rt-thread/bsp/raspberry-pi/raspi3-64/driver/drv_sdio.c

533 lines
17 KiB
C
Raw Normal View History

2020-01-10 10:38:21 +08:00
/*
* File : drv_sdio.c
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-29 zdzn first version
*/
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <string.h>
#include "drv_sdio.h"
#include "interrupt.h"
#include "drv_gpio.h"
#include "bcm283x.h"
#include <drivers/mmcsd_core.h>
#include "bcm283x.h"
#include <rtdbg.h>
#ifdef RT_USING_SDIO
#define CONFIG_MMC_USE_DMA
#define DMA_ALIGN (32U)
typedef struct EMMCCommand
{
const char* name;
unsigned int code;
unsigned char resp;
unsigned char rca;
int delay;
} EMMCCommand;
static EMMCCommand sdCommandTable[] =
{
{"GO_IDLE_STATE", 0x00000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,0},
{"ALL_SEND_CID" , 0x02000000 | CMD_RSPNS_136 , RESP_R2I, RCA_NO ,0},
{"SEND_REL_ADDR", 0x03000000 | CMD_RSPNS_48 , RESP_R6 , RCA_NO ,0},
{"SET_DSR" , 0x04000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,0},
{"SWITCH_FUNC" , 0x06000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"CARD_SELECT" , 0x07000000 | CMD_RSPNS_48B , RESP_R1b, RCA_YES ,0},
{"SEND_IF_COND" , 0x08000000 | CMD_RSPNS_48 , RESP_R7 , RCA_NO ,100},
{"SEND_CSD" , 0x09000000 | CMD_RSPNS_136 , RESP_R2S, RCA_YES ,0},
{"SEND_CID" , 0x0A000000 | CMD_RSPNS_136 , RESP_R2I, RCA_YES ,0},
{"VOLT_SWITCH" , 0x0B000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"STOP_TRANS" , 0x0C000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0},
{"SEND_STATUS" , 0x0D000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0},
{"GO_INACTIVE" , 0x0F000000 | CMD_RSPNS_NO , RESP_NO , RCA_YES ,0},
{"SET_BLOCKLEN" , 0x10000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"READ_SINGLE" , 0x11000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_CH, RESP_R1 , RCA_NO ,0},
{"READ_MULTI" , 0x12000000 | CMD_RSPNS_48 | TM_MULTI_DATA | TM_DAT_DIR_CH, RESP_R1 , RCA_NO ,0},
{"SEND_TUNING" , 0x13000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SPEED_CLASS" , 0x14000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0},
{"SET_BLOCKCNT" , 0x17000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"WRITE_SINGLE" , 0x18000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_HC, RESP_R1 , RCA_NO ,0},
{"WRITE_MULTI" , 0x19000000 | CMD_RSPNS_48 | TM_MULTI_DATA | TM_DAT_DIR_HC, RESP_R1 , RCA_NO ,0},
{"PROGRAM_CSD" , 0x1B000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SET_WRITE_PR" , 0x1C000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0},
{"CLR_WRITE_PR" , 0x1D000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0},
{"SND_WRITE_PR" , 0x1E000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"ERASE_WR_ST" , 0x20000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"ERASE_WR_END" , 0x21000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"ERASE" , 0x26000000 | CMD_RSPNS_48B , RESP_R1b, RCA_NO ,0},
{"LOCK_UNLOCK" , 0x2A000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"APP_CMD" , 0x37000000 | CMD_RSPNS_NO , RESP_NO , RCA_NO ,100},
{"APP_CMD" , 0x37000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0},
{"GEN_CMD" , 0x38000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
// APP commands must be prefixed by an APP_CMD.
{"SET_BUS_WIDTH", 0x06000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SD_STATUS" , 0x0D000000 | CMD_RSPNS_48 , RESP_R1 , RCA_YES ,0}, // RCA???
{"SEND_NUM_WRBL", 0x16000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SEND_NUM_ERS" , 0x17000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SD_SENDOPCOND", 0x29000000 | CMD_RSPNS_48 , RESP_R3 , RCA_NO ,1000},
{"SET_CLR_DET" , 0x2A000000 | CMD_RSPNS_48 , RESP_R1 , RCA_NO ,0},
{"SEND_SCR" , 0x33000000 | CMD_RSPNS_48 | CMD_IS_DATA | TM_DAT_DIR_CH , RESP_R1 , RCA_NO ,0},
};
static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width);
static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock);
static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat);
static inline rt_uint32_t read32(rt_uint32_t addr)
{
return( *((volatile rt_uint32_t *)(addr)) );
}
static inline void write32(rt_uint32_t addr, rt_uint32_t value)
{
*((volatile rt_uint32_t *)(addr)) = value;
}
static rt_err_t raspi_transfer_command(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd)
{
rt_uint32_t cmdidx;
rt_uint32_t status;
rt_err_t ret = RT_EOK;
if(read32(pdat->virt + EMMC_STATUS) & SR_CMD_INHIBIT)
write32(pdat->virt + EMMC_CMDTM, 0x0);
EMMCCommand* cmdtab = &sdCommandTable[cmd->cmdidx];
cmdidx = cmdtab->code;
write32(pdat->virt + EMMC_ARG1, cmd->cmdarg);
write32(pdat->virt + EMMC_CMDTM, cmdidx);
do {
status = read32(pdat->virt + EMMC_STATUS);
} while(!(status & SR_CMD_INHIBIT));
if(cmd->resptype & RESP_MASK)
{
cmd->response[0] = read32(pdat->virt + EMMC_RESP0);
if(cmd->resptype & RESP_R2)
{
cmd->response[1] = read32(pdat->virt + EMMC_RESP1);
cmd->response[2] = read32(pdat->virt + EMMC_RESP2);
cmd->response[3] = read32(pdat->virt + EMMC_RESP3);
}
}
return ret;
}
static rt_err_t read_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{
rt_uint32_t * tmp = buf;
rt_uint32_t count = blkcount * blksize;
rt_uint32_t status, err;
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN);
// while((!err) && (count >= sizeof(rt_uint32_t)))
// {
// if(status & PL180_STAT_RX_FIFO_AVL)
// {
// *(tmp) = read32(pdat->virt + PL180_FIFO);
// tmp++;
// count -= sizeof(rt_uint32_t);
// }
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_RX_OVERRUN);
// }
//
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
// while(!err)
// {
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END | PL180_STAT_RX_OVERRUN);
// }
//
// if(status & PL180_STAT_DAT_TIME_OUT)
// return -RT_ERROR;
// else if (status & PL180_STAT_DAT_CRC_FAIL)
// return -RT_ERROR;
// else if (status & PL180_STAT_RX_OVERRUN)
// return -RT_ERROR;
// write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
//
// if(count)
// return -RT_ERROR;
return RT_EOK;
}
static rt_err_t write_bytes(struct sdhci_pdata_t * pdat, rt_uint32_t * buf, rt_uint32_t blkcount, rt_uint32_t blksize)
{
rt_uint32_t * tmp = buf;
rt_uint32_t count = blkcount * blksize;
rt_uint32_t status, err;
int i;
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT);
// while(!err && count)
// {
// if(status & PL180_STAT_TX_FIFO_HALF)
// {
// if(count >= 8 * sizeof(rt_uint32_t))
// {
// for(i = 0; i < 8; i++)
// write32(pdat->virt + PL180_FIFO, *(tmp + i));
// tmp += 8;
// count -= 8 * sizeof(rt_uint32_t);
// }
// else
// {
// while(count >= sizeof(rt_uint32_t))
// {
// write32(pdat->virt + PL180_FIFO, *tmp);
// tmp++;
// count -= sizeof(rt_uint32_t);
// }
// }
// }
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT);
// }
//
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
// while(!err)
// {
// status = read32(pdat->virt + PL180_STATUS);
// err = status & (PL180_STAT_DAT_CRC_FAIL | PL180_STAT_DAT_TIME_OUT | PL180_STAT_DAT_BLK_END);
// }
//
// if(status & PL180_STAT_DAT_TIME_OUT)
// return -RT_ERROR;
// else if (status & PL180_STAT_DAT_CRC_FAIL)
// return -RT_ERROR;
// write32(pdat->virt + PL180_CLEAR, 0x1DC007FF);
//
// if(count)
// return -RT_ERROR;
return RT_EOK;
}
static rt_err_t raspi_transfer_data(struct sdhci_pdata_t * pdat, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz);
rt_uint32_t blksz_bits = dat->blksz - 1;
rt_err_t ret = -RT_ERROR;
write32(pdat->virt + EMMC_BLKSIZECNT, dlen);
if(dat->flag & DATA_DIR_READ)
{
write32(pdat->virt + EMMC_STATUS, SR_READ_TRANSFER);
ret = raspi_transfer_command(pdat, cmd);
if (ret < 0) return ret;
ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
}
else if(dat->flag & DATA_DIR_WRITE)
{
ret = raspi_transfer_command(pdat, cmd);
if (ret < 0) return ret;
write32(pdat->virt + EMMC_STATUS, SR_WRITE_TRANSFER);
ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz);
}
return ret;
}
static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data;
struct sdhci_cmd_t cmd;
struct sdhci_cmd_t stop;
struct sdhci_data_t dat;
rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t));
rt_memset(&dat, 0, sizeof(struct sdhci_data_t));
cmd.cmdidx = req->cmd->cmd_code;
EMMCCommand* cmdtab = &sdCommandTable[cmd.cmdidx];
cmd.cmdarg = req->cmd->arg;
cmd.resptype = cmdtab->resp;
if(req->data)
{
dat.buf = (rt_uint8_t *)req->data->buf;
dat.flag = req->data->flags;
dat.blksz = req->data->blksize;
dat.blkcnt = req->data->blks;
req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat);
}
else
{
req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL);
}
req->cmd->resp[3] = cmd.response[3];
req->cmd->resp[2] = cmd.response[2];
req->cmd->resp[1] = cmd.response[1];
req->cmd->resp[0] = cmd.response[0];
if (req->stop)
{
stop.cmdidx = req->stop->cmd_code;
cmdtab = &sdCommandTable[cmd.cmdidx];
stop.cmdarg = req->stop->arg;
cmd.resptype = cmdtab->resp;
req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL);
}
mmcsd_req_complete(host);
}
static rt_err_t sdhci_transfer(struct sdhci_t * sdhci, struct sdhci_cmd_t * cmd, struct sdhci_data_t * dat)
{
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
if(!dat)
return raspi_transfer_command(pdat, cmd);
return raspi_transfer_data(pdat, cmd, dat);
}
//#ifdef CONFIG_MMC_USE_DMA
//#ifdef BSP_USING_SDIO0
////ALIGN(32) static rt_uint8_t dma_buffer[64 * 1024];
//static rt_uint8_t dma_buffer[64 * 1024];
//#endif
//#endif
static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct sdhci_t * sdhci = (struct sdhci_t *)host->private_data;
sdhci_setclock(sdhci, io_cfg->clock);
sdhci_setwidth(sdhci, io_cfg->bus_width);
}
rt_int32_t mmc_card_status(struct rt_mmcsd_host *host)
{
return 0;
}
void mmc_enable_irq(struct rt_mmcsd_host *host, rt_int32_t en)
{
}
static rt_err_t sdhci_detect(struct sdhci_t * sdhci)
{
return RT_EOK;
}
static rt_err_t sdhci_setwidth(struct sdhci_t * sdhci, rt_uint32_t width)
{
rt_uint32_t temp = 0;
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
temp = read32((pdat->virt + EMMC_CONTROL0));
temp |= C0_HCTL_HS_EN;
temp |= C0_HCTL_DWITDH; // always use 4 data lines:
write32((pdat->virt + EMMC_CONTROL0), temp);
return RT_EOK;
}
static rt_uint32_t sdhci_getdivider( rt_uint32_t sdHostVer, rt_uint32_t freq )
{
rt_uint32_t divisor;
rt_uint32_t closest = 41666666 / freq;
rt_uint32_t shiftcount = __rt_fls(closest - 1);
if (shiftcount > 0) shiftcount--;
if (shiftcount > 7) shiftcount = 7;
if (sdHostVer > HOST_SPEC_V2)
divisor = closest;
else
divisor = (1 << shiftcount);
if (divisor <= 2) {
divisor = 2;
shiftcount = 0;
}
rt_uint32_t hi = 0;
if (sdHostVer > HOST_SPEC_V2)
hi = (divisor & 0x300) >> 2;
rt_uint32_t lo = (divisor & 0x0ff);
rt_uint32_t cdiv = (lo << 8) + hi;
return cdiv;
}
static rt_err_t sdhci_setclock(struct sdhci_t * sdhci, rt_uint32_t clock)
{
rt_uint32_t temp = 0;
rt_uint32_t sdHostVer = 0;
int count = 100000;
struct sdhci_pdata_t * pdat = (struct sdhci_pdata_t *)sdhci->priv;
temp = read32(pdat->virt + EMMC_STATUS);
while((temp & (SR_CMD_INHIBIT | SR_DAT_INHIBIT))&&(--count))
bcm283x_clo_delayMicros(1);
if( count <= 0 )
{
rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n", temp);
return RT_ERROR;
}
// Switch clock off.
temp = read32((pdat->virt + EMMC_CONTROL1));
temp |= ~C1_CLK_EN;
write32((pdat->virt + EMMC_CONTROL1),temp);
bcm283x_clo_delayMicros(10);
// Request the new clock setting and enable the clock
temp = read32(pdat->virt + EMMC_SLOTISR_VER);
sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT;
int cdiv = sdhci_getdivider(sdHostVer, clock);
temp = read32((pdat->virt + EMMC_CONTROL1));
temp = (temp & 0xffff003f) | cdiv;
write32((pdat->virt + EMMC_CONTROL1),temp);
bcm283x_clo_delayMicros(10);
// Enable the clock.
temp = read32(pdat->virt + EMMC_CONTROL1);
temp |= C1_CLK_EN;
write32((pdat->virt + EMMC_CONTROL1),temp);
bcm283x_clo_delayMicros(10);
// Wait for clock to be stable.
count = 10000;
temp = read32(pdat->virt + EMMC_CONTROL1);
while( !(temp & C1_CLK_STABLE) && count-- )
bcm283x_clo_delayMicros(10);
if( count <= 0 )
{
rt_kprintf("EMMC: ERROR: failed to get stable clock.\n");
return RT_ERROR;
}
return RT_EOK;
}
static const struct rt_mmcsd_host_ops ops =
{
mmc_request_send,
mmc_set_iocfg,
RT_NULL,
RT_NULL,
};
static void sdmmc_gpio_init()
{
int pin;
for (pin = BCM_GPIO_PIN_48; pin <= BCM_GPIO_PIN_53; pin++)
{
bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP);
bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_ALT3);
}
bcm283x_gpio_set_pud(pin, BCM283X_GPIO_PUD_UP);
bcm283x_gpio_fsel(pin, BCM283X_GPIO_FSEL_INPT);
}
int raspi_sdmmc_init(void)
{
rt_uint32_t virt;
rt_uint32_t id;
struct rt_mmcsd_host * host = RT_NULL;
struct sdhci_pdata_t * pdat = RT_NULL;
struct sdhci_t * sdhci = RT_NULL;
rt_kprintf("raspi_sdmmc_init start\n");
#ifdef BSP_USING_SDIO0
host = mmcsd_alloc_host();
if (!host)
{
rt_kprintf("alloc host failed");
goto err;
}
sdhci = rt_malloc(sizeof(struct sdhci_t));
if (!sdhci)
{
rt_kprintf("alloc sdhci failed");
goto err;
}
rt_memset(sdhci, 0, sizeof(struct sdhci_t));
rt_kprintf(">> sdmmc_gpio_init\n");
sdmmc_gpio_init();
rt_kprintf("<< sdmmc_gpio_init\n");
virt = MMC0_BASE_ADDR;
pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t));
RT_ASSERT(pdat != RT_NULL);
pdat->virt = (rt_uint32_t)virt;
sdhci->name = "sd0";
sdhci->voltages = VDD_33_34;
sdhci->width = MMCSD_BUSWIDTH_4;
sdhci->clock = 26 * 1000 * 1000;
sdhci->removeable = RT_TRUE;
sdhci->detect = sdhci_detect;
sdhci->setwidth = sdhci_setwidth;
sdhci->setclock = sdhci_setclock;
sdhci->transfer = sdhci_transfer;
sdhci->priv = pdat;
//write32(pdat->virt + PL180_POWER, 0xbf);
host->ops = &ops;
host->freq_min = 400000;
host->freq_max = 50000000;
host->valid_ocr = VDD_32_33 | VDD_33_34;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4;
host->max_seg_size = 2048;
host->max_dma_segs = 10;
host->max_blk_size = 512;
host->max_blk_count = 4096;
host->private_data = sdhci;
mmcsd_change(host);
return RT_EOK;
err:
if(host) rt_free(host);
if(sdhci) rt_free(sdhci);
return -RT_EIO;
#endif
}
INIT_APP_EXPORT(raspi_sdmmc_init);
#endif