rt-thread/bsp/lpc55sxx/Libraries/drivers/drv_pwm.c

207 lines
5.5 KiB
C
Raw Normal View History

2019-10-24 17:56:09 +08:00
/*
2023-01-06 16:40:35 +08:00
* Copyright (c) 2006-2023, RT-Thread Development Team
2019-10-24 17:56:09 +08:00
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-28 tyustli first version
* 2019-07-15 Magicoe The first version for LPC55S6x, we can also use SCT as PWM
*
*/
#include <rtthread.h>
#ifdef RT_USING_PWM
#if !defined(BSP_USING_CTIMER2_MAT0) && !defined(BSP_USING_CTIMER2_MAT1) && \
!defined(BSP_USING_CTIMER2_MAT2)
#error "Please define at least one BSP_USING_CTIMERx_MATx"
#else
#define BSP_USING_CTIMER2
#endif
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#include <rtdevice.h>
#include "fsl_ctimer.h"
#include "drv_pwm.h"
#define DEFAULT_DUTY 50
#define DEFAULT_FREQ 1000
static rt_err_t lpc_drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops lpc_drv_ops =
{
.control = lpc_drv_pwm_control
};
static rt_err_t lpc_drv_pwm_enable(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
CTIMER_Type *base;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
base = (CTIMER_Type *)device->parent.user_data;
if (!enable)
{
/* Stop the timer */
CTIMER_StopTimer(base);
}
else
{
/* Start the timer */
CTIMER_StartTimer(base);
}
return RT_EOK;
}
static rt_err_t lpc_drv_pwm_get(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration)
{
uint8_t get_duty;
uint32_t get_frequence;
uint32_t pwmClock = 0;
CTIMER_Type *base;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
base = (CTIMER_Type *)device->parent.user_data;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
#ifdef BSP_USING_CTIMER2
/* get frequence */
pwmClock = CLOCK_GetFreq(kCLOCK_CTimer2) ;
#endif
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
get_frequence = pwmClock / (base->MR[kCTIMER_Match_3] + 1);
if(configuration->channel == 1)
{
/* get dutycycle */
get_duty = (100*(base->MR[kCTIMER_Match_3] + 1 - base->MR[kCTIMER_Match_1]))/(base->MR[kCTIMER_Match_3] + 1);
}
/* get dutycycle */
/* conversion */
configuration->period = 1000000000 / get_frequence;
configuration->pulse = get_duty * configuration->period / 100;
rt_kprintf("*** PWM period %d, pulse %d\r\n", configuration->period, configuration->pulse);
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
return RT_EOK;
}
static rt_err_t lpc_drv_pwm_set(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration)
{
RT_ASSERT(configuration->period > 0);
RT_ASSERT(configuration->pulse <= configuration->period);
ctimer_config_t config;
CTIMER_Type *base;
base = (CTIMER_Type *)device->parent.user_data;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
uint32_t pwmPeriod, pulsePeriod;
/* Run as a timer */
config.mode = kCTIMER_TimerMode;
/* This field is ignored when mode is timer */
config.input = kCTIMER_Capture_0;
/* Timer counter is incremented on every APB bus clock */
config.prescale = 0;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
if(configuration->channel == 1)
{
/* Get the PWM period match value and pulse width match value of DEFAULT_FREQ PWM signal with DEFAULT_DUTY dutycycle */
/* Calculate PWM period match value */
pwmPeriod = (( CLOCK_GetFreq(kCLOCK_CTimer2) / (config.prescale + 1) ) / DEFAULT_FREQ) - 1;
/* Calculate pulse width match value */
if (DEFAULT_DUTY == 0)
{
pulsePeriod = pwmPeriod + 1;
}
else
{
pulsePeriod = (pwmPeriod * (100 - DEFAULT_DUTY)) / 100;
}
/* Match on channel 3 will define the PWM period */
base->MR[kCTIMER_Match_3] = pwmPeriod;
/* This will define the PWM pulse period */
base->MR[kCTIMER_Match_1] = pulsePeriod;
}
return RT_EOK;
}
static rt_err_t lpc_drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
switch (cmd)
{
case PWM_CMD_ENABLE:
return lpc_drv_pwm_enable(device, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return lpc_drv_pwm_enable(device, configuration, RT_FALSE);
case PWM_CMD_SET:
return lpc_drv_pwm_set(device, configuration);
case PWM_CMD_GET:
return lpc_drv_pwm_get(device, configuration);
default:
return RT_EINVAL;
}
}
int rt_hw_pwm_init(void)
{
rt_err_t ret = RT_EOK;
#ifdef BSP_USING_CTIMER2
static struct rt_device_pwm pwm1_device;
ctimer_config_t config;
uint32_t pwmPeriod, pulsePeriod;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
/* Use 12 MHz clock for some of the Ctimers */
CLOCK_AttachClk(kMAIN_CLK_to_CTIMER2);
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
/* Run as a timer */
config.mode = kCTIMER_TimerMode;
/* This field is ignored when mode is timer */
config.input = kCTIMER_Capture_0;
/* Timer counter is incremented on every APB bus clock */
config.prescale = 0;
2021-03-17 02:26:35 +08:00
2019-10-24 17:56:09 +08:00
CTIMER_Init(CTIMER2, &config);
#ifdef BSP_USING_CTIMER2_MAT1
/* Get the PWM period match value and pulse width match value of DEFAULT_FREQ PWM signal with DEFAULT_DUTY dutycycle */
/* Calculate PWM period match value */
pwmPeriod = (( CLOCK_GetFreq(kCLOCK_CTimer2) / (config.prescale + 1) ) / DEFAULT_FREQ) - 1;
/* Calculate pulse width match value */
if (DEFAULT_DUTY == 0)
{
pulsePeriod = pwmPeriod + 1;
}
else
{
pulsePeriod = (pwmPeriod * (100 - DEFAULT_DUTY)) / 100;
}
CTIMER_SetupPwmPeriod(CTIMER2, kCTIMER_Match_1 , pwmPeriod, pulsePeriod, false);
#endif
ret = rt_device_pwm_register(&pwm1_device, "pwm1", &lpc_drv_ops, CTIMER2);
if (ret != RT_EOK)
{
LOG_E("%s register failed", "pwm1");
}
#endif /* BSP_USING_CTIMER2 */
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_pwm_init);
#endif /* RT_USING_PWM */