rt-thread/bsp/hpmicro/hpm6200evk/board/board.c

711 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2023 HPMicro
* SPDX-License-Identifier: BSD-3-Clause
*
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_lcdc_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "assert.h"
#include "hpm_clock_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_pwm_drv.h"
#include "hpm_trgm_drv.h"
#include "hpm_pllctlv2_drv.h"
#include "hpm_pcfg_drv.h"
static board_timer_cb timer_cb;
ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag;
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
#endif
#if defined(FLASH_UF2) && FLASH_UF2
ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
#endif
void board_init_console(void)
{
#if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
console_config_t cfg;
/* uart needs to configure pin function before enabling clock, otherwise the level change of
uart rx pin when configuring pin function will cause a wrong data to be received.
And a uart rx dma request will be generated by default uart fifo dma trigger level. */
init_uart_pins((UART_Type *) BOARD_CONSOLE_BASE);
/* Configure the UART clock to 24MHz */
clock_set_source_divider(BOARD_CONSOLE_CLK_NAME, clk_src_osc24m, 1U);
clock_add_to_group(BOARD_CONSOLE_CLK_NAME, 0);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t)BOARD_CONSOLE_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_BAUDRATE;
if (status_success != console_init(&cfg)) {
/* failed to initialize debug console */
while (1) {
}
}
#else
while (1)
;
#endif
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
printf("cpu1:\t\t %luHz\n", clock_get_frequency(clock_cpu1));
printf("axi:\t\t %dHz\n", clock_get_frequency(clock_axi));
printf("ahb:\t\t %dHz\n", clock_get_frequency(clock_ahb));
printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
printf("mchtmr1:\t %luHz\n", clock_get_frequency(clock_mchtmr1));
printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
/* configure uart's pin before opening uart's clock */
init_uart_pins(ptr);
board_init_uart_clock(ptr);
}
void board_print_banner(void)
{
const uint8_t banner[] = { "\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n"};
#ifdef SDK_VERSION_STRING
printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
#endif
printf("%s", banner);
}
uint8_t board_get_led_pwm_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
uint8_t board_get_led_gpio_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
void board_ungate_mchtmr_at_lp_mode(void)
{
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
}
void board_init(void)
{
board_init_clock();
board_init_console();
board_init_pmp();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_delay_us(uint32_t us)
{
static uint32_t gptmr_freq;
gptmr_channel_config_t config;
if (init_delay_flag == false) {
init_delay_flag = true;
clock_add_to_group(BOARD_DELAY_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_DELAY_TIMER_CLK_NAME);
gptmr_channel_get_default_config(BOARD_DELAY_TIMER, &config);
gptmr_channel_config(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH, &config, false);
}
gptmr_channel_config_update_reload(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH, gptmr_freq / 1000000 * us);
gptmr_start_counter(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH);
while (!gptmr_check_status(BOARD_DELAY_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_DELAY_TIMER_CH))) {
__asm("nop");
}
gptmr_stop_counter(BOARD_DELAY_TIMER, BOARD_DELAY_TIMER_CH);
gptmr_clear_status(BOARD_DELAY_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_DELAY_TIMER_CH));
}
void board_delay_ms(uint32_t ms)
{
board_delay_us(1000 * ms);
}
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_create(uint32_t ms, board_timer_cb cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
void board_i2c_bus_clear(I2C_Type *ptr)
{
init_i2c_pins_as_gpio(ptr);
}
void board_init_i2c(I2C_Type *ptr)
{
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
if (ptr == HPM_SPI1) {
/* SPI1 clock configure */
clock_add_to_group(clock_spi1, 0);
clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); /* 80MHz */
return clock_get_frequency(clock_spi1);
} else if (ptr == HPM_SPI2) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi2, 0);
clock_set_source_divider(clock_spi2, clk_src_pll0_clk0, 5U); /* 80MHz */
return clock_get_frequency(clock_spi2);
} else if (ptr == HPM_SPI3) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi3, 0);
clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */
return clock_get_frequency(clock_spi3);
}
return 0;
}
uint32_t board_init_lin_clock(LIN_Type *ptr)
{
if (ptr == HPM_LIN0) {
clock_add_to_group(clock_lin0, 0);
clock_set_source_divider(clock_lin0, clk_src_pll0_clk0, 20U); /* 20MHz */
return clock_get_frequency(clock_lin0);
}
return 0;
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
{
init_spi_pins_with_gpio_as_cs(ptr);
gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
}
void board_write_spi_cs(uint32_t pin, uint8_t state)
{
gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
}
void board_init_led_pins(void)
{
init_led_pins_as_gpio();
gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
}
void board_led_toggle(void)
{
#ifdef BOARD_LED_TOGGLE_RGB
static uint8_t i;
switch (i) {
case 1:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
case 2:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
break;
case 0:
default:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
}
i++;
i = i % 3;
#else
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
#endif
}
void board_led_write(uint8_t state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
}
void board_init_usb_pins(void)
{
/* set pull-up for USBx ID pin */
init_usb_pins();
/* configure USBx ID pin as input function */
gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
}
uint8_t board_get_usb_id_status(void)
{
return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN);
}
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
{
}
void board_init_pmp(void)
{
uint32_t start_addr;
uint32_t end_addr;
uint32_t length;
pmp_entry_t pmp_entry[16];
uint8_t index = 0;
/* Init noncachable memory */
extern uint32_t __noncacheable_start__[];
extern uint32_t __noncacheable_end__[];
start_addr = (uint32_t)__noncacheable_start__;
end_addr = (uint32_t)__noncacheable_end__;
length = end_addr - start_addr;
if (length > 0) {
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
index++;
}
/* Init share memory */
extern uint32_t __share_mem_start__[];
extern uint32_t __share_mem_end__[];
start_addr = (uint32_t)__share_mem_start__;
end_addr = (uint32_t)__share_mem_end__;
length = end_addr - start_addr;
if (length > 0) {
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
index++;
}
pmp_config(&pmp_entry[0], index);
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U);
/* Select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, 2);
}
/* Add most Clocks to group 0 */
/* not open uart clock in this API, uart should configure pin function before opening clock */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_ahbp, 0);
clock_add_to_group(clock_axic, 0);
clock_add_to_group(clock_axis, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_gptmr0, 0);
clock_add_to_group(clock_gptmr1, 0);
clock_add_to_group(clock_gptmr2, 0);
clock_add_to_group(clock_gptmr3, 0);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
clock_add_to_group(clock_lin0, 0);
clock_add_to_group(clock_lin1, 0);
clock_add_to_group(clock_lin2, 0);
clock_add_to_group(clock_lin3, 0);
clock_add_to_group(clock_spi0, 0);
clock_add_to_group(clock_spi1, 0);
clock_add_to_group(clock_spi2, 0);
clock_add_to_group(clock_spi3, 0);
clock_add_to_group(clock_can0, 0);
clock_add_to_group(clock_can1, 0);
clock_add_to_group(clock_can2, 0);
clock_add_to_group(clock_can3, 0);
clock_add_to_group(clock_ptpc, 0);
clock_add_to_group(clock_ref0, 0);
clock_add_to_group(clock_ref1, 0);
clock_add_to_group(clock_watchdog0, 0);
clock_add_to_group(clock_sdp, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_ram0, 0);
clock_add_to_group(clock_usb0, 0);
clock_add_to_group(clock_kman, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_mbx0, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_rng, 0);
clock_add_to_group(clock_mot0, 0);
clock_add_to_group(clock_mot1, 0);
clock_add_to_group(clock_mot2, 0);
clock_add_to_group(clock_mot3, 0);
clock_add_to_group(clock_acmp, 0);
clock_add_to_group(clock_msyn, 0);
clock_add_to_group(clock_lmm0, 0);
clock_add_to_group(clock_lmm1, 0);
clock_add_to_group(clock_adc0, 0);
clock_add_to_group(clock_adc1, 0);
clock_add_to_group(clock_adc2, 0);
clock_add_to_group(clock_dac0, 0);
clock_add_to_group(clock_dac1, 0);
clock_add_to_group(clock_tsns, 0);
clock_add_to_group(clock_crc0, 0);
clock_add_to_group(clock_sdm0, 0);
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
/* Add the CPU1 clock to Group1 */
clock_add_to_group(clock_mchtmr1, 1);
/* Connect Group1 to CPU1 */
clock_connect_group_to_cpu(1, 1);
/* Bump up DCDC voltage to 1275mv */
pcfg_dcdc_set_voltage(HPM_PCFG, 1275);
/* Configure CPU to 600MHz, AXI/AHB to 200MHz */
sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clk_src_pll1_clk0, 1, 3, 3);
/* Connect CAN2/CAN3 to pll0clk0*/
clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 1);
clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 1);
/* Configure PLL1_CLK0 Post Divider to 1 */
pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 0);
pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 600000000);
clock_update_core_clock();
/* Configure AHB to 200MHz */
clock_set_source_divider(clock_ahb, clk_src_pll1_clk1, 2);
/* Configure mchtmr to 24MHz */
clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, 0);
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr0);
}
else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, 0);
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr1);
}
else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, 0);
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr2);
}
else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, 0);
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4);
freq = clock_get_frequency(clock_gptmr3);
}
else {
/* Invalid instance */
}
}
uint32_t board_init_adc12_clock(ADC16_Type *ptr)
{
uint32_t freq = 0;
switch ((uint32_t)ptr) {
case HPM_ADC0_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc0);
break;
case HPM_ADC1_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc1, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc1);
break;
case HPM_ADC2_BASE:
/* Configure the ADC clock to 200MHz */
clock_set_adc_source(clock_adc2, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk1, 2U);
freq = clock_get_frequency(clock_adc2);
break;
default:
/* Invalid ADC instance */
break;
}
return freq;
}
uint32_t board_init_adc16_clock(ADC16_Type *ptr)
{
return 0;
}
uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb)
{
uint32_t freq = 0;
if (ptr == HPM_DAC0) {
if (clk_src_ahb == true) {
/* Configure the DAC clock to 133MHz */
clock_set_dac_source(clock_dac0, clk_dac_src_ahb0);
} else {
/* Configure the DAC clock to 166MHz */
clock_set_dac_source(clock_dac0, clk_dac_src_ana3);
clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2);
}
freq = clock_get_frequency(clock_dac0);
}
return freq;
}
void board_init_can(MCAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(MCAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_MCAN0) {
/* Set the CAN0 peripheral clock to 8MHz */
clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_MCAN1) {
/* Set the CAN1 peripheral clock to 8MHz */
clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can1);
} else if (ptr == HPM_MCAN2) {
/* Set the CAN2 peripheral clock to 8MHz */
clock_set_source_divider(clock_can2, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can2);
} else if (ptr == HPM_MCAN3) {
/* Set the CAN2 peripheral clock to 8MHz */
clock_set_source_divider(clock_can3, clk_src_pll0_clk0, 5);
freq = clock_get_frequency(clock_can3);
} else {
/* Invalid CAN instance */
}
return freq;
}
void board_init_adc16_pins(void)
{
init_adc_pins();
}
void board_init_rgb_pwm_pins(void)
{
init_led_pins_as_pwm();
}
void board_disable_output_rgb_led(uint8_t color)
{
switch (color) {
case BOARD_RGB_RED:
pwm_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
break;
case BOARD_RGB_GREEN:
pwm_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
break;
case BOARD_RGB_BLUE:
pwm_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
break;
default:
while (1) {
;
}
}
}
void board_enable_output_rgb_led(uint8_t color)
{
switch (color) {
case BOARD_RGB_RED:
pwm_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT);
break;
case BOARD_RGB_GREEN:
pwm_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT);
break;
case BOARD_RGB_BLUE:
pwm_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT);
break;
default:
while (1) {
;
}
}
}
void board_init_dac_pins(DAC_Type *ptr)
{
init_dac_pins(ptr);
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_UART0) {
clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 6);
clock_add_to_group(clock_uart0, 0);
freq = clock_get_frequency(clock_uart0);
} else if (ptr == HPM_UART1) {
clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 6);
clock_add_to_group(clock_uart1, 0);
freq = clock_get_frequency(clock_uart1);
} else if (ptr == HPM_UART2) {
clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 6);
clock_add_to_group(clock_uart2, 0);
freq = clock_get_frequency(clock_uart2);
} else if (ptr == HPM_UART6) {
clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 6);
clock_add_to_group(clock_uart6, 0);
freq = clock_get_frequency(clock_uart6);
} else {
/* Not supported */
}
return freq;
}