rt-thread/bsp/at32/Libraries/rt_drivers/drv_eth.c

768 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-05-19 Joe first version
*/
#include "at32f4xx_eth.h"
#include "board.h"
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_eth.h"
#include <drv_log.h>
/* EMAC Interface */
#define PHY_ADDRESS 0x00 /* Relative to AT32F407-EVAL Board */
//#define MII_MODE /* MII mode for AT32F407-EVAL Board (MB784) (check jumpers setting) */
#define RMII_MODE /* RMII mode for AT32F407-EVAL Board (MB784) (check jumpers setting) */
//#define CRYSTAL_ON_PHY
#define MII_RX_REMAP 1
/* debug option */
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
//#define DRV_DEBUG
#define LOG_TAG "drv.emac"
#define ETH_RXBUFNB 4
#define ETH_TXBUFNB 2
#define LINK_THREAD_STACK_SIZE 256
#define LINK_THREAD_PREORITY 21
extern ETH_DMADESCTypeDef *DMATxDescToSet;
extern ETH_DMADESCTypeDef *DMARxDescToGet;
extern ETH_DMADESCTypeDef *DMAPTPTxDescToSet;
extern ETH_DMADESCTypeDef *DMAPTPRxDescToGet;
static ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
static rt_uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE];
static struct rt_thread eth_link_thread;
static rt_uint8_t eth_link_stack[LINK_THREAD_STACK_SIZE];
#define MAX_ADDR_LEN 6
/* Gloable variables ---------------------------------------------------------*/
void static Reset_Phy(void);
void NVIC_Configuration(void);
void GPIO_Configuration(void);
struct rt_at32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
uint32_t ETH_Speed;
/* ETH_Duplex_Mode */
uint32_t ETH_Mode;
};
static ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB]; /* Ethernet Rx & Tx DMA Descriptors */
static uint8_t Rx_Buff[ETH_RXBUFNB][ETH_MAX_PACKET_SIZE], Tx_Buff[ETH_TXBUFNB][ETH_MAX_PACKET_SIZE]; /* Ethernet buffers */
//static ETH_HandleTypeDef EthHandle;
static struct rt_at32_eth at32_eth_device;
static struct rt_semaphore tx_wait;
static rt_bool_t tx_is_waiting = RT_FALSE;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
/**
* @brief reset the phy
* @param None
* @retval None
*/
void static Reset_Phy(void)
{
GPIO_InitType GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_8;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_ResetBits(GPIOC, GPIO_Pins_8);
rt_thread_mdelay(2);
GPIO_SetBits(GPIOC, GPIO_Pins_8);
rt_thread_mdelay(2000);
}
/**
* @brief Configure NVIC for ISR
* @param None
* @retval None
*/
void NVIC_Configuration(void)
{
NVIC_InitType NVIC_InitStructure;
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
/* 2 bit for pre-emption priority, 2 bits for subpriority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the Ethernet global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = ETH_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
/**
* @brief Configure GPIO for ethernet
* @param None
* @retval None
*/
void GPIO_Configuration(void)
{
GPIO_InitType GPIO_InitStructure;
#if MII_RX_REMAP
GPIO_PinsRemapConfig(GPIO_Remap_ETH, ENABLE);
#endif
RCC_APB2PeriphClockCmd(RCC_APB2PERIPH_GPIOA | RCC_APB2PERIPH_GPIOB | RCC_APB2PERIPH_GPIOC |
RCC_APB2PERIPH_GPIOD | RCC_APB2PERIPH_GPIOE | RCC_APB2PERIPH_AFIO, ENABLE);
/* ETHERNET pins configuration */
/* AF Output Push Pull:
ETH_MII_MDIO / ETH_RMII_MDIO: PA2
ETH_MII_MDC / ETH_RMII_MDC: PC1
*/
/* Configure PA2 as alternate function push-pull MDIO*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_2;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*PC1-->MDC*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_1;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/*MII Mode GPIO configuration*/
#ifdef MII_MODE
/**********************MII Tx Pin Define****************************/
/*
ETH_MII_TX0-->PB12 AF-PP
ETH_MII_TX1-->PB13 AF-PP
ETH_MII_TX2-->PC2 AF-PP
ETH_MII_TX3-->PB8 AF-PP
ETH_MII_TX_EN-->PB11 AF-PP
ETH_MII_TX_CLK-->PC3
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_8 | GPIO_Pins_11 | GPIO_Pins_12 | GPIO_Pins_13;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_2 | GPIO_Pins_3;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/**********************MII Rx Pin Define****************************/
#if MII_RX_REMAP /*IO PIN remaped*/
/*
ETH_MII_RX_DV-->PD8
ETH_MII_RXD0-->PD9
ETH_MII_RXD1-->PD10
ETH_MII_RXD2-->PD11
ETH_MII_RXD3-->PD12
ETH_MII_RXCLK-->PA1
ETH_MII_CRS-->PA0
ETH_MII_COL-->PA3
ETH_MII_RX_ER-->PB10
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_8 | GPIO_Pins_9 | GPIO_Pins_10 | GPIO_Pins_11 | GPIO_Pins_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_0 | GPIO_Pins_1 | GPIO_Pins_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#else
/*
ETH_MII_RX_DV-->PA7
ETH_MII_RXD0-->PC4
ETH_MII_RXD1-->PC5
ETH_MII_RXD2-->PB0
ETH_MII_RXD3-->PB1
ETH_MII_RXCLK-->PA1
ETH_MII_CRS-->PA0
ETH_MII_COL-->PA3
ETH_MII_RX_ER-->PB10
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_0 | GPIO_Pins_1 | GPIO_Pins_3 | GPIO_Pins_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_4 | GPIO_Pins_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_0 | GPIO_Pins_1 | GPIO_Pins_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);
#endif //End MII RX REMAP
#endif //End MII mode
#ifdef RMII_MODE
/**********************RMII Tx Pin Define****************************/
/*
ETH_RMII_TX0-->PB12 AF-PP
ETH_RMII_TX1-->PB13 AF-PP
ETH_RMII_TX_EN-->PB11 AF-PP
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_11 | GPIO_Pins_12 | GPIO_Pins_13;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/**********************RMII Rx Pin Define****************************/
#if MII_RX_REMAP /*IO PIN remaped*/
/*
ETH_RMII_RX_DV-->PD8
ETH_RMII_RXD0-->PD9
ETH_RMII_RXD1-->PD10
ETH_RMII_REF_CLK-->PA1
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_8 | GPIO_Pins_9 | GPIO_Pins_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#else
/*
ETH_RMII_RX_DV-->PA7
ETH_RMII_RXD0-->PC4
ETH_RMII_RXD1-->PC5
ETH_RMII_REF_CLK-->PA1
*/
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_1 | GPIO_Pins_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_4 | GPIO_Pins_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOC, &GPIO_InitStructure);
#endif //End RMII RX REMAP
#endif //End RMII mode
/* ADC Channel4 config --------------------------------------------------------*/
/* Configure PA4(ADC Channel4) as analog input -------------------------*/
#ifdef ADC_NECESSARY
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_ANALOG;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif
/* MCO pin configuration------------------------------------------------- */
/* Configure MCO (PA8) as alternate function push-pull */
#ifndef CRYSTAL_ON_PHY
GPIO_InitStructure.GPIO_Pins = GPIO_Pins_8;
GPIO_InitStructure.GPIO_MaxSpeed = GPIO_MaxSpeed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif
}
/* EMAC initialization function */
static rt_err_t rt_at32_eth_init(rt_device_t dev)
{
ETH_InitType ETH_InitStructure;
RCC_AHBPeriphClockCmd(RCC_AHBPERIPH_ETHMAC | RCC_AHBPERIPH_ETHMACTX |
RCC_AHBPERIPH_ETHMACRX, ENABLE);
/* MII/RMII Media interface selection ------------------------------------------*/
#ifdef MII_MODE /* Mode MII with AT32F407-EVAL */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_MII);
/* Get 25MHz from system clock 200MHz on PA8 pin (MCO) */
#ifndef CRYSTAL_ON_PHY
RCC_CLKOUTConfig(RCC_CLKOUT_SYSCLK, RCC_MCOPRE_8);
#endif
#elif defined RMII_MODE /* Mode RMII with AT32F407-EVAL */
GPIO_ETH_MediaInterfaceConfig(GPIO_ETH_MediaInterface_RMII);
#ifndef CRYSTAL_ON_PHY
RCC_CLKOUTConfig(RCC_CLKOUT_SYSCLK, RCC_MCOPRE_8); /*25M to RMII Mode*/
#endif
#endif
/*Reset phy*/
Reset_Phy();
/* Reset ETHERNET on AHB Bus */
ETH_DeInit();
/* Software reset */
ETH_SoftwareReset();
/* Wait for software reset */
while (ETH_GetSoftwareResetStatus() == SET);
/* ETHERNET Configuration ------------------------------------------------------*/
/* Call ETH_StructInit if you don't like to configure all ETH_InitStructure parameter */
ETH_StructInit(&ETH_InitStructure);
/* Fill ETH_InitStructure parametrs */
/*------------------------ MAC -----------------------------------*/
ETH_InitStructure.ETH_AutoNegotiation = ETH_AutoNegotiation_Enable;//ETH_AutoNegotiation_Enable ;
ETH_InitStructure.ETH_LoopbackMode = ETH_LoopbackMode_Disable;
ETH_InitStructure.ETH_RetryTransmission = ETH_RetryTransmission_Enable;
ETH_InitStructure.ETH_AutomaticPadCRCStrip = ETH_AutomaticPadCRCStrip_Disable;
ETH_InitStructure.ETH_ReceiveAll = ETH_ReceiveAll_Disable;
ETH_InitStructure.ETH_BroadcastFramesReception = ETH_BroadcastFramesReception_Enable;
ETH_InitStructure.ETH_PromiscuousMode = ETH_PromiscuousMode_Disable;
ETH_InitStructure.ETH_MulticastFramesFilter = ETH_MulticastFramesFilter_Perfect;//ETH_MulticastFramesFilter_Perfect;
ETH_InitStructure.ETH_UnicastFramesFilter = ETH_UnicastFramesFilter_Perfect;
#ifdef CHECKSUM_BY_HARDWARE
ETH_InitStructure.ETH_ChecksumOffload = ETH_ChecksumOffload_Enable;
#endif
/*------------------------ DMA -----------------------------------*/
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
if the checksum is OK the DMA can handle the frame otherwise the frame is dropped */
ETH_InitStructure.ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Enable;//ETH_DropTCPIPChecksumErrorFrame_Enable;
ETH_InitStructure.ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStructure.ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStructure.ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStructure.ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStructure.ETH_SecondFrameOperate = ETH_SecondFrameOperate_Enable;
ETH_InitStructure.ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStructure.ETH_FixedBurst = ETH_FixedBurst_Enable;
ETH_InitStructure.ETH_RxDMABurstLength = ETH_RxDMABurstLength_32Beat;
ETH_InitStructure.ETH_TxDMABurstLength = ETH_TxDMABurstLength_32Beat;
ETH_InitStructure.ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_2_1;
/* Configure Ethernet, check error */
if(ETH_Init(&ETH_InitStructure, PHY_ADDRESS) == ((uint32_t)0)) {
return RT_ERROR;
}
/* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
ETH_DMAITConfig(ETH_DMA_INT_NIS | ETH_DMA_INT_R, ENABLE);
/* Initialize Tx Descriptors list: Chain Mode */
ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* MAC address configuration */
ETH_MACAddressConfig(ETH_MAC_Address0, (u8*)&at32_eth_device.dev_addr[0]);
/* Enable ETH transmition and recetion */
ETH_Start();
return RT_EOK;
}
static rt_err_t rt_at32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_at32_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_size_t rt_at32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_at32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_at32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, at32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_at32_eth_tx(rt_device_t dev, struct pbuf *p)
{
struct pbuf* q;
rt_uint32_t offset;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
while ((DMATxDescToSet->Status & ETH_DMATxDesc_OWN) != (uint32_t)RESET)
{
rt_err_t result;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
tx_is_waiting = RT_TRUE;
rt_hw_interrupt_enable(level);
/* it's own bit set, wait it */
result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
if (result == RT_EOK) break;
if (result == -RT_ERROR) return -RT_ERROR;
}
offset = 0;
for (q = p; q != NULL; q = q->next)
{
uint8_t *to;
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
to = (uint8_t*)((DMATxDescToSet->Buffer1Addr) + offset);
memcpy(to, q->payload, q->len);
offset += q->len;
}
#ifdef ETH_TX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = (rt_uint8_t*)(DMATxDescToSet->Buffer1Addr);
AT32_ETH_PRINTF("tx_dump, len:%d\r\n", p->tot_len);
for(i=0; i<p->tot_len; i++)
{
AT32_ETH_PRINTF("%02x ",*ptr);
ptr++;
if(((i+1)%8) == 0)
{
AT32_ETH_PRINTF(" ");
}
if(((i+1)%16) == 0)
{
AT32_ETH_PRINTF("\r\n");
}
}
AT32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (p->tot_len & ETH_DMATxDesc_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATxDesc_LS | ETH_DMATxDesc_FS;
/* Enable TX Completion Interrupt */
DMATxDescToSet->Status |= ETH_DMATxDesc_IC;
#ifdef CHECKSUM_BY_HARDWARE
DMATxDescToSet->Status |= ETH_DMATxDesc_ChecksumTCPUDPICMPFull;
/* clean ICMP checksum STM32F need */
{
struct eth_hdr *ethhdr = (struct eth_hdr *)(DMATxDescToSet->Buffer1Addr);
/* is IP ? */
if( ethhdr->type == htons(ETHTYPE_IP) )
{
struct ip_hdr *iphdr = (struct ip_hdr *)(DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR);
/* is ICMP ? */
if( IPH_PROTO(iphdr) == IP_PROTO_ICMP )
{
struct icmp_echo_hdr *iecho = (struct icmp_echo_hdr *)(DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR + sizeof(struct ip_hdr) );
iecho->chksum = 0;
}
}
}
#endif
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATxDesc_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASTS & ETH_DMA_FLAG_TBU) != (uint32_t)RESET)
{
/* Clear TBUS ETHERNET DMA flag */
ETH->DMASTS = ETH_DMA_FLAG_TBU;
/* Transmit Poll Demand to resume DMA transmission*/
ETH->DMATPD = 0;
}
/* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
/* Chained Mode */
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADESCTypeDef*) (DMATxDescToSet->Buffer2NextDescAddr);
/* Return SUCCESS */
return RT_EOK;
}
/* receive data*/
struct pbuf *rt_at32_eth_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t offset = 0, framelength = 0;
/* init p pointer */
p = RT_NULL;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if(((DMARxDescToGet->Status & ETH_DMARxDesc_OWN) != (uint32_t)RESET))
return p;
if (((DMARxDescToGet->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_LS) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARxDesc_FS) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARxDesc_FL) >> 16) - 4;
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
for (q = p; q != RT_NULL; q= q->next)
{
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
memcpy(q->payload, (uint8_t *)((DMARxDescToGet->Buffer1Addr) + offset), q->len);
offset += q->len;
}
#ifdef ETH_RX_DUMP
{
rt_uint32_t i;
rt_uint8_t *ptr = (rt_uint8_t*)(DMARxDescToGet->Buffer1Addr);
AT32_ETH_PRINTF("rx_dump, len:%d\r\n", p->tot_len);
for(i=0; i<p->tot_len; i++)
{
AT32_ETH_PRINTF("%02x ", *ptr);
ptr++;
if(((i+1)%8) == 0)
{
AT32_ETH_PRINTF(" ");
}
if(((i+1)%16) == 0)
{
AT32_ETH_PRINTF("\r\n");
}
}
AT32_ETH_PRINTF("\r\ndump done!\r\n");
}
#endif
}
}
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARxDesc_OWN;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASTS & ETH_DMA_FLAG_RBU) != (uint32_t)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASTS = ETH_DMA_FLAG_RBU;
/* Resume DMA reception */
ETH->DMARPD = 0;
}
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARxDesc_RER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADESCTypeDef*) (ETH->DMARDLADDR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADESCTypeDef*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABM & 0x0000007C) >> 2));
}
}
return p;
}
static void eth_link_thread_entry(void *paramter)
{
uint8_t linked_down = 1;
struct netif *pnetif = at32_eth_device.parent.netif;
while(1){
if((ETH_ReadPHYRegister(PHY_ADDRESS, PHY_BSR) & PHY_Linked_Status) && (linked_down == 1))
{
/* link up */
linked_down = 0;
#ifndef RT_LWIP_DHCP
pnetif->ip_addr = inet_addr(RT_LWIP_IPADDR);
pnetif->gw = inet_addr(RT_LWIP_GWADDR);
pnetif->netmask = inet_addr(RT_LWIP_MSKADDR);
#else
IP4_ADDR(&(pnetif->ip_addr), 0, 0, 0, 0);
IP4_ADDR(&(pnetif->netmask), 0, 0, 0, 0);
IP4_ADDR(&(pnetif->gw), 0, 0, 0, 0);
#endif
eth_device_linkchange(&(at32_eth_device.parent), RT_TRUE);
}else if(!(ETH_ReadPHYRegister(PHY_ADDRESS, PHY_BSR) & PHY_Linked_Status) && (linked_down == 0))
{
/* link down */
linked_down = 1;
eth_device_linkchange(&(at32_eth_device.parent), RT_FALSE);
}
rt_thread_mdelay(500);
}
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
rt_uint32_t status;
status = ETH->DMASTS;
/* Clear received IT */
if ((status & ETH_DMA_INT_NIS) != (u32)RESET)
ETH->DMASTS = (u32)ETH_DMA_INT_NIS;
if ((status & ETH_DMA_INT_AIS) != (u32)RESET)
ETH->DMASTS = (u32)ETH_DMA_INT_AIS;
if ((status & ETH_DMA_INT_RO) != (u32)RESET)
ETH->DMASTS = (u32)ETH_DMA_INT_RO;
if ((status & ETH_DMA_INT_RBU) != (u32)RESET)
ETH->DMASTS = (u32)ETH_DMA_INT_RBU;
if (ETH_GetDMAITStatus(ETH_DMA_INT_R) == SET) /* packet receiption */
{
/* a frame has been received */
eth_device_ready(&(at32_eth_device.parent));
ETH_DMAClearITPendingBit(ETH_DMA_INT_R);
}
if (ETH_GetDMAITStatus(ETH_DMA_INT_T) == SET) /* packet transmission */
{
if (tx_is_waiting == RT_TRUE)
{
tx_is_waiting = RT_FALSE;
rt_sem_release(&tx_wait);
}
ETH_DMAClearITPendingBit(ETH_DMA_INT_T);
}
}
enum {
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
/* Register the EMAC device */
static int rt_hw_at32_eth_init(void)
{
rt_err_t state = RT_EOK;
Reset_Phy();
GPIO_Configuration();
NVIC_Configuration();
at32_eth_device.dev_addr[0] = 0x00;
at32_eth_device.dev_addr[1] = 0x80;
at32_eth_device.dev_addr[2] = 0xE1;
at32_eth_device.dev_addr[3] = 0x94;
at32_eth_device.dev_addr[4] = 0x87;
at32_eth_device.dev_addr[5] = 0x55;
at32_eth_device.parent.parent.init = rt_at32_eth_init;
at32_eth_device.parent.parent.open = rt_at32_eth_open;
at32_eth_device.parent.parent.close = rt_at32_eth_close;
at32_eth_device.parent.parent.read = rt_at32_eth_read;
at32_eth_device.parent.parent.write = rt_at32_eth_write;
at32_eth_device.parent.parent.control = rt_at32_eth_control;
at32_eth_device.parent.parent.user_data = RT_NULL;
at32_eth_device.parent.eth_rx = rt_at32_eth_rx;
at32_eth_device.parent.eth_tx = rt_at32_eth_tx;
/* register eth device */
state = eth_device_init(&(at32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
state = rt_thread_init(&eth_link_thread, "eth_link_detect", eth_link_thread_entry, RT_NULL,
&eth_link_stack[0], LINK_THREAD_STACK_SIZE, LINK_THREAD_PREORITY, 20);
if (state == RT_EOK)
{
rt_thread_startup(&eth_link_thread);
}
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
}
/* start phy monitor */
return state;
}
INIT_DEVICE_EXPORT(rt_hw_at32_eth_init);