305 lines
8.1 KiB
C
Raw Normal View History

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-12-1 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_PWM)
#define LOG_TAG "drv.pwm"
#define DBG_ENABLE
#define DBG_SECTION_NAME "drv.pwm"
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
#include <stdint.h>
#include <rtdevice.h>
#include <rthw.h>
#include "NuMicro.h"
#include "drv_sys.h"
enum
{
PWM_START = -1,
#if defined(BSP_USING_PWM0)
PWM0_IDX,
#endif
#if defined(BSP_USING_PWM1)
PWM1_IDX,
#endif
PWM_CNT
};
#define NU_PWM_BA_DISTANCE (PWM1_BA - PWM0_BA)
#define NU_PWM_CHANNEL_NUM 4
struct nu_pwm
{
struct rt_device_pwm dev;
char *name;
uint32_t base_addr;
E_SYS_IPRST rstidx;
E_SYS_IPCLK clkidx;
};
typedef struct nu_pwm *nu_pwm_t;
static struct nu_pwm nu_pwm_arr [] =
{
#if defined(BSP_USING_PWM0)
{
.name = "pwm0",
.base_addr = PWM0_BA,
.rstidx = PWM0RST,
.clkidx = PWM0CKEN,
},
#endif
#if defined(BSP_USING_PWM1)
{
.name = "pwm1",
.base_addr = PWM1_BA,
.rstidx = PWM1RST,
.clkidx = PWM1CKEN,
},
#endif
}; /* pwm nu_pwm */
static rt_err_t nu_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops nu_pwm_ops =
{
.control = nu_pwm_control
};
static rt_err_t nu_pwm_enable(struct rt_device_pwm *device, struct rt_pwm_configuration *config, rt_bool_t enable)
{
nu_pwm_t psNuPWM = (nu_pwm_t)device;
rt_err_t result = RT_EOK;
rt_uint32_t ch = config->channel;
if (enable == RT_TRUE)
{
uint32_t u32RegAdrrPCR = psNuPWM->base_addr + 0x8;
uint32_t u32PCRChAlign = (!ch) ? 0x9 : (0x9 << (4 + ch * 4));
/* Period and enable channel. */
outpw(u32RegAdrrPCR, inpw(u32RegAdrrPCR) | u32PCRChAlign);
}
else
{
uint32_t u32RegAdrrPCR = psNuPWM->base_addr + 0x8;
uint32_t u32PCRChAlign = (!ch) ? 0x1 : (0x1 << (4 + ch * 4));
outpw(u32RegAdrrPCR, inpw(u32RegAdrrPCR) & ~u32PCRChAlign);
}
return result;
}
static rt_err_t nu_pwm_get(struct rt_device_pwm *device, struct rt_pwm_configuration *config)
{
nu_pwm_t psNuPWM = (nu_pwm_t)device;
uint32_t u32RegAdrrPPR = psNuPWM->base_addr;
uint32_t u32RegAdrrCSR = psNuPWM->base_addr + 0x04;
uint32_t u32RegAdrrCNR = psNuPWM->base_addr + 0xC + (config->channel * 0xC);
uint32_t u32RegAdrrCMR = psNuPWM->base_addr + 0x10 + (config->channel * 0xC);
uint32_t u32PWMSrcClk = sysGetClock(SYS_PCLK2) * 1000000;
uint32_t u32CMR, u32CNR;
double douDutyCycle; /* unit:% */
uint32_t u32PWMOutClk; /* unit:Hz */
uint32_t u32Prescale, u32Divider;
u32CNR = inpw(u32RegAdrrCNR) + 1;
u32CMR = inpw(u32RegAdrrCMR) + 1;
u32Prescale = ((inpw(u32RegAdrrPPR) & (0xff << ((config->channel >> 1) * 8))) >> ((config->channel >> 1) * 8)) + 1;
u32Divider = (inpw(u32RegAdrrCSR) & (0x7 << (4 * config->channel))) >> (4 * config->channel);
/* Re-convert register to real value */
if (u32Divider == 4)
u32Divider = 1;
else if (u32Divider == 0)
u32Divider = 2;
else if (u32Divider == 1)
u32Divider = 4;
else if (u32Divider == 2)
u32Divider = 8;
else // 3
u32Divider = 16;
douDutyCycle = (double)u32CMR / u32CNR;
u32PWMOutClk = u32PWMSrcClk / (u32Prescale * u32Divider * u32CNR);
config->period = 1000000000 / u32PWMOutClk; /* In ns. */
config->pulse = douDutyCycle * config->period;
LOG_I("%s %d %d %d\n", ((nu_pwm_t)device)->name, config->channel, config->period, config->pulse);
return RT_EOK;
}
uint32_t nu_pwm_config(uint32_t u32PwmBaseAddr, uint32_t u32ChannelNum, uint32_t u32Frequency, uint32_t u32PulseInHz)
{
uint32_t i;
uint8_t u8Divider = 1, u8Prescale = 0xFF;
uint16_t u16CNR = 0xFFFF;
uint16_t u16CMR = 0xFFFF;
uint32_t u32RegAdrrPPR = u32PwmBaseAddr;
uint32_t u32RegAdrrCSR = u32PwmBaseAddr + 0x04;
uint32_t u32RegAdrrCNR = u32PwmBaseAddr + 0xC + (u32ChannelNum * 0xC);
uint32_t u32RegAdrrCMR = u32PwmBaseAddr + 0x10 + (u32ChannelNum * 0xC);
uint32_t u32PWMSrcClk = sysGetClock(SYS_PCLK2) * 1000000;
uint32_t u32PWMOutClk = 0;
if (u32Frequency > u32PWMSrcClk)
return 0;
/*
PWM_Freq = PCLK2 / (Prescale+1) / (Clock Divider) / (CNR+1)
PCLK / PWM_Freq = (Prescale+1) * (Clock Divider) * (CNR+1)
PCLK / PWM_Freq / (Clock Divider) = (Prescale+1) * (CNR+1)
*/
/* clk divider could only be 1, 2, 4, 8, 16 */
for (; u8Divider < 17; u8Divider <<= 1)
{
i = (u32PWMSrcClk / u32Frequency) / u8Divider;
/* If target value is larger than CNR * prescale, need to use a larger divider */
if (i > (0x10000 * 0x100))
continue;
/* CNR = 0xFFFF + 1, get a prescaler that CNR value is below 0xFFFF */
u8Prescale = (i + 0xFFFF) / 0x10000;
/* u8Prescale must at least be 2, otherwise the output stop */
if (u8Prescale < 2)
u8Prescale = 2;
i /= u8Prescale;
if (i < 0x10000)
{
if (i == 1)
u16CNR = 1; // Too fast, and PWM cannot generate expected frequency...
else
u16CNR = i;
break;
}
}
u32PWMOutClk = u32PWMSrcClk / (u8Prescale * u8Divider * u16CNR);
/* For fill into registers. */
u8Prescale -= 1;
u16CNR -= 1;
/* Convert to real register value */
if (u8Divider == 1)
u8Divider = 4;
else if (u8Divider == 2)
u8Divider = 0;
else if (u8Divider == 4)
u8Divider = 1;
else if (u8Divider == 8)
u8Divider = 2;
else // 16
u8Divider = 3;
/* Every two channels share a prescaler */
outpw(u32RegAdrrPPR, (inpw(u32RegAdrrPPR) & ~(0xff << ((u32ChannelNum >> 1) * 8))) | (u8Prescale << ((u32ChannelNum >> 1) * 8)));
/* Update CLKSEL in specified channel in CSR field. */
outpw(u32RegAdrrCSR, inpw(u32RegAdrrCSR) & ~(0x7 << (4 * u32ChannelNum)) | (u8Divider << (4 * u32ChannelNum)));
u16CMR = u32Frequency * (u16CNR + 1) / u32PulseInHz;
outpw(u32RegAdrrCMR, (u16CMR == 0) ? 0 : u16CMR - 1);
outpw(u32RegAdrrCNR, u16CNR);
return (u32PWMOutClk);
}
static rt_err_t nu_pwm_set(struct rt_device_pwm *device, struct rt_pwm_configuration *config)
{
nu_pwm_t psNuPWM = (nu_pwm_t)device;
rt_err_t result = -RT_EINVAL;
rt_uint32_t u32FreqInHz; /* unit:Hz */
rt_uint32_t u32PulseInHz; /* unit:% */
if (config->period < 1000 || !config->period || !config->pulse)
goto exit_nu_pwm_set;
/* Calculate frequency, Unit is in us. */
u32FreqInHz = (1000000000) / config->period;
u32PulseInHz = (1000000000) / config->pulse;
nu_pwm_config(psNuPWM->base_addr, config->channel, u32FreqInHz, u32PulseInHz);
result = RT_EOK;
exit_nu_pwm_set:
return -(result);
}
static rt_err_t nu_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *config = (struct rt_pwm_configuration *)arg;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(config != RT_NULL);
if (config->channel > NU_PWM_CHANNEL_NUM)
return -(RT_EINVAL);
switch (cmd)
{
case PWM_CMD_ENABLE:
return nu_pwm_enable(device, config, RT_TRUE);
case PWM_CMD_DISABLE:
return nu_pwm_enable(device, config, RT_FALSE);
case PWM_CMD_SET:
return nu_pwm_set(device, config);
case PWM_CMD_GET:
return nu_pwm_get(device, config);
default:
break;
}
return -(RT_ERROR);
}
int rt_hw_pwm_init(void)
{
rt_err_t ret;
int i;
for (i = (PWM_START + 1); i < PWM_CNT; i++)
{
nu_sys_ipclk_enable(nu_pwm_arr[i].clkidx);
nu_sys_ip_reset(nu_pwm_arr[i].rstidx);
ret = rt_device_pwm_register(&nu_pwm_arr[i].dev, nu_pwm_arr[i].name, &nu_pwm_ops, RT_NULL);
RT_ASSERT(ret == RT_EOK);
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_pwm_init);
#endif