffset ;
dst_end = ( int32_t ) ( dst_base + dst_length ) ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the sample from the circular buffer to the destination buffer */
* dst = circBuffer [ rOffset ] ;
/* Update the input pointer */
dst + = dstInc ;
if ( dst = = ( int32_t * ) dst_end )
{
dst = dst_base ;
}
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset + = bufferInc ;
if ( rOffset > = L )
{
rOffset - = L ;
}
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* readOffset = rOffset ;
}
/**
* @ brief Q15 Circular write function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q15 (
q15_t * circBuffer ,
int32_t L ,
uint16_t * writeOffset ,
int32_t bufferInc ,
const q15_t * src ,
int32_t srcInc ,
uint32_t blockSize )
{
uint32_t i = 0U ;
int32_t wOffset ;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = * writeOffset ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the input sample to the circular buffer */
circBuffer [ wOffset ] = * src ;
/* Update the input pointer */
src + = srcInc ;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset + = bufferInc ;
if ( wOffset > = L )
wOffset - = L ;
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* writeOffset = ( uint16_t ) wOffset ;
}
/**
* @ brief Q15 Circular Read function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q15 (
q15_t * circBuffer ,
int32_t L ,
int32_t * readOffset ,
int32_t bufferInc ,
q15_t * dst ,
q15_t * dst_base ,
int32_t dst_length ,
int32_t dstInc ,
uint32_t blockSize )
{
uint32_t i = 0 ;
int32_t rOffset , dst_end ;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = * readOffset ;
dst_end = ( int32_t ) ( dst_base + dst_length ) ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the sample from the circular buffer to the destination buffer */
* dst = circBuffer [ rOffset ] ;
/* Update the input pointer */
dst + = dstInc ;
if ( dst = = ( q15_t * ) dst_end )
{
dst = dst_base ;
}
/* Circularly update wOffset. Watch out for positive and negative value */
rOffset + = bufferInc ;
if ( rOffset > = L )
{
rOffset - = L ;
}
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* readOffset = rOffset ;
}
/**
* @ brief Q7 Circular write function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularWrite_q7 (
q7_t * circBuffer ,
int32_t L ,
uint16_t * writeOffset ,
int32_t bufferInc ,
const q7_t * src ,
int32_t srcInc ,
uint32_t blockSize )
{
uint32_t i = 0U ;
int32_t wOffset ;
/* Copy the value of Index pointer that points
* to the current location where the input samples to be copied */
wOffset = * writeOffset ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the input sample to the circular buffer */
circBuffer [ wOffset ] = * src ;
/* Update the input pointer */
src + = srcInc ;
/* Circularly update wOffset. Watch out for positive and negative value */
wOffset + = bufferInc ;
if ( wOffset > = L )
wOffset - = L ;
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* writeOffset = ( uint16_t ) wOffset ;
}
/**
* @ brief Q7 Circular Read function .
*/
CMSIS_INLINE __STATIC_INLINE void arm_circularRead_q7 (
q7_t * circBuffer ,
int32_t L ,
int32_t * readOffset ,
int32_t bufferInc ,
q7_t * dst ,
q7_t * dst_base ,
int32_t dst_length ,
int32_t dstInc ,
uint32_t blockSize )
{
uint32_t i = 0 ;
int32_t rOffset , dst_end ;
/* Copy the value of Index pointer that points
* to the current location from where the input samples to be read */
rOffset = * readOffset ;
dst_end = ( int32_t ) ( dst_base + dst_length ) ;
/* Loop over the blockSize */
i = blockSize ;
while ( i > 0U )
{
/* copy the sample from the circular buffer to the destination buffer */
* dst = circBuffer [ rOffset ] ;
/* Update the input pointer */
dst + = dstInc ;
if ( dst = = ( q7_t * ) dst_end )
{
dst = dst_base ;
}
/* Circularly update rOffset. Watch out for positive and negative value */
rOffset + = bufferInc ;
if ( rOffset > = L )
{
rOffset - = L ;
}
/* Decrement the loop counter */
i - - ;
}
/* Update the index pointer */
* readOffset = rOffset ;
}
/**
* @ brief Sum of the squares of the elements of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_power_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q63_t * pResult ) ;
/**
* @ brief Sum of the squares of the elements of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_power_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ) ;
/**
* @ brief Sum of the squares of the elements of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_power_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q63_t * pResult ) ;
/**
* @ brief Sum of the squares of the elements of a Q7 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_power_q7 (
q7_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ) ;
/**
* @ brief Mean value of a Q7 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_mean_q7 (
q7_t * pSrc ,
uint32_t blockSize ,
q7_t * pResult ) ;
/**
* @ brief Mean value of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_mean_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ) ;
/**
* @ brief Mean value of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_mean_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ) ;
/**
* @ brief Mean value of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_mean_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ) ;
/**
* @ brief Variance of the elements of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_var_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ) ;
/**
* @ brief Variance of the elements of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_var_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ) ;
/**
* @ brief Variance of the elements of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_var_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ) ;
/**
* @ brief Root Mean Square of the elements of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_rms_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ) ;
/**
* @ brief Root Mean Square of the elements of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_rms_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ) ;
/**
* @ brief Root Mean Square of the elements of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_rms_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ) ;
/**
* @ brief Standard deviation of the elements of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_std_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ) ;
/**
* @ brief Standard deviation of the elements of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_std_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ) ;
/**
* @ brief Standard deviation of the elements of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output value .
*/
void arm_std_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ) ;
/**
* @ brief Floating - point complex magnitude
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_f32 (
float32_t * pSrc ,
float32_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q31 complex magnitude
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_q31 (
q31_t * pSrc ,
q31_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q15 complex magnitude
* @ param [ in ] pSrc points to the complex input vector
* @ param [ out ] pDst points to the real output vector
* @ param [ in ] numSamples number of complex samples in the input vector
*/
void arm_cmplx_mag_q15 (
q15_t * pSrc ,
q15_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q15 complex dot product
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] numSamples number of complex samples in each vector
* @ param [ out ] realResult real part of the result returned here
* @ param [ out ] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
uint32_t numSamples ,
q31_t * realResult ,
q31_t * imagResult ) ;
/**
* @ brief Q31 complex dot product
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] numSamples number of complex samples in each vector
* @ param [ out ] realResult real part of the result returned here
* @ param [ out ] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
uint32_t numSamples ,
q63_t * realResult ,
q63_t * imagResult ) ;
/**
* @ brief Floating - point complex dot product
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ in ] numSamples number of complex samples in each vector
* @ param [ out ] realResult real part of the result returned here
* @ param [ out ] imagResult imaginary part of the result returned here
*/
void arm_cmplx_dot_prod_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
uint32_t numSamples ,
float32_t * realResult ,
float32_t * imagResult ) ;
/**
* @ brief Q15 complex - by - real multiplication
* @ param [ in ] pSrcCmplx points to the complex input vector
* @ param [ in ] pSrcReal points to the real input vector
* @ param [ out ] pCmplxDst points to the complex output vector
* @ param [ in ] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_q15 (
q15_t * pSrcCmplx ,
q15_t * pSrcReal ,
q15_t * pCmplxDst ,
uint32_t numSamples ) ;
/**
* @ brief Q31 complex - by - real multiplication
* @ param [ in ] pSrcCmplx points to the complex input vector
* @ param [ in ] pSrcReal points to the real input vector
* @ param [ out ] pCmplxDst points to the complex output vector
* @ param [ in ] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_q31 (
q31_t * pSrcCmplx ,
q31_t * pSrcReal ,
q31_t * pCmplxDst ,
uint32_t numSamples ) ;
/**
* @ brief Floating - point complex - by - real multiplication
* @ param [ in ] pSrcCmplx points to the complex input vector
* @ param [ in ] pSrcReal points to the real input vector
* @ param [ out ] pCmplxDst points to the complex output vector
* @ param [ in ] numSamples number of samples in each vector
*/
void arm_cmplx_mult_real_f32 (
float32_t * pSrcCmplx ,
float32_t * pSrcReal ,
float32_t * pCmplxDst ,
uint32_t numSamples ) ;
/**
* @ brief Minimum value of a Q7 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] result is output pointer
* @ param [ in ] index is the array index of the minimum value in the input buffer .
*/
void arm_min_q7 (
q7_t * pSrc ,
uint32_t blockSize ,
q7_t * result ,
uint32_t * index ) ;
/**
* @ brief Minimum value of a Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output pointer
* @ param [ in ] pIndex is the array index of the minimum value in the input buffer .
*/
void arm_min_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Minimum value of a Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output pointer
* @ param [ out ] pIndex is the array index of the minimum value in the input buffer .
*/
void arm_min_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Minimum value of a floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ in ] blockSize is the number of samples to process
* @ param [ out ] pResult is output pointer
* @ param [ out ] pIndex is the array index of the minimum value in the input buffer .
*/
void arm_min_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Maximum value of a Q7 vector .
* @ param [ in ] pSrc points to the input buffer
* @ param [ in ] blockSize length of the input vector
* @ param [ out ] pResult maximum value returned here
* @ param [ out ] pIndex index of maximum value returned here
*/
void arm_max_q7 (
q7_t * pSrc ,
uint32_t blockSize ,
q7_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Maximum value of a Q15 vector .
* @ param [ in ] pSrc points to the input buffer
* @ param [ in ] blockSize length of the input vector
* @ param [ out ] pResult maximum value returned here
* @ param [ out ] pIndex index of maximum value returned here
*/
void arm_max_q15 (
q15_t * pSrc ,
uint32_t blockSize ,
q15_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Maximum value of a Q31 vector .
* @ param [ in ] pSrc points to the input buffer
* @ param [ in ] blockSize length of the input vector
* @ param [ out ] pResult maximum value returned here
* @ param [ out ] pIndex index of maximum value returned here
*/
void arm_max_q31 (
q31_t * pSrc ,
uint32_t blockSize ,
q31_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Maximum value of a floating - point vector .
* @ param [ in ] pSrc points to the input buffer
* @ param [ in ] blockSize length of the input vector
* @ param [ out ] pResult maximum value returned here
* @ param [ out ] pIndex index of maximum value returned here
*/
void arm_max_f32 (
float32_t * pSrc ,
uint32_t blockSize ,
float32_t * pResult ,
uint32_t * pIndex ) ;
/**
* @ brief Q15 complex - by - complex multiplication
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_q15 (
q15_t * pSrcA ,
q15_t * pSrcB ,
q15_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Q31 complex - by - complex multiplication
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_q31 (
q31_t * pSrcA ,
q31_t * pSrcB ,
q31_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Floating - point complex - by - complex multiplication
* @ param [ in ] pSrcA points to the first input vector
* @ param [ in ] pSrcB points to the second input vector
* @ param [ out ] pDst points to the output vector
* @ param [ in ] numSamples number of complex samples in each vector
*/
void arm_cmplx_mult_cmplx_f32 (
float32_t * pSrcA ,
float32_t * pSrcB ,
float32_t * pDst ,
uint32_t numSamples ) ;
/**
* @ brief Converts the elements of the floating - point vector to Q31 vector .
* @ param [ in ] pSrc points to the floating - point input vector
* @ param [ out ] pDst points to the Q31 output vector
* @ param [ in ] blockSize length of the input vector
*/
void arm_float_to_q31 (
float32_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the floating - point vector to Q15 vector .
* @ param [ in ] pSrc points to the floating - point input vector
* @ param [ out ] pDst points to the Q15 output vector
* @ param [ in ] blockSize length of the input vector
*/
void arm_float_to_q15 (
float32_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the floating - point vector to Q7 vector .
* @ param [ in ] pSrc points to the floating - point input vector
* @ param [ out ] pDst points to the Q7 output vector
* @ param [ in ] blockSize length of the input vector
*/
void arm_float_to_q7 (
float32_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the Q31 vector to Q15 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q31_to_q15 (
q31_t * pSrc ,
q15_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the Q31 vector to Q7 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q31_to_q7 (
q31_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the Q15 vector to floating - point vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q15_to_float (
q15_t * pSrc ,
float32_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the Q15 vector to Q31 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q15_to_q31 (
q15_t * pSrc ,
q31_t * pDst ,
uint32_t blockSize ) ;
/**
* @ brief Converts the elements of the Q15 vector to Q7 vector .
* @ param [ in ] pSrc is input pointer
* @ param [ out ] pDst is output pointer
* @ param [ in ] blockSize is the number of samples to process
*/
void arm_q15_to_q7 (
q15_t * pSrc ,
q7_t * pDst ,
uint32_t blockSize ) ;
/**
* @ ingroup groupInterpolation
*/
/**
* @ defgroup BilinearInterpolate Bilinear Interpolation
*
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid .
* The underlying function < code > f ( x , y ) < / code > is sampled on a regular grid and the interpolation process
* determines values between the grid points .
* Bilinear interpolation is equivalent to two step linear interpolation , first in the x - dimension and then in the y - dimension .
* Bilinear interpolation is often used in image processing to rescale images .
* The CMSIS DSP library provides bilinear interpolation functions for Q7 , Q15 , Q31 , and floating - point data types .
*
* < b > Algorithm < / b >
* \ par
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table .
* For floating - point , the instance structure is defined as :
* < pre >
* typedef struct
* {
* uint16_t numRows ;
* uint16_t numCols ;
* float32_t * pData ;
* } arm_bilinear_interp_instance_f32 ;
* < / pre >
*
* \ par
* where < code > numRows < / code > specifies the number of rows in the table ;
* < code > numCols < / code > specifies the number of columns in the table ;
* and < code > pData < / code > points to an array of size < code > numRows * numCols < / code > values .
* The data table < code > pTable < / code > is organized in row order and the supplied data values fall on integer indexes .
* That is , table element ( x , y ) is located at < code > pTable [ x + y * numCols ] < / code > where x and y are integers .
*
* \ par
* Let < code > ( x , y ) < / code > specify the desired interpolation point . Then define :
* < pre >
* XF = floor ( x )
* YF = floor ( y )
* < / pre >
* \ par
* The interpolated output point is computed as :
* < pre >
* f ( x , y ) = f ( XF , YF ) * ( 1 - ( x - XF ) ) * ( 1 - ( y - YF ) )
* + f ( XF + 1 , YF ) * ( x - XF ) * ( 1 - ( y - YF ) )
* + f ( XF , YF + 1 ) * ( 1 - ( x - XF ) ) * ( y - YF )
* + f ( XF + 1 , YF + 1 ) * ( x - XF ) * ( y - YF )
* < / pre >
* Note that the coordinates ( x , y ) contain integer and fractional components .
* The integer components specify which portion of the table to use while the
* fractional components control the interpolation processor .
*
* \ par
* if ( x , y ) are outside of the table boundary , Bilinear interpolation returns zero output .
*/
/**
* @ addtogroup BilinearInterpolate
* @ {
*/
/**
*
* @ brief Floating - point bilinear interpolation .
* @ param [ in , out ] S points to an instance of the interpolation structure .
* @ param [ in ] X interpolation coordinate .
* @ param [ in ] Y interpolation coordinate .
* @ return out interpolated value .
*/
CMSIS_INLINE __STATIC_INLINE float32_t arm_bilinear_interp_f32 (
const arm_bilinear_interp_instance_f32 * S ,
float32_t X ,
float32_t Y )
{
float32_t out ;
float32_t f00 , f01 , f10 , f11 ;
float32_t * pData = S - > pData ;
int32_t xIndex , yIndex , index ;
float32_t xdiff , ydiff ;
float32_t b1 , b2 , b3 , b4 ;
xIndex = ( int32_t ) X ;
yIndex = ( int32_t ) Y ;
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if ( xIndex < 0 | | xIndex > ( S - > numRows - 1 ) | | yIndex < 0 | | yIndex > ( S - > numCols - 1 ) )
{
return ( 0 ) ;
}
/* Calculation of index for two nearest points in X-direction */
index = ( xIndex - 1 ) + ( yIndex - 1 ) * S - > numCols ;
/* Read two nearest points in X-direction */
f00 = pData [ index ] ;
f01 = pData [ index + 1 ] ;
/* Calculation of index for two nearest points in Y-direction */
index = ( xIndex - 1 ) + ( yIndex ) * S - > numCols ;
/* Read two nearest points in Y-direction */
f10 = pData [ index ] ;
f11 = pData [ index + 1 ] ;
/* Calculation of intermediate values */
b1 = f00 ;
b2 = f01 - f00 ;
b3 = f10 - f00 ;
b4 = f00 - f01 - f10 + f11 ;
/* Calculation of fractional part in X */
xdiff = X - xIndex ;
/* Calculation of fractional part in Y */
ydiff = Y - yIndex ;
/* Calculation of bi-linear interpolated output */
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff ;
/* return to application */
return ( out ) ;
}
/**
*
* @ brief Q31 bilinear interpolation .
* @ param [ in , out ] S points to an instance of the interpolation structure .
* @ param [ in ] X interpolation coordinate in 12.20 format .
* @ param [ in ] Y interpolation coordinate in 12.20 format .
* @ return out interpolated value .
*/
CMSIS_INLINE __STATIC_INLINE q31_t arm_bilinear_interp_q31 (
arm_bilinear_interp_instance_q31 * S ,
q31_t X ,
q31_t Y )
{
q31_t out ; /* Temporary output */
q31_t acc = 0 ; /* output */
q31_t xfract , yfract ; /* X, Y fractional parts */
q31_t x1 , x2 , y1 , y2 ; /* Nearest output values */
int32_t rI , cI ; /* Row and column indices */
q31_t * pYData = S - > pData ; /* pointer to output table values */
uint32_t nCols = S - > numCols ; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ( ( X & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ( ( Y & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if ( rI < 0 | | rI > ( S - > numRows - 1 ) | | cI < 0 | | cI > ( S - > numCols - 1 ) )
{
return ( 0 ) ;
}
/* 20 bits for the fractional part */
/* shift left xfract by 11 to keep 1.31 format */
xfract = ( X & 0x000FFFFF ) < < 11U ;
/* Read two nearest output values from the index */
x1 = pYData [ ( rI ) + ( int32_t ) nCols * ( cI ) ] ;
x2 = pYData [ ( rI ) + ( int32_t ) nCols * ( cI ) + 1 ] ;
/* 20 bits for the fractional part */
/* shift left yfract by 11 to keep 1.31 format */
yfract = ( Y & 0x000FFFFF ) < < 11U ;
/* Read two nearest output values from the index */
y1 = pYData [ ( rI ) + ( int32_t ) nCols * ( cI + 1 ) ] ;
y2 = pYData [ ( rI ) + ( int32_t ) nCols * ( cI + 1 ) + 1 ] ;
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
out = ( ( q31_t ) ( ( ( q63_t ) x1 * ( 0x7FFFFFFF - xfract ) ) > > 32 ) ) ;
acc = ( ( q31_t ) ( ( ( q63_t ) out * ( 0x7FFFFFFF - yfract ) ) > > 32 ) ) ;
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
out = ( ( q31_t ) ( ( q63_t ) x2 * ( 0x7FFFFFFF - yfract ) > > 32 ) ) ;
acc + = ( ( q31_t ) ( ( q63_t ) out * ( xfract ) > > 32 ) ) ;
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
out = ( ( q31_t ) ( ( q63_t ) y1 * ( 0x7FFFFFFF - xfract ) > > 32 ) ) ;
acc + = ( ( q31_t ) ( ( q63_t ) out * ( yfract ) > > 32 ) ) ;
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
out = ( ( q31_t ) ( ( q63_t ) y2 * ( xfract ) > > 32 ) ) ;
acc + = ( ( q31_t ) ( ( q63_t ) out * ( yfract ) > > 32 ) ) ;
/* Convert acc to 1.31(q31) format */
return ( ( q31_t ) ( acc < < 2 ) ) ;
}
/**
* @ brief Q15 bilinear interpolation .
* @ param [ in , out ] S points to an instance of the interpolation structure .
* @ param [ in ] X interpolation coordinate in 12.20 format .
* @ param [ in ] Y interpolation coordinate in 12.20 format .
* @ return out interpolated value .
*/
CMSIS_INLINE __STATIC_INLINE q15_t arm_bilinear_interp_q15 (
arm_bilinear_interp_instance_q15 * S ,
q31_t X ,
q31_t Y )
{
q63_t acc = 0 ; /* output */
q31_t out ; /* Temporary output */
q15_t x1 , x2 , y1 , y2 ; /* Nearest output values */
q31_t xfract , yfract ; /* X, Y fractional parts */
int32_t rI , cI ; /* Row and column indices */
q15_t * pYData = S - > pData ; /* pointer to output table values */
uint32_t nCols = S - > numCols ; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ( ( X & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ( ( Y & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if ( rI < 0 | | rI > ( S - > numRows - 1 ) | | cI < 0 | | cI > ( S - > numCols - 1 ) )
{
return ( 0 ) ;
}
/* 20 bits for the fractional part */
/* xfract should be in 12.20 format */
xfract = ( X & 0x000FFFFF ) ;
/* Read two nearest output values from the index */
x1 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI ) ] ;
x2 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI ) + 1 ] ;
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
yfract = ( Y & 0x000FFFFF ) ;
/* Read two nearest output values from the index */
y1 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI + 1 ) ] ;
y2 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI + 1 ) + 1 ] ;
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
out = ( q31_t ) ( ( ( q63_t ) x1 * ( 0xFFFFF - xfract ) ) > > 4U ) ;
acc = ( ( q63_t ) out * ( 0xFFFFF - yfract ) ) ;
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
out = ( q31_t ) ( ( ( q63_t ) x2 * ( 0xFFFFF - yfract ) ) > > 4U ) ;
acc + = ( ( q63_t ) out * ( xfract ) ) ;
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
out = ( q31_t ) ( ( ( q63_t ) y1 * ( 0xFFFFF - xfract ) ) > > 4U ) ;
acc + = ( ( q63_t ) out * ( yfract ) ) ;
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
out = ( q31_t ) ( ( ( q63_t ) y2 * ( xfract ) ) > > 4U ) ;
acc + = ( ( q63_t ) out * ( yfract ) ) ;
/* acc is in 13.51 format and down shift acc by 36 times */
/* Convert out to 1.15 format */
return ( ( q15_t ) ( acc > > 36 ) ) ;
}
/**
* @ brief Q7 bilinear interpolation .
* @ param [ in , out ] S points to an instance of the interpolation structure .
* @ param [ in ] X interpolation coordinate in 12.20 format .
* @ param [ in ] Y interpolation coordinate in 12.20 format .
* @ return out interpolated value .
*/
CMSIS_INLINE __STATIC_INLINE q7_t arm_bilinear_interp_q7 (
arm_bilinear_interp_instance_q7 * S ,
q31_t X ,
q31_t Y )
{
q63_t acc = 0 ; /* output */
q31_t out ; /* Temporary output */
q31_t xfract , yfract ; /* X, Y fractional parts */
q7_t x1 , x2 , y1 , y2 ; /* Nearest output values */
int32_t rI , cI ; /* Row and column indices */
q7_t * pYData = S - > pData ; /* pointer to output table values */
uint32_t nCols = S - > numCols ; /* num of rows */
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
rI = ( ( X & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Input is in 12.20 format */
/* 12 bits for the table index */
/* Index value calculation */
cI = ( ( Y & ( q31_t ) 0xFFF00000 ) > > 20 ) ;
/* Care taken for table outside boundary */
/* Returns zero output when values are outside table boundary */
if ( rI < 0 | | rI > ( S - > numRows - 1 ) | | cI < 0 | | cI > ( S - > numCols - 1 ) )
{
return ( 0 ) ;
}
/* 20 bits for the fractional part */
/* xfract should be in 12.20 format */
xfract = ( X & ( q31_t ) 0x000FFFFF ) ;
/* Read two nearest output values from the index */
x1 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI ) ] ;
x2 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI ) + 1 ] ;
/* 20 bits for the fractional part */
/* yfract should be in 12.20 format */
yfract = ( Y & ( q31_t ) 0x000FFFFF ) ;
/* Read two nearest output values from the index */
y1 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI + 1 ) ] ;
y2 = pYData [ ( ( uint32_t ) rI ) + nCols * ( ( uint32_t ) cI + 1 ) + 1 ] ;
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
out = ( ( x1 * ( 0xFFFFF - xfract ) ) ) ;
acc = ( ( ( q63_t ) out * ( 0xFFFFF - yfract ) ) ) ;
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
out = ( ( x2 * ( 0xFFFFF - yfract ) ) ) ;
acc + = ( ( ( q63_t ) out * ( xfract ) ) ) ;
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
out = ( ( y1 * ( 0xFFFFF - xfract ) ) ) ;
acc + = ( ( ( q63_t ) out * ( yfract ) ) ) ;
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
out = ( ( y2 * ( yfract ) ) ) ;
acc + = ( ( ( q63_t ) out * ( xfract ) ) ) ;
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
return ( ( q7_t ) ( acc > > 40 ) ) ;
}
/**
* @ } end of BilinearInterpolate group
*/
/* SMMLAR */
# define multAcc_32x32_keep32_R(a, x, y) \
a = ( q31_t ) ( ( ( ( ( q63_t ) a ) < < 32 ) + ( ( q63_t ) x * y ) + 0x80000000LL ) > > 32 )
/* SMMLSR */
# define multSub_32x32_keep32_R(a, x, y) \
a = ( q31_t ) ( ( ( ( ( q63_t ) a ) < < 32 ) - ( ( q63_t ) x * y ) + 0x80000000LL ) > > 32 )
/* SMMULR */
# define mult_32x32_keep32_R(a, x, y) \
a = ( q31_t ) ( ( ( q63_t ) x * y + 0x80000000LL ) > > 32 )
/* SMMLA */
# define multAcc_32x32_keep32(a, x, y) \
a + = ( q31_t ) ( ( ( q63_t ) x * y ) > > 32 )
/* SMMLS */
# define multSub_32x32_keep32(a, x, y) \
a - = ( q31_t ) ( ( ( q63_t ) x * y ) > > 32 )
/* SMMUL */
# define mult_32x32_keep32(a, x, y) \
a = ( q31_t ) ( ( ( q63_t ) x * y ) > > 32 )
# if defined ( __CC_ARM )
/* Enter low optimization region - place directly above function definition */
# if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
# define LOW_OPTIMIZATION_ENTER \
_Pragma ( " push " ) \
_Pragma ( " O1 " )
# else
# define LOW_OPTIMIZATION_ENTER
# endif
/* Exit low optimization region - place directly after end of function definition */
# if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
# define LOW_OPTIMIZATION_EXIT \
_Pragma ( " pop " )
# else
# define LOW_OPTIMIZATION_EXIT
# endif
/* Enter low optimization region - place directly above function definition */
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
/* Exit low optimization region - place directly after end of function definition */
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
# define LOW_OPTIMIZATION_ENTER
# define LOW_OPTIMIZATION_EXIT
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined ( __GNUC__ )
# define LOW_OPTIMIZATION_ENTER \
__attribute__ ( ( optimize ( " -O1 " ) ) )
# define LOW_OPTIMIZATION_EXIT
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined ( __ICCARM__ )
/* Enter low optimization region - place directly above function definition */
# if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
# define LOW_OPTIMIZATION_ENTER \
_Pragma ( " optimize=low " )
# else
# define LOW_OPTIMIZATION_ENTER
# endif
/* Exit low optimization region - place directly after end of function definition */
# define LOW_OPTIMIZATION_EXIT
/* Enter low optimization region - place directly above function definition */
# if defined ( ARM_MATH_CM4 ) || defined ( ARM_MATH_CM7 )
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
_Pragma ( " optimize=low " )
# else
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# endif
/* Exit low optimization region - place directly after end of function definition */
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined ( __TI_ARM__ )
# define LOW_OPTIMIZATION_ENTER
# define LOW_OPTIMIZATION_EXIT
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined ( __CSMC__ )
# define LOW_OPTIMIZATION_ENTER
# define LOW_OPTIMIZATION_EXIT
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# elif defined ( __TASKING__ )
# define LOW_OPTIMIZATION_ENTER
# define LOW_OPTIMIZATION_EXIT
# define IAR_ONLY_LOW_OPTIMIZATION_ENTER
# define IAR_ONLY_LOW_OPTIMIZATION_EXIT
# endif
# ifdef __cplusplus
}
# endif
/* Compiler specific diagnostic adjustment */
# if defined ( __CC_ARM )
# elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 )
# elif defined ( __GNUC__ )
# pragma GCC diagnostic pop
# elif defined ( __ICCARM__ )
# elif defined ( __TI_ARM__ )
# elif defined ( __CSMC__ )
# elif defined ( __TASKING__ )
# else
# error Unknown compiler
# endif
# endif /* _ARM_MATH_H */
/**
*
* End of file .
*/