rt-thread/bsp/hc32/libraries/hc32_drivers/drv_sdio.c

1068 lines
32 KiB
C
Raw Normal View History

2024-01-09 21:56:37 +08:00
/*
* Copyright (C) 2022-2024, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-14 CDT first version
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include <rtthread.h>
#include <rtdevice.h>
#if defined(RT_USING_SDIO)
#if defined(BSP_USING_SDIO1) || defined(BSP_USING_SDIO2)
#include "drv_sdio.h"
#include "board_config.h"
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
/* rthw sdio */
struct rthw_sdio
{
struct rt_mmcsd_host *host;
struct hc32_sdio_config *config;
struct hc32_sdio_des des;
struct rt_event event;
struct rt_mutex mutex;
struct sdio_pkg *pkg;
uint8_t *cache_buf;
};
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
//#define DRV_DEBUG
#define LOG_TAG "drv.sdio"
#include <drv_log.h>
#ifndef SDIO_BUFF_SIZE
#define SDIO_BUFF_SIZE (4096)
#endif
#ifndef SDIO_ALIGN_LEN
#define SDIO_ALIGN_LEN (4)
#endif
#ifndef SDIO_MAX_FREQ
#define SDIO_MAX_FREQ (50*1000*1000)
#endif
#define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&(_sdio)->mutex, RT_WAITING_FOREVER)
#define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&(_sdio)->mutex);
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
extern rt_err_t rt_hw_board_sdio_init(CM_SDIOC_TypeDef *SDIOCx);
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
#ifdef BSP_USING_SDIO1
static void _sdio1_handler(void);
#endif
#ifdef BSP_USING_SDIO2
static void _sdio2_handler(void);
#endif
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
enum
{
#ifdef BSP_USING_SDIO1
SDIO1_INDEX,
#endif
#ifdef BSP_USING_SDIO2
SDIO2_INDEX,
#endif
};
static struct hc32_sdio_config _sdio_config[] =
{
#ifdef BSP_USING_SDIO1
SDIO1_BUS_CONFIG,
#endif /* BSP_USING_SDIO1 */
#ifdef BSP_USING_SDIO2
SDIO2_BUS_CONFIG,
#endif /* BSP_USING_SDIO2 */
};
static const func_ptr_t _sdio_irq_handler[] =
{
#ifdef BSP_USING_SDIO1
_sdio1_handler,
#endif /* BSP_USING_SDIO1 */
#ifdef BSP_USING_SDIO2
_sdio2_handler,
#endif /* BSP_USING_SDIO2 */
};
#ifdef BSP_USING_SDIO1
rt_align(SDIO_ALIGN_LEN)
static rt_uint8_t _sdio1_cache_buf[SDIO_BUFF_SIZE];
#endif
#ifdef BSP_USING_SDIO2
rt_align(SDIO_ALIGN_LEN)
static rt_uint8_t _sdio2_cache_buf[SDIO_BUFF_SIZE];
#endif
static rt_uint8_t *const _sdio_cache_buf[] =
{
#ifdef BSP_USING_SDIO1
_sdio1_cache_buf,
#endif /* BSP_USING_SDIO1 */
#ifdef BSP_USING_SDIO2
_sdio2_cache_buf,
#endif /* BSP_USING_SDIO2 */
};
static struct rt_mmcsd_host *_sdio_host[sizeof(_sdio_config) / sizeof(_sdio_config[0])] = {0};
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
/**
* @brief Get the response type of hc32 sdioc driver.
* @param [in] rt_resp_type SDIO command response type defined in mmcs_core.h
* @retval The response type of hc32 sdioc driver
*/
static rt_uint32_t _sdio_get_cmd_resptype(rt_uint32_t rt_resptype)
{
rt_uint32_t sdioc_resptype;
switch (rt_resptype)
{
case RESP_NONE:
sdioc_resptype = SDIOC_RESP_TYPE_NO;
break;
case RESP_R1:
sdioc_resptype = SDIOC_RESP_TYPE_R1_R5_R6_R7;
break;
case RESP_R2:
sdioc_resptype = SDIOC_RESP_TYPE_R2;
break;
case RESP_R3:
case RESP_R4:
sdioc_resptype = SDIOC_RESP_TYPE_R3_R4;
break;
case RESP_R5:
case RESP_R6:
case RESP_R7:
sdioc_resptype = SDIOC_RESP_TYPE_R1_R5_R6_R7;
break;
case RESP_R1B:
sdioc_resptype = SDIOC_RESP_TYPE_R1B_R5B;
break;
default:
sdioc_resptype = SDIOC_RESP_TYPE_NO;
LOG_E("unknown response type: %d", rt_resptype);
break;
}
return sdioc_resptype;
}
/**
* @brief This function wait sdio completed.
* @param [in] sdio Pointer to a @ref rthw_sdio structure
* @retval None
*/
static void _sdio_wait_completed(struct rthw_sdio *sdio)
{
rt_uint32_t status;
rt_uint32_t response[4];
__IO rt_uint32_t to_count;
struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
CM_SDIOC_TypeDef *instance = sdio->config->instance;
if (rt_event_recv(&sdio->event, 0xFFFFFFFF, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
rt_tick_from_millisecond(5000), &status) != RT_EOK)
{
LOG_E("[%s timeout] sta=0x%08X, cmd %d, arg:0x%08X", __func__, status, cmd->cmd_code, cmd->arg);
cmd->err = -RT_ETIMEOUT;
return;
}
if (sdio->pkg == RT_NULL)
{
return;
}
if (resp_type(cmd) == RESP_NONE)
{
;
}
else if (resp_type(cmd) == RESP_R2)
{
LOG_D("R2");
(void)SDIOC_GetResponse(instance, SDIOC_RESP_REG_BIT0_31, &response[0]);
(void)SDIOC_GetResponse(instance, SDIOC_RESP_REG_BIT32_63, &response[1]);
(void)SDIOC_GetResponse(instance, SDIOC_RESP_REG_BIT64_95, &response[2]);
(void)SDIOC_GetResponse(instance, SDIOC_RESP_REG_BIT96_127, &response[3]);
cmd->resp[0] = (response[3] << 8) + ((response[2] >> 24) & 0xFF);
cmd->resp[1] = (response[2] << 8) + ((response[1] >> 24) & 0xFF);
cmd->resp[2] = (response[1] << 8) + ((response[0] >> 24) & 0xFF);
cmd->resp[3] = (response[0] << 8) + 0x00;
}
else
{
(void)SDIOC_GetResponse(instance, SDIOC_RESP_REG_BIT0_31, &response[0]);
cmd->resp[0] = response[0];
}
if (status & SDIOC_INT_FLAG_EI)
{
if (status & (SDIOC_INT_FLAG_CTOE | SDIOC_INT_FLAG_CCE | SDIOC_INT_FLAG_CEBE | SDIOC_INT_FLAG_CIE))
{
SDIOC_SWReset(instance, SDIOC_SW_RST_CMD_LINE);
cmd->err = -RT_ERROR;
LOG_D("[%s cmd err] sta=0x%08X, %s%s%s%s cmd %d arg:0x%08X",
__func__,
status,
status & SDIOC_INT_FLAG_CCE ? "Command CRC Error " : "",
status & SDIOC_INT_FLAG_CEBE ? "Command End Bit Error" : "",
status & SDIOC_INT_FLAG_CTOE ? "Command Timeout Error" : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg);
}
if (status & (SDIOC_INT_FLAG_DTOE | SDIOC_INT_FLAG_DCE | SDIOC_INT_FLAG_DEBE))
{
SDIOC_SWReset(instance, SDIOC_SW_RST_DATA_LINE);
if (data != NULL)
{
data->err = -RT_ERROR;
LOG_D("[%s dat err] sta=0x%08X, %s%s%s%s cmd %d arg:0x%08X rw:%c len:%d blksize:%d",
__func__,
status,
status & SDIOC_INT_FLAG_DCE ? "Data CRC Error " : "",
status & SDIOC_INT_FLAG_DEBE ? "Data End Bit Error" : "",
status & SDIOC_INT_FLAG_DTOE ? "Data Timeout Error" : "",
status == 0 ? "NULL" : "",
cmd->cmd_code,
cmd->arg,
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0);
}
}
}
else
{
cmd->err = RT_EOK;
LOG_D("[%s xfer ok] sta=0x%08X, cmd %d, arg:0x%08X, resp[%08X %08X %08X %08X]",
__func__,
status,
cmd->cmd_code,
cmd->arg,
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
}
/**
* @brief Transfer data by dma.
* @param [in] sdio Pointer to a @ref rthw_sdio structure
* @param [in] pkg Pointer to a @ref sdio_pkg structure
* @retval None
*/
static void _sdio_transfer_by_dma(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
struct rt_mmcsd_data *data = pkg->cmd->data;
if ((NULL == sdio) || (NULL == pkg) || (NULL == pkg->buf) || (NULL == pkg->cmd) || (NULL == pkg->cmd->data))
{
LOG_E("%s function arguments error: %s %s %s %s %s",
__func__,
(sdio == RT_NULL ? "sdio is NULL" : ""),
(pkg == RT_NULL ? "pkg is NULL" : ""),
(sdio ? (pkg->buf == RT_NULL ? "pkg->buf is NULL" : "") : ""),
(sdio ? (pkg->cmd == RT_NULL ? "pkg->cmd is NULL" : "") : ""),
(sdio ? (pkg->cmd->data == RT_NULL ? "pkg->cmd->data is NULL" : "") : "")
);
return;
}
if (data->flags & DATA_DIR_WRITE)
{
sdio->des.txconfig(sdio->config->dma_tx.Instance, sdio->config->dma_tx.channel, pkg);
DMA_ChCmd(sdio->config->dma_tx.Instance, sdio->config->dma_tx.channel, ENABLE);
}
else if (data->flags & DATA_DIR_READ)
{
sdio->des.rxconfig(sdio->config->dma_rx.Instance, sdio->config->dma_rx.channel, pkg);
DMA_ChCmd(sdio->config->dma_rx.Instance, sdio->config->dma_rx.channel, ENABLE);
}
}
/**
* @brief Send command.
* @param [in] sdio Pointer to a @ref rthw_sdio structure
* @param [in] pkg Pointer to a @ref sdio_pkg structure
* @retval None
*/
static void _sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg)
{
rt_int32_t ret;
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
CM_SDIOC_TypeDef *instance = sdio->config->instance;
stc_sdioc_cmd_config_t stcCmdConfig;
stc_sdioc_data_config_t stcDataConfig;
/* save pkg */
sdio->pkg = pkg;
LOG_D("CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->blks * data->blksize : 0,
data ? data->blksize : 0);
/* config command */
stcCmdConfig.u16CmdIndex = cmd->cmd_code;
/* config command argument */
stcCmdConfig.u32Argument = cmd->arg;
/* config command type */
stcCmdConfig.u16CmdType = SDIOC_CMD_TYPE_NORMAL;
/* config response type */
stcCmdConfig.u16ResponseType = _sdio_get_cmd_resptype(resp_type(cmd));
if (data != RT_NULL)
{
/* config data */
stcDataConfig.u16BlockSize = data->blksize;
stcDataConfig.u16BlockCount = data->blks;
stcDataConfig.u16TransDir = (data->flags & DATA_DIR_READ) ? SDIOC_TRANS_DIR_TO_HOST : SDIOC_TRANS_DIR_TO_CARD;
stcDataConfig.u16AutoCmd12 = SDIOC_AUTO_SEND_CMD12_DISABLE;
stcDataConfig.u16DataTimeout = SDIOC_DATA_TIMEOUT_CLK_2E27;
stcDataConfig.u16TransMode = (data->blks > 1U) ? SDIOC_TRANS_MD_MULTI : SDIOC_TRANS_MD_SINGLE;
ret = SDIOC_ConfigData(instance, &stcDataConfig);
if (ret != 0)
{
LOG_E("configure data error : %d", ret);
}
/* transfer config */
_sdio_transfer_by_dma(sdio, pkg);
stcCmdConfig.u16DataLine = SDIOC_DATA_LINE_ENABLE;;
}
else
{
stcCmdConfig.u16DataLine = SDIOC_DATA_LINE_DISABLE;
}
/* send cmd */
ret = SDIOC_SendCommand(instance, &stcCmdConfig);
if (ret != 0)
{
LOG_E("send command error : %d", ret);
}
/* wait completed */
_sdio_wait_completed(sdio);
/* clear pkg */
sdio->pkg = RT_NULL;
}
/**
* @brief Send sdio request.
* @param [in] host Pointer to a @ref rt_mmcsd_host structure
* @param [in] req Pointer to a @ref rt_mmcsd_req structure
* @retval None
*/
static void _sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
rt_uint32_t mask;
struct sdio_pkg pkg;
struct rt_mmcsd_data *data;
struct rthw_sdio *sdio = host->private_data;
if ((NULL == host) || (NULL == req) || (NULL == sdio) || (NULL == sdio->config))
{
LOG_E("%s function arguments error: %s %s %s %s",
__func__,
(host == RT_NULL ? "host is NULL" : ""),
(req == RT_NULL ? "req is NULL" : ""),
(sdio == RT_NULL ? "sdio is NULL" : ""),
(sdio ? (sdio->config == RT_NULL ? "sdio->config is NULL" : "") : "")
);
return;
}
RTHW_SDIO_LOCK(sdio);
if (req->cmd != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
data = req->cmd->data;
pkg.cmd = req->cmd;
if (SD_SEND_IF_COND == pkg.cmd->cmd_code)
{
mask = (CM_SDIOC1 == sdio->config->instance) ? PERIC_SDIOC_SYCTLREG_SELMMC1 : PERIC_SDIOC_SYCTLREG_SELMMC2;
if (data == RT_NULL)
{
CM_PERIC->SDIOC_SYCTLREG &= ~mask;
}
else
{
CM_PERIC->SDIOC_SYCTLREG |= mask;
}
}
if (data != RT_NULL)
{
rt_uint32_t size = data->blks * data->blksize;
RT_ASSERT(size <= SDIO_BUFF_SIZE);
/* buffer unaligned */
if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))
{
if (data->flags & DATA_DIR_WRITE)
{
rt_memcpy(sdio->cache_buf, data->buf, size);
}
pkg.buf = sdio->cache_buf;
}
else
{
pkg.buf = data->buf;
}
}
_sdio_send_command(sdio, &pkg);
if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)))
{
rt_memcpy(data->buf, sdio->cache_buf, data->blksize * data->blks);
}
}
if (req->stop != RT_NULL)
{
rt_memset(&pkg, 0, sizeof(pkg));
pkg.cmd = req->stop;
_sdio_send_command(sdio, &pkg);
}
RTHW_SDIO_UNLOCK(sdio);
mmcsd_req_complete(sdio->host);
}
/**
* @brief Config sdio.
* @param [in] host Pointer to a @ref rt_mmcsd_host structure
* @param [in] io_cfg Pointer to a @ref rt_mmcsd_io_cfg structure
* @retval None
*/
static void _sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_int32_t ret;
rt_uint32_t clk;
rt_uint16_t clk_div;
rt_uint32_t clk_src;
struct rthw_sdio *sdio = host->private_data;
CM_SDIOC_TypeDef *instance;
if ((NULL == host) || (NULL == io_cfg) || (NULL == sdio) || (NULL == sdio->config))
{
LOG_E("%s function arguments error: %s %s %s %s",
__func__,
(host == RT_NULL ? "host is NULL" : ""),
(io_cfg == RT_NULL ? "io_cfg is NULL" : ""),
(sdio == RT_NULL ? "sdio_des is NULL" : ""),
(sdio ? (sdio->config == RT_NULL ? "sdio->config is NULL" : "") : "")
);
return;
}
instance = sdio->config->instance;
clk_src = sdio->des.clk_get(instance);
if (clk_src < 400 * 1000)
{
LOG_E("clock rate is too low! rate:%d", clk_src);
return;
}
clk = io_cfg->clock;
if (clk > host->freq_max)
{
clk = host->freq_max;
}
if (clk > clk_src)
{
LOG_W("setting rate is greater than clock source rate.");
clk = clk_src;
}
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : "");
RTHW_SDIO_LOCK(sdio);
switch (io_cfg->bus_width)
{
case MMCSD_BUS_WIDTH_1:
SDIOC_SetBusWidth(instance, SDIOC_BUS_WIDTH_1BIT);
break;
case MMCSD_BUS_WIDTH_4:
SDIOC_SetBusWidth(instance, SDIOC_BUS_WIDTH_4BIT);
break;
case MMCSD_BUS_WIDTH_8:
SDIOC_SetBusWidth(instance, SDIOC_BUS_WIDTH_8BIT);
break;
default:
LOG_E("unknown bus width: %d", io_cfg->bus_width);
break;
}
switch (io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
SDIOC_PowerCmd(instance, DISABLE);
break;
case MMCSD_POWER_UP:
case MMCSD_POWER_ON:
SDIOC_PowerCmd(instance, ENABLE);
break;
default:
LOG_W("unknown power_mode %d", io_cfg->power_mode);
break;
}
instance->CLKCON = 0;
if (clk > 0)
{
ret = SDIOC_GetOptimumClockDiv(clk, &clk_div);
if (ret != LL_OK)
{
LOG_E("clock division error");
}
else
{
SDIOC_SetClockDiv(instance, clk_div);
if ((clk << 1) <= host->freq_max)
{
SDIOC_SetSpeedMode(instance, SDIOC_SPEED_MD_NORMAL);
}
else
{
SDIOC_SetSpeedMode(instance, SDIOC_SPEED_MD_HIGH);
}
instance->CLKCON = (clk_div | SDIOC_CLKCON_ICE | SDIOC_CLKCON_CE);
}
}
RTHW_SDIO_UNLOCK(sdio);
}
/**
* @brief Update the sdio interrupt.
* @param [in] host Pointer to a @ref rt_mmcsd_host structure
* @param [in] enable Enable interrupt when value is non-zero
* @retval None
*/
static void _sdio_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
CM_SDIOC_TypeDef *instance = sdio->config->instance;
if (enable)
{
LOG_D("enable sdio interrupt");
SDIOC_IntStatusCmd(instance, SDIOC_INT_CINTSEN, ENABLE);
SDIOC_IntCmd(instance, SDIOC_INT_CINTSEN, ENABLE);
}
else
{
LOG_D("disable sdio interrupt");
SDIOC_IntStatusCmd(instance, SDIOC_INT_CINTSEN, DISABLE);
SDIOC_IntCmd(instance, SDIOC_INT_CINTSEN, DISABLE);
}
}
/**
* @brief update all of the using interrupt.
* @param [in] host Pointer to a @ref rt_mmcsd_host structure
* @param [in] enable Enable interrupt when value is non-zero
* @retval None
*/
static void _sdio_update_irq(struct rt_mmcsd_host *host, rt_int32_t enable)
{
struct rthw_sdio *sdio = host->private_data;
CM_SDIOC_TypeDef *instance = sdio->config->instance;
const rt_uint32_t int_type = (SDIOC_INT_CCSEN | SDIOC_INT_TCSEN | SDIOC_ERR_INT_ALL);
if (enable)
{
LOG_D("enable all of the using interrupt");
SDIOC_IntStatusCmd(instance, (int_type | SDIOC_INT_BRRSEN | SDIOC_INT_BWRSEN), ENABLE);
SDIOC_IntCmd(instance, int_type, ENABLE);
}
else
{
LOG_D("disable all of the using interrupt");
SDIOC_IntStatusCmd(instance, (int_type | SDIOC_INT_BRRSEN | SDIOC_INT_BWRSEN), DISABLE);
SDIOC_IntCmd(instance, int_type, DISABLE);
}
}
/**
* @brief Get card status.
* @param [in] host Pointer to a @ref rt_mmcsd_host structure
* @retval rt_int32_t:
* - 0: No card
* - 1: Card inserted
*/
static rt_int32_t _sdio_get_card_status(struct rt_mmcsd_host *host)
{
struct rthw_sdio *sdio = host->private_data;
LOG_D("try to detect device");
return (rt_int32_t)SDIOC_GetHostStatus(sdio->config->instance, SDIOC_HOST_FLAG_CIN);
}
static const struct rt_mmcsd_host_ops _mmcsd_host_ops =
{
_sdio_request,
_sdio_iocfg,
_sdio_get_card_status,
_sdio_enable_sdio_irq,
};
/**
* @brief Get SDIO clock source frequency.
* @param [in] SDIOCx Pointer to SDIOC unit instance
* @retval SDIO clock source frequency
*/
static rt_uint32_t _sdio_clock_get(CM_SDIOC_TypeDef *SDIOCx)
{
rt_uint32_t clk;
(void)SDIOCx;
#if defined (HC32F4A0)
clk = CLK_GetBusClockFreq(CLK_BUS_PCLK1);
#elif defined (HC32F460)
clk = CLK_GetBusClockFreq(CLK_BUS_EXCLK);
#endif
return clk;
}
/**
* @brief Initialize DMA for SDIO.
* @param [in] config Pointer to hc32_sdio_config structure
* @retval None
*/
static void _sdio_dma_init(struct hc32_sdio_config *config)
{
stc_dma_init_t stcDmaInit;
/* Enable DMA and AOS clock */
FCG_Fcg0PeriphClockCmd(FCG0_PERIPH_AOS, ENABLE);
FCG_Fcg0PeriphClockCmd(config->dma_rx.clock, ENABLE);
FCG_Fcg0PeriphClockCmd(config->dma_tx.clock, ENABLE);
/* Initialize DMA config structure */
(void)DMA_StructInit(&stcDmaInit);
stcDmaInit.u32BlockSize = 512UL;
stcDmaInit.u32DataWidth = DMA_DATAWIDTH_32BIT;
/* Configure DMA_RX Transfer */
stcDmaInit.u32SrcAddr = (uint32_t)(&config->instance->BUF0);
stcDmaInit.u32DestAddr = 0UL;
stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_FIX;
stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_INC;
if (LL_OK != DMA_Init(config->dma_rx.Instance, config->dma_rx.channel, &stcDmaInit))
{
LOG_E("DMA_RX initialization fail");
}
AOS_SetTriggerEventSrc(config->dma_rx.trigger_select, config->dma_rx.trigger_event);
/* Configure DMA_TX Transfer */
stcDmaInit.u32SrcAddr = 0UL;
stcDmaInit.u32DestAddr = (uint32_t)(&config->instance->BUF0);
stcDmaInit.u32SrcAddrInc = DMA_SRC_ADDR_INC;
stcDmaInit.u32DestAddrInc = DMA_DEST_ADDR_FIX;
if (LL_OK != DMA_Init(config->dma_tx.Instance, config->dma_tx.channel, &stcDmaInit))
{
LOG_E("DMA_TX initialization fail");
}
AOS_SetTriggerEventSrc(config->dma_tx.trigger_select, config->dma_tx.trigger_event);
/* Enable DMA */
DMA_Cmd(config->dma_rx.Instance, ENABLE);
DMA_Cmd(config->dma_tx.Instance, ENABLE);
}
/**
* @brief Configure DMA for SDIO receiving.
* @param [in] instance Pointer to DMA instance register base
* @param [in] ch DMA channel
* @param [in] pkg Pointer to sdio_pkg structure
* @retval RT_EOK
*/
static rt_err_t _sdio_dma_rxconfig(CM_DMA_TypeDef *instance, rt_uint8_t ch, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
DMA_ClearTransCompleteStatus(instance, (DMA_INTSTAT1_BTC_0 | DMA_INTSTAT1_TC_0) << ch);
DMA_SetDestAddr(instance, ch, (rt_uint32_t)pkg->buf);
DMA_SetBlockSize(instance, ch, (rt_uint16_t)(data->blksize >> 2));
DMA_SetTransCount(instance, ch, (rt_uint16_t)data->blks);
return RT_EOK;
}
/**
* @brief Configure DMA for SDIO transmitting.
* @param [in] instance Pointer to DMA instance register base
* @param [in] ch DMA channel
* @param [in] pkg Pointer to sdio_pkg structure
* @retval RT_EOK
*/
static rt_err_t _sdio_dma_txconfig(CM_DMA_TypeDef *instance, rt_uint8_t ch, struct sdio_pkg *pkg)
{
struct rt_mmcsd_cmd *cmd = pkg->cmd;
struct rt_mmcsd_data *data = cmd->data;
DMA_ClearTransCompleteStatus(instance, (DMA_INTSTAT1_BTC_0 | DMA_INTSTAT1_TC_0) << ch);
DMA_SetSrcAddr(instance, ch, (rt_uint32_t)pkg->buf);
DMA_SetBlockSize(instance, ch, (rt_uint16_t)(data->blksize >> 2));
DMA_SetTransCount(instance, ch, (rt_uint16_t)data->blks);
return RT_EOK;
}
/**
* @brief This function interrupt process function.
* @param [in] host Pointer to rt_mmcsd_host structure
* @retval None
*/
static void _sdio_irq_process(struct rt_mmcsd_host *host)
{
int complete = 0;
struct rthw_sdio *sdio = host->private_data;
CM_SDIOC_TypeDef *instance = sdio->config->instance;
rt_uint32_t norint_status = (rt_uint32_t)instance->NORINTST;
rt_uint32_t errint_status = (rt_uint32_t)instance->ERRINTST;
rt_uint32_t status = (errint_status << 16) | norint_status;
LOG_D("[%s] sta=0x%08X, cmd %d, arg=0x%08X", __func__, status, sdio->pkg->cmd->cmd_code, sdio->pkg->cmd->arg);
if (norint_status & (SDIOC_INT_FLAG_CRM | SDIOC_INT_FLAG_CIST))
{
SDIOC_ClearIntStatus(instance, SDIOC_INT_FLAG_CLR_ALL);
/* ready to change */
mmcsd_change(host);
LOG_D("[%s] card insert or remove", __func__);
complete = 1;
}
else
{
if (norint_status & SDIOC_INT_FLAG_EI)
{
SDIOC_ClearIntStatus(instance, SDIOC_INT_FLAG_CLR_ALL);
complete = 1;
LOG_D("[%s] error", __func__);
}
else
{
if (norint_status & SDIOC_INT_FLAG_CC)
{
SDIOC_ClearIntStatus(instance, SDIOC_INT_FLAG_CC);
if (sdio->pkg != RT_NULL)
{
if ((!sdio->pkg->cmd->data) && (resp_type(sdio->pkg->cmd) != RESP_R1B))
{
complete = 1;
}
}
}
if (norint_status & SDIOC_INT_FLAG_TC)
{
SDIOC_ClearIntStatus(instance, SDIOC_INT_FLAG_TC);
complete = 1;
}
}
}
if (norint_status & SDIOC_INT_FLAG_CINT)
{
SDIOC_ClearIntStatus(instance, SDIOC_INT_FLAG_CINT);
sdio_irq_wakeup(host);
}
if (complete)
{
rt_event_send(&sdio->event, status);
LOG_D("[%s] complete", __func__);
}
}
#ifdef BSP_USING_SDIO1
/**
* @brief SDIOC1 irq handler.
* @param None
* @retval None
*/
static void _sdio1_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* process all SDIO interrupt sources */
_sdio_irq_process(_sdio_host[0]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_SDIO2
/**
* @brief SDIOC2 irq handler.
* @param None
* @retval None
*/
static void _sdio2_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* process all SDIO interrupt sources */
_sdio_irq_process(_sdio_host[1]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
/**
* @brief verify bus clock frequency.
* @param [in] config Pointer to hc32_sdio_config structure
* @retval RT_EOK pass to verify
* -RT_ERROR fail to verify
*/
static rt_err_t _sdio_verify_bus_clock_frequency(struct hc32_sdio_config *config)
{
rt_err_t ret = RT_EOK;
#if defined (HC32F4A0)
rt_uint32_t pclk1;
rt_uint32_t exlck;
(void)config;
/* ensure bus frequency condition: EXCLK >= PCLK1 */
pclk1 = CLK_GetBusClockFreq(CLK_BUS_PCLK1);
exlck = CLK_GetBusClockFreq(CLK_BUS_EXCLK);
if (exlck < pclk1)
{
LOG_E("bus frequency error: EXCLK < PCLK1. Please meet the bus frequency condition: EXCLK >= PCLK1");
ret = -RT_ERROR;
}
#endif
return ret;
}
/**
* @brief Enable SDIO clock.
* @param [in] config Pointer to hc32_sdio_config structure
* @retval RT_EOK pass to enable SDIO clock
* -RT_ERROR fail to enable SDIO clock
*/
static rt_err_t _sdio_clock_enable(struct hc32_sdio_config *config)
{
/* verify bus clock frequency */
if (_sdio_verify_bus_clock_frequency(config) != RT_EOK)
{
LOG_E("[%s] fail to verify bus clock frequency", __func__);
return -RT_ERROR;
}
FCG_Fcg1PeriphClockCmd(config->clock, ENABLE);
return RT_EOK;
}
/**
* @brief Create mmcsd host.
* @param [in] config Pointer to a @ref hc32_sdio_config structure
* @param [in] cache_buf Pointer to cache buffer
* @param [in] sdio_des Pointer to a @ref hc32_sdio_des structure
* @retval rt_mmcsd_host
*/
static struct rt_mmcsd_host *_sdio_host_create(struct hc32_sdio_config *config,
uint8_t *cache_buf,
const struct hc32_sdio_des *sdio_des)
{
struct rt_mmcsd_host *host;
struct rthw_sdio *sdio = RT_NULL;
if ((config == RT_NULL) || (cache_buf == RT_NULL) || \
(sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL))
{
LOG_E("function arguments error: %s %s %s %s %s",
(config == RT_NULL ? "config is NULL" : ""),
(cache_buf == RT_NULL ? "cache_buf is NULL" : ""),
(sdio_des == RT_NULL ? "sdio_des is NULL" : ""),
(sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""),
(sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "")
);
return RT_NULL;
}
/* malloc rthw_sdio */
sdio = rt_malloc(sizeof(struct rthw_sdio));
if (sdio == RT_NULL)
{
LOG_E("malloc rthw_sdio fail");
return RT_NULL;
}
rt_memset(sdio, 0, sizeof(struct rthw_sdio));
/* malloc mmcsd_alloc_host */
host = mmcsd_alloc_host();
if (host == RT_NULL)
{
LOG_E("mmcsd_alloc_host fail");
rt_free(sdio);
return RT_NULL;
}
rt_memcpy(&sdio->des, sdio_des, sizeof(struct hc32_sdio_des));
rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO);
rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_FIFO);
/* set host default attributes */
host->ops = &_mmcsd_host_ops;
host->freq_min = 400 * 1000;
host->freq_max = SDIO_MAX_FREQ;
host->valid_ocr = VDD_26_27 | VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 | VDD_32_33 | VDD_33_34;/* The voltage range supported is 2.6v-3.4v */
host->valid_ocr = VDD_32_33 | VDD_33_34;
#ifndef SDIO_USING_1_BIT
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#else
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ;
#endif
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = (SDIO_BUFF_SIZE / host->max_blk_size);
/* link up host, config, cache_buf and sdio */
sdio->host = host;
sdio->config = config;
sdio->cache_buf = cache_buf;
host->private_data = sdio;
/* enable interrupt */
_sdio_update_irq(host, 1);
/* ready to change */
mmcsd_change(host);
return host;
}
int rt_hw_sdio_init(void)
{
struct rt_mmcsd_host *host;
struct hc32_sdio_config *sdio_config;
rt_size_t obj_num = sizeof(_sdio_config) / sizeof(struct hc32_sdio_config);
const struct hc32_sdio_des sdio_des =
{
.clk_get = _sdio_clock_get,
.rxconfig = _sdio_dma_rxconfig,
.txconfig = _sdio_dma_txconfig,
};
for (rt_size_t i = 0; i < obj_num; i++)
{
sdio_config = &_sdio_config[i];
if (_sdio_clock_enable(sdio_config) != RT_EOK)
{
LOG_E("clock enable fail");
return -1;
}
host = _sdio_host_create(sdio_config, _sdio_cache_buf[i], &sdio_des);
if (host == RT_NULL)
{
LOG_E("host create fail");
return -1;
}
else
{
/* link host */
_sdio_host[i] = host;
/* init board pin */
rt_hw_board_sdio_init(sdio_config->instance);
/* init DMA */
_sdio_dma_init(sdio_config);
/* register the irq handler */
hc32_install_irq_handler(&sdio_config->irq_config, _sdio_irq_handler[i], RT_TRUE);
}
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
#endif /* BSP_USING_SDIO */
#endif /* RT_USING_SDIO */