rt-thread/src/ipc.c

3256 lines
108 KiB
C
Raw Normal View History

/*
2021-03-08 11:25:38 +08:00
* Copyright (c) 2006-2021, RT-Thread Development Team
2013-06-24 17:06:09 +08:00
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-14 Bernard the first version
* 2006-04-25 Bernard implement semaphore
* 2006-05-03 Bernard add RT_IPC_DEBUG
* modify the type of IPC waiting time to rt_int32_t
* 2006-05-10 Bernard fix the semaphore take bug and add IPC object
* 2006-05-12 Bernard implement mailbox and message queue
* 2006-05-20 Bernard implement mutex
* 2006-05-23 Bernard implement fast event
* 2006-05-24 Bernard implement event
* 2006-06-03 Bernard fix the thread timer init bug
* 2006-06-05 Bernard fix the mutex release bug
* 2006-06-07 Bernard fix the message queue send bug
* 2006-08-04 Bernard add hook support
* 2009-05-21 Yi.qiu fix the sem release bug
* 2009-07-18 Bernard fix the event clear bug
* 2009-09-09 Bernard remove fast event and fix ipc release bug
* 2009-10-10 Bernard change semaphore and mutex value to unsigned value
* 2009-10-25 Bernard change the mb/mq receive timeout to 0 if the
* re-calculated delta tick is a negative number.
* 2009-12-16 Bernard fix the rt_ipc_object_suspend issue when IPC flag
* is RT_IPC_FLAG_PRIO
* 2010-01-20 mbbill remove rt_ipc_object_decrease function.
* 2010-04-20 Bernard move memcpy outside interrupt disable in mq
* 2010-10-26 yi.qiu add module support in rt_mp_delete and rt_mq_delete
* 2010-11-10 Bernard add IPC reset command implementation.
* 2011-12-18 Bernard add more parameter checking in message queue
* 2013-09-14 Grissiom add an option check in rt_event_recv
2018-10-26 06:35:42 +08:00
* 2018-10-02 Bernard add 64bit support for mailbox
* 2019-09-16 tyx add send wait support for message queue
2021-03-08 11:25:38 +08:00
* 2020-07-29 Meco Man fix thread->event_set/event_info when received an
2020-10-11 17:54:39 +08:00
* event without pending
* 2020-10-11 Meco Man add value overflow-check code
2021-05-30 11:43:44 +08:00
* 2021-01-03 Meco Man implement rt_mb_urgent()
* 2021-05-30 Meco Man implement rt_mutex_trytake()
*/
#include <rtthread.h>
#include <rthw.h>
#ifdef RT_USING_HOOK
extern void (*rt_object_trytake_hook)(struct rt_object *object);
extern void (*rt_object_take_hook)(struct rt_object *object);
extern void (*rt_object_put_hook)(struct rt_object *object);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HOOK */
/**
* @addtogroup IPC
*/
/**@{*/
/**
2021-07-09 10:54:51 +08:00
* @brief This function will initialize an IPC object, such as semaphore, mutex, messagequeue and mailbox.
*
2021-07-09 10:54:51 +08:00
* @note Executing this function will complete an initialization of the suspend thread list of the ipc object.
*
2021-07-09 10:54:51 +08:00
* @param ipc is a pointer to the IPC object.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* When the return value is any other values, it means the initialization failed.
*
* @warning This function can be called from all IPC initialization and creation.
*/
2021-07-13 13:20:36 +08:00
rt_inline rt_err_t _ipc_object_init(struct rt_ipc_object *ipc)
{
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
rt_list_init(&(ipc->suspend_thread));
return RT_EOK;
}
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will suspend a thread to a IPC object list.
*
* @param list is a pointer to a suspended thread list of the IPC object.
*
* @param thread is a pointer to the thread object to be suspended.
*
* @param flag is a flag for the thread object to be suspended. It determines how the thread is suspended.
* The flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to use
* RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this semaphore will become non-real-time threads.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the function is successfully executed.
* When the return value is any other values, it means the initialization failed.
*
2021-07-09 10:54:51 +08:00
* @warning This function can ONLY be called in the thread context, you can use RT_DEBUG_IN_THREAD_CONTEXT to
* check the context.
* In addition, this function is generally called by the following functions:
* rt_sem_take(), rt_mutex_take(), rt_event_recv(), rt_mb_send_wait(),
* rt_mb_recv(), rt_mq_recv(), rt_mq_send_wait()
*/
2021-07-13 13:20:36 +08:00
rt_inline rt_err_t _ipc_list_suspend(rt_list_t *list,
struct rt_thread *thread,
rt_uint8_t flag)
{
/* suspend thread */
rt_thread_suspend(thread);
switch (flag)
{
case RT_IPC_FLAG_FIFO:
rt_list_insert_before(list, &(thread->tlist));
2021-06-10 17:58:31 +08:00
break; /* RT_IPC_FLAG_FIFO */
case RT_IPC_FLAG_PRIO:
{
struct rt_list_node *n;
struct rt_thread *sthread;
/* find a suitable position */
for (n = list->next; n != list; n = n->next)
{
sthread = rt_list_entry(n, struct rt_thread, tlist);
/* find out */
if (thread->current_priority < sthread->current_priority)
{
/* insert this thread before the sthread */
rt_list_insert_before(&(sthread->tlist), &(thread->tlist));
break;
}
}
/*
* not found a suitable position,
* append to the end of suspend_thread list
*/
if (n == list)
rt_list_insert_before(list, &(thread->tlist));
}
2021-06-10 17:58:31 +08:00
break;/* RT_IPC_FLAG_PRIO */
2020-07-27 11:49:52 +08:00
default:
2021-05-28 10:28:00 +08:00
RT_ASSERT(0);
2021-03-08 11:25:38 +08:00
break;
}
return RT_EOK;
}
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will resume a thread.
*
* @note This function will resume the first thread in the list of a IPC object.
* 1. remove the thread from suspend queue of a IPC object.
* 2. put the thread into system ready queue.
*
* By contrast, the rt_ipc_list_resume_all() function will resume all suspended threads
* in the list of a IPC object.
*
* @param list is a pointer to a suspended thread list of the IPC object.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the function is successfully executed.
* When the return value is any other values, it means this operation failed.
*
2021-07-09 10:54:51 +08:00
* @warning This function is generally called by the following functions:
* rt_sem_release(), rt_mutex_release(), rt_mb_send_wait(), rt_mq_send_wait(),
* rt_mb_urgent(), rt_mb_recv(), rt_mq_urgent(), rt_mq_recv(),
*/
2021-07-13 13:20:36 +08:00
rt_inline rt_err_t _ipc_list_resume(rt_list_t *list)
{
struct rt_thread *thread;
/* get thread entry */
thread = rt_list_entry(list->next, struct rt_thread, tlist);
RT_DEBUG_LOG(RT_DEBUG_IPC, ("resume thread:%s\n", thread->name));
/* resume it */
rt_thread_resume(thread);
return RT_EOK;
}
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will resume all suspended threads in the IPC object list,
* including the suspended list of IPC object, and private list of mailbox etc.
*
* @note This function will resume all threads in the IPC object list.
* By contrast, the rt_ipc_list_resume() function will resume a suspended thread in the list of a IPC object.
*
2021-07-09 10:54:51 +08:00
* @param list is a pointer to a suspended thread list of the IPC object.
*
* @return Return the operation status. When the return value is RT_EOK, the function is successfully executed.
* When the return value is any other values, it means this operation failed.
*
*/
2021-07-13 13:20:36 +08:00
rt_inline rt_err_t _ipc_list_resume_all(rt_list_t *list)
{
struct rt_thread *thread;
register rt_ubase_t temp;
2019-12-16 13:59:46 +08:00
/* wakeup all suspended threads */
while (!rt_list_isempty(list))
{
/* disable interrupt */
temp = rt_hw_interrupt_disable();
2019-12-16 13:59:46 +08:00
/* get next suspended thread */
thread = rt_list_entry(list->next, struct rt_thread, tlist);
/* set error code to RT_ERROR */
thread->error = -RT_ERROR;
/*
* resume thread
* In rt_thread_resume function, it will remove current thread from
2019-12-16 13:59:46 +08:00
* suspended list
*/
rt_thread_resume(thread);
/* enable interrupt */
rt_hw_interrupt_enable(temp);
}
return RT_EOK;
}
2021-07-09 10:54:51 +08:00
/**@}*/
#ifdef RT_USING_SEMAPHORE
/**
2021-07-09 10:54:51 +08:00
* @addtogroup semaphore
*/
/**@{*/
/**
* @brief This function will initialize a static semaphore object.
*
* @note For the static semaphore object, its memory space is allocated by the compiler during compiling,
* and shall placed on the read-write data segment or on the uninitialized data segment.
* By contrast, the rt_sem_create() function will allocate memory space automatically and initialize
* the semaphore.
*
* @see rt_sem_create()
*
* @param sem is a pointer to the semaphore to initialize. It is assumed that storage for the semaphore will be
* allocated in your application.
*
2021-07-09 10:54:51 +08:00
* @param name is a pointer to the name you would like to give the semaphore.
*
2021-07-09 10:54:51 +08:00
* @param value is the initial value for the semaphore.
* If used to share resources, you should initialize the value as the number of available resources.
* If used to signal the occurrence of an event, you should initialize the value as 0.
*
* @param flag is the semaphore flag, which determines the queuing way of how multiple threads wait
* when the semaphore is not available.
* The semaphore flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this semaphore will become non-real-time threads.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it represents the initialization failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_err_t rt_sem_init(rt_sem_t sem,
const char *name,
rt_uint32_t value,
rt_uint8_t flag)
{
RT_ASSERT(sem != RT_NULL);
RT_ASSERT(value < 0x10000U);
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
2019-12-16 13:59:46 +08:00
/* initialize object */
rt_object_init(&(sem->parent.parent), RT_Object_Class_Semaphore, name);
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(sem->parent));
2019-12-16 13:59:46 +08:00
/* set initial value */
sem->value = (rt_uint16_t)value;
/* set parent */
sem->parent.parent.flag = flag;
return RT_EOK;
}
RTM_EXPORT(rt_sem_init);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will detach a static semaphore object.
*
* @note This function is used to detach a static semaphore object which is initialized by rt_sem_init() function.
* By contrast, the rt_sem_delete() function will delete a semaphore object.
* When the semaphore is successfully detached, it will resume all suspended threads in the semaphore list.
*
2021-07-09 10:54:51 +08:00
* @see rt_sem_delete()
*
2021-07-09 10:54:51 +08:00
* @param sem is a pointer to a semaphore object to be detached.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it means that the semaphore detach failed.
*
* @warning This function can ONLY detach a static semaphore initialized by the rt_sem_init() function.
* If the semaphore is created by the rt_sem_create() function, you MUST NOT USE this function to detach it,
* ONLY USE the rt_sem_delete() function to complete the deletion.
*/
rt_err_t rt_sem_detach(rt_sem_t sem)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(sem != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&sem->parent.parent) == RT_Object_Class_Semaphore);
RT_ASSERT(rt_object_is_systemobject(&sem->parent.parent));
2019-12-16 13:59:46 +08:00
/* wakeup all suspended threads */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(sem->parent.suspend_thread));
/* detach semaphore object */
rt_object_detach(&(sem->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_sem_detach);
#ifdef RT_USING_HEAP
/**
2021-07-09 10:54:51 +08:00
* @brief Creating a semaphore object.
*
* @note For the semaphore object, its memory space is allocated automatically.
* By contrast, the rt_sem_init() function will initialize a static semaphore object.
*
* @see rt_sem_init()
*
* @param name is a pointer to the name you would like to give the semaphore.
*
* @param value is the initial value for the semaphore.
* If used to share resources, you should initialize the value as the number of available resources.
* If used to signal the occurrence of an event, you should initialize the value as 0.
*
2021-07-09 10:54:51 +08:00
* @param flag is the semaphore flag, which determines the queuing way of how multiple threads wait
* when the semaphore is not available.
* The semaphore flag can be ONE of the following values:
*
2021-07-09 10:54:51 +08:00
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
2021-07-09 10:54:51 +08:00
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this semaphore will become non-real-time threads.
*
* @return Return a pointer to the semaphore object. When the return value is RT_NULL, it means the creation failed.
*
* @warning This function can NOT be called in interrupt context. You can use macor RT_DEBUG_NOT_IN_INTERRUPT to check it.
*/
rt_sem_t rt_sem_create(const char *name, rt_uint32_t value, rt_uint8_t flag)
{
rt_sem_t sem;
RT_ASSERT(value < 0x10000U);
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
RT_DEBUG_NOT_IN_INTERRUPT;
/* allocate object */
sem = (rt_sem_t)rt_object_allocate(RT_Object_Class_Semaphore, name);
if (sem == RT_NULL)
return sem;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(sem->parent));
2019-12-16 13:59:46 +08:00
/* set initial value */
sem->value = value;
/* set parent */
sem->parent.parent.flag = flag;
return sem;
}
RTM_EXPORT(rt_sem_create);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will delete a semaphore object and release the memory space.
*
2021-07-09 10:54:51 +08:00
* @note This function is used to delete a semaphore object which is created by the rt_sem_create() function.
* By contrast, the rt_sem_detach() function will detach a static semaphore object.
* When the semaphore is successfully deleted, it will resume all suspended threads in the semaphore list.
*
2021-07-09 10:54:51 +08:00
* @see rt_sem_detach()
*
2021-07-09 10:54:51 +08:00
* @param sem is a pointer to a semaphore object to be deleted.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the semaphore detach failed.
*
* @warning This function can ONLY delete a semaphore initialized by the rt_sem_create() function.
* If the semaphore is initialized by the rt_sem_init() function, you MUST NOT USE this function to delete it,
* ONLY USE the rt_sem_detach() function to complete the detachment.
*/
rt_err_t rt_sem_delete(rt_sem_t sem)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(sem != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&sem->parent.parent) == RT_Object_Class_Semaphore);
RT_ASSERT(rt_object_is_systemobject(&sem->parent.parent) == RT_FALSE);
RT_DEBUG_NOT_IN_INTERRUPT;
2019-12-16 13:59:46 +08:00
/* wakeup all suspended threads */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(sem->parent.suspend_thread));
/* delete semaphore object */
rt_object_delete(&(sem->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_sem_delete);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HEAP */
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will take a semaphore, if the semaphore is unavailable, the thread shall wait for
* the semaphore up to a specified time.
*
* @note When this function is called, the count value of the sem->value will decrease 1 until it is equal to 0.
* When the sem->value is 0, it means that the semaphore is unavailable. At this time, it will suspend the
* thread preparing to take the semaphore.
* On the contrary, the rt_sem_release() function will increase the count value of sem->value by 1 each time.
*
2021-07-09 10:54:51 +08:00
* @see rt_sem_trytake()
*
2021-07-09 10:54:51 +08:00
* @param sem is a pointer to a semaphore object.
*
* @param time is a timeout period (unit: an OS tick). If the semaphore is unavailable, the thread will wait for
* the semaphore up to the amount of time specified by the argument.
* NOTE: Generally, we use the macro RT_WAITING_FOREVER to set this parameter, which means that when the
* semaphore is unavailable, the thread will be waitting forever.
*
* @return Return the operation status. ONLY When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the semaphore take failed.
*
* @warning This function can ONLY be called in the thread context. It MUST NOT BE called in interrupt context.
*/
rt_err_t rt_sem_take(rt_sem_t sem, rt_int32_t time)
{
register rt_base_t temp;
struct rt_thread *thread;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(sem != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&sem->parent.parent) == RT_Object_Class_Semaphore);
RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(sem->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("thread %s take sem:%s, which value is: %d\n",
rt_thread_self()->name,
((struct rt_object *)sem)->name,
sem->value));
if (sem->value > 0)
{
/* semaphore is available */
sem->value --;
/* enable interrupt */
rt_hw_interrupt_enable(temp);
}
else
{
/* no waiting, return with timeout */
if (time == 0)
{
rt_hw_interrupt_enable(temp);
return -RT_ETIMEOUT;
}
else
{
/* current context checking */
RT_DEBUG_IN_THREAD_CONTEXT;
/* semaphore is unavailable, push to suspend list */
/* get current thread */
thread = rt_thread_self();
/* reset thread error number */
thread->error = RT_EOK;
RT_DEBUG_LOG(RT_DEBUG_IPC, ("sem take: suspend thread - %s\n",
thread->name));
/* suspend thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(sem->parent.suspend_thread),
thread,
sem->parent.parent.flag);
/* has waiting time, start thread timer */
if (time > 0)
{
RT_DEBUG_LOG(RT_DEBUG_IPC, ("set thread:%s to timer list\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&time);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* do schedule */
rt_schedule();
if (thread->error != RT_EOK)
{
return thread->error;
}
}
}
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(sem->parent.parent)));
return RT_EOK;
}
RTM_EXPORT(rt_sem_take);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will try to take a semaphore, if the semaphore is unavailable, the thread returns immediately.
*
2021-07-09 10:54:51 +08:00
* @note This function is very similar to the rt_sem_take() function, when the semaphore is not available,
* the rt_sem_trytake() function will return immediately without waiting for a timeout.
* In other words, rt_sem_trytake(sem) has the same effect as rt_sem_take(sem, 0).
*
2021-07-09 10:54:51 +08:00
* @see rt_sem_take()
*
* @param sem is a pointer to a semaphore object.
*
* @return Return the operation status. ONLY When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the semaphore take failed.
*/
rt_err_t rt_sem_trytake(rt_sem_t sem)
{
2021-05-30 11:43:44 +08:00
return rt_sem_take(sem, RT_WAITING_NO);
}
RTM_EXPORT(rt_sem_trytake);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will release a semaphore. If there is thread suspended on the semaphore, it will get resumed.
*
* @note If there are threads suspended on this semaphore, the first thread in the list of this semaphore object
* will be resumed, and a thread scheduling (rt_schedule) will be executed.
* If no threads are suspended on this semaphore, the count value sem->value of this semaphore will increase by 1.
*
2021-07-09 10:54:51 +08:00
* @param sem is a pointer to a semaphore object.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the semaphore release failed.
*/
rt_err_t rt_sem_release(rt_sem_t sem)
{
register rt_base_t temp;
register rt_bool_t need_schedule;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(sem != RT_NULL);
RT_ASSERT(rt_object_get_type(&sem->parent.parent) == RT_Object_Class_Semaphore);
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(sem->parent.parent)));
need_schedule = RT_FALSE;
/* disable interrupt */
temp = rt_hw_interrupt_disable();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("thread %s releases sem:%s, which value is: %d\n",
rt_thread_self()->name,
((struct rt_object *)sem)->name,
sem->value));
if (!rt_list_isempty(&sem->parent.suspend_thread))
{
/* resume the suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(sem->parent.suspend_thread));
need_schedule = RT_TRUE;
}
else
2020-10-11 17:54:39 +08:00
{
2020-10-23 01:04:06 +08:00
if(sem->value < RT_SEM_VALUE_MAX)
2020-10-11 17:54:39 +08:00
{
sem->value ++; /* increase value */
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* resume a thread, re-schedule */
if (need_schedule == RT_TRUE)
rt_schedule();
return RT_EOK;
}
RTM_EXPORT(rt_sem_release);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will set some extra attributions of a semaphore object.
*
* @note Currently this function only supports the RT_IPC_CMD_RESET command to reset the semaphore.
*
* @param sem is a pointer to a semaphore object.
*
* @param cmd is a command word used to configure some attributions of the semaphore.
*
2021-07-09 10:54:51 +08:00
* @param arg is the argument of the function to execute the command.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that this function failed to execute.
*/
rt_err_t rt_sem_control(rt_sem_t sem, int cmd, void *arg)
{
rt_ubase_t level;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(sem != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&sem->parent.parent) == RT_Object_Class_Semaphore);
if (cmd == RT_IPC_CMD_RESET)
{
2018-10-26 06:35:42 +08:00
rt_ubase_t value;
/* get value */
2018-10-26 06:35:42 +08:00
value = (rt_ubase_t)arg;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* resume all waiting thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&sem->parent.suspend_thread);
/* set new value */
sem->value = (rt_uint16_t)value;
/* enable interrupt */
rt_hw_interrupt_enable(level);
rt_schedule();
return RT_EOK;
}
return -RT_ERROR;
}
RTM_EXPORT(rt_sem_control);
2021-07-09 10:54:51 +08:00
/**@}*/
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_SEMAPHORE */
#ifdef RT_USING_MUTEX
/**
2021-07-09 10:54:51 +08:00
* @addtogroup mutex
*/
/**@{*/
/**
* @brief Initialize a static mutex object.
*
* @note For the static mutex object, its memory space is allocated by the compiler during compiling,
* and shall placed on the read-write data segment or on the uninitialized data segment.
* By contrast, the rt_mutex_create() function will automatically allocate memory space
* and initialize the mutex.
*
2021-07-09 10:54:51 +08:00
* @see rt_mutex_create()
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to the mutex to initialize. It is assumed that storage for the mutex will be
* allocated in your application.
*
* @param name is a pointer to the name that given to the mutex.
*
* @param flag is the mutex flag, which determines the queuing way of how multiple threads wait
* when the mutex is not available.
* NOTE: The mutex flag can ONLY be RT_IPC_FLAG_PRIO. Using RT_IPC_FLAG_FIFO will seriously affect
* the real-time performance of the system.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it represents the initialization failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_err_t rt_mutex_init(rt_mutex_t mutex, const char *name, rt_uint8_t flag)
{
(void)flag;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
2019-12-16 13:59:46 +08:00
/* initialize object */
rt_object_init(&(mutex->parent.parent), RT_Object_Class_Mutex, name);
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mutex->parent));
mutex->value = 1;
mutex->owner = RT_NULL;
mutex->original_priority = 0xFF;
mutex->hold = 0;
2021-07-07 10:16:49 +08:00
/* flag can only be RT_IPC_FLAG_PRIO. RT_IPC_FLAG_FIFO cannot solve the unbounded priority inversion problem */
mutex->parent.parent.flag = RT_IPC_FLAG_PRIO;
return RT_EOK;
}
RTM_EXPORT(rt_mutex_init);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will detach a static mutex object.
*
2021-07-09 10:54:51 +08:00
* @note This function is used to detach a static mutex object which is initialized by rt_mutex_init() function.
* By contrast, the rt_mutex_delete() function will delete a mutex object.
* When the mutex is successfully detached, it will resume all suspended threads in the mutex list.
*
2021-07-09 10:54:51 +08:00
* @see rt_mutex_delete()
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to a mutex object to be detached.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it means that the mutex detach failed.
*
* @warning This function can ONLY detach a static mutex initialized by the rt_mutex_init() function.
* If the mutex is created by the rt_mutex_create() function, you MUST NOT USE this function to detach it,
* ONLY USE the rt_mutex_delete() function to complete the deletion.
*/
rt_err_t rt_mutex_detach(rt_mutex_t mutex)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mutex->parent.parent) == RT_Object_Class_Mutex);
RT_ASSERT(rt_object_is_systemobject(&mutex->parent.parent));
2019-12-16 13:59:46 +08:00
/* wakeup all suspended threads */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mutex->parent.suspend_thread));
/* detach mutex object */
rt_object_detach(&(mutex->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mutex_detach);
#ifdef RT_USING_HEAP
/**
2021-07-09 10:54:51 +08:00
* @brief This function will create a mutex object.
*
* @note For the mutex object, its memory space is automatically allocated.
* By contrast, the rt_mutex_init() function will initialize a static mutex object.
*
* @see rt_mutex_init()
*
2021-07-09 10:54:51 +08:00
* @param name is a pointer to the name that given to the mutex.
*
2021-07-09 10:54:51 +08:00
* @param flag is the mutex flag, which determines the queuing way of how multiple threads wait
* when the mutex is not available.
* NOTE: The mutex flag can ONLY be RT_IPC_FLAG_PRIO. Using RT_IPC_FLAG_FIFO will seriously affect
* the real-time performance of the system.
*
2021-07-09 10:54:51 +08:00
* @return Return a pointer to the mutex object. When the return value is RT_NULL, it means the creation failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_mutex_t rt_mutex_create(const char *name, rt_uint8_t flag)
{
struct rt_mutex *mutex;
(void)flag;
RT_DEBUG_NOT_IN_INTERRUPT;
/* allocate object */
mutex = (rt_mutex_t)rt_object_allocate(RT_Object_Class_Mutex, name);
if (mutex == RT_NULL)
return mutex;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mutex->parent));
mutex->value = 1;
mutex->owner = RT_NULL;
mutex->original_priority = 0xFF;
mutex->hold = 0;
2021-07-07 10:16:49 +08:00
/* flag can only be RT_IPC_FLAG_PRIO. RT_IPC_FLAG_FIFO cannot solve the unbounded priority inversion problem */
mutex->parent.parent.flag = RT_IPC_FLAG_PRIO;
return mutex;
}
RTM_EXPORT(rt_mutex_create);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will delete a mutex object and release this memory space.
*
* @note This function is used to delete a mutex object which is created by the rt_mutex_create() function.
* By contrast, the rt_mutex_detach() function will detach a static mutex object.
* When the mutex is successfully deleted, it will resume all suspended threads in the mutex list.
*
* @see rt_mutex_detach()
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to a mutex object to be deleted.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mutex detach failed.
*
2021-07-09 10:54:51 +08:00
* @warning This function can ONLY delete a mutex initialized by the rt_mutex_create() function.
* If the mutex is initialized by the rt_mutex_init() function, you MUST NOT USE this function to delete it,
* ONLY USE the rt_mutex_detach() function to complete the detachment.
*/
rt_err_t rt_mutex_delete(rt_mutex_t mutex)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mutex->parent.parent) == RT_Object_Class_Mutex);
RT_ASSERT(rt_object_is_systemobject(&mutex->parent.parent) == RT_FALSE);
RT_DEBUG_NOT_IN_INTERRUPT;
2019-12-16 13:59:46 +08:00
/* wakeup all suspended threads */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mutex->parent.suspend_thread));
/* delete mutex object */
rt_object_delete(&(mutex->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mutex_delete);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HEAP */
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will take a mutex, if the mutex is unavailable, the thread shall wait for
* the mutex up to a specified time.
*
* @note When this function is called, the count value of the sem->value will decrease 1 until it is equal to 0.
* When the sem->value is 0, it means that the mutex is unavailable. At this time, it will suspend the
* thread preparing to take the mutex.
* On the contrary, the rt_sem_release() function will increase the count value of sem->value by 1 each time.
*
* @see rt_mutex_trytake()
*
* @param mutex is a pointer to a mutex object.
*
2021-07-09 10:54:51 +08:00
* @param time is a timeout period (unit: an OS tick). If the mutex is unavailable, the thread will wait for
* the mutex up to the amount of time specified by the argument.
* NOTE: Generally, we set this parameter to RT_WAITING_FOREVER, which means that when the mutex is unavailable,
* the thread will be waitting forever.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. ONLY When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mutex take failed.
*
* @warning This function can ONLY be called in the thread context. It MUST NOT BE called in interrupt context.
*/
rt_err_t rt_mutex_take(rt_mutex_t mutex, rt_int32_t time)
{
register rt_base_t temp;
struct rt_thread *thread;
/* this function must not be used in interrupt even if time = 0 */
RT_DEBUG_IN_THREAD_CONTEXT;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mutex->parent.parent) == RT_Object_Class_Mutex);
/* get current thread */
thread = rt_thread_self();
/* disable interrupt */
temp = rt_hw_interrupt_disable();
RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(mutex->parent.parent)));
RT_DEBUG_LOG(RT_DEBUG_IPC,
("mutex_take: current thread %s, mutex value: %d, hold: %d\n",
thread->name, mutex->value, mutex->hold));
/* reset thread error */
thread->error = RT_EOK;
if (mutex->owner == thread)
{
2020-10-23 01:04:06 +08:00
if(mutex->hold < RT_MUTEX_HOLD_MAX)
{
/* it's the same thread */
mutex->hold ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
}
else
{
#ifdef RT_USING_SIGNALS
__again:
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_SIGNALS */
/* The value of mutex is 1 in initial status. Therefore, if the
* value is great than 0, it indicates the mutex is avaible.
*/
if (mutex->value > 0)
{
/* mutex is available */
mutex->value --;
/* set mutex owner and original priority */
mutex->owner = thread;
mutex->original_priority = thread->current_priority;
2020-10-23 01:04:06 +08:00
if(mutex->hold < RT_MUTEX_HOLD_MAX)
{
mutex->hold ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
}
else
{
/* no waiting, return with timeout */
if (time == 0)
{
/* set error as timeout */
thread->error = -RT_ETIMEOUT;
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_ETIMEOUT;
}
else
{
/* mutex is unavailable, push to suspend list */
RT_DEBUG_LOG(RT_DEBUG_IPC, ("mutex_take: suspend thread: %s\n",
thread->name));
/* change the owner thread priority of mutex */
if (thread->current_priority < mutex->owner->current_priority)
{
/* change the owner thread priority */
rt_thread_control(mutex->owner,
RT_THREAD_CTRL_CHANGE_PRIORITY,
&thread->current_priority);
}
/* suspend current thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(mutex->parent.suspend_thread),
thread,
mutex->parent.parent.flag);
/* has waiting time, start thread timer */
if (time > 0)
{
RT_DEBUG_LOG(RT_DEBUG_IPC,
("mutex_take: start the timer of thread:%s\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&time);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* do schedule */
rt_schedule();
if (thread->error != RT_EOK)
{
#ifdef RT_USING_SIGNALS
2019-05-09 08:57:24 +08:00
/* interrupt by signal, try it again */
if (thread->error == -RT_EINTR) goto __again;
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_SIGNALS */
/* return error */
return thread->error;
}
else
{
/* the mutex is taken successfully. */
/* disable interrupt */
temp = rt_hw_interrupt_disable();
}
}
}
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mutex->parent.parent)));
return RT_EOK;
}
RTM_EXPORT(rt_mutex_take);
2021-07-09 10:54:51 +08:00
2021-05-30 11:43:44 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will try to take a mutex, if the mutex is unavailable, the thread returns immediately.
*
* @note This function is very similar to the rt_mutex_take() function, when the mutex is not available,
* except that rt_mutex_trytake() will return immediately without waiting for a timeout
* when the mutex is not available.
* In other words, rt_mutex_trytake(mutex) has the same effect as rt_mutex_take(mutex, 0).
*
* @see rt_mutex_take()
2021-05-30 11:43:44 +08:00
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to a mutex object.
2021-05-30 11:43:44 +08:00
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. ONLY When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mutex take failed.
2021-05-30 11:43:44 +08:00
*/
rt_err_t rt_mutex_trytake(rt_mutex_t mutex)
{
return rt_mutex_take(mutex, RT_WAITING_NO);
}
RTM_EXPORT(rt_mutex_trytake);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will release a mutex. If there is thread suspended on the mutex, the thread will be resumed.
*
* @note If there are threads suspended on this mutex, the first thread in the list of this mutex object
* will be resumed, and a thread scheduling (rt_schedule) will be executed.
* If no threads are suspended on this mutex, the count value mutex->value of this mutex will increase by 1.
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to a mutex object.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mutex release failed.
*/
rt_err_t rt_mutex_release(rt_mutex_t mutex)
{
register rt_base_t temp;
struct rt_thread *thread;
rt_bool_t need_schedule;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
RT_ASSERT(rt_object_get_type(&mutex->parent.parent) == RT_Object_Class_Mutex);
need_schedule = RT_FALSE;
/* only thread could release mutex because we need test the ownership */
RT_DEBUG_IN_THREAD_CONTEXT;
/* get current thread */
thread = rt_thread_self();
/* disable interrupt */
temp = rt_hw_interrupt_disable();
RT_DEBUG_LOG(RT_DEBUG_IPC,
("mutex_release:current thread %s, mutex value: %d, hold: %d\n",
thread->name, mutex->value, mutex->hold));
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mutex->parent.parent)));
/* mutex only can be released by owner */
if (thread != mutex->owner)
{
thread->error = -RT_ERROR;
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_ERROR;
}
/* decrease hold */
mutex->hold --;
/* if no hold */
if (mutex->hold == 0)
{
/* change the owner thread to original priority */
if (mutex->original_priority != mutex->owner->current_priority)
{
rt_thread_control(mutex->owner,
RT_THREAD_CTRL_CHANGE_PRIORITY,
&(mutex->original_priority));
}
/* wakeup suspended thread */
if (!rt_list_isempty(&mutex->parent.suspend_thread))
{
/* get suspended thread */
thread = rt_list_entry(mutex->parent.suspend_thread.next,
struct rt_thread,
tlist);
RT_DEBUG_LOG(RT_DEBUG_IPC, ("mutex_release: resume thread: %s\n",
thread->name));
/* set new owner and priority */
mutex->owner = thread;
mutex->original_priority = thread->current_priority;
2020-10-25 11:54:06 +08:00
2020-10-23 01:04:06 +08:00
if(mutex->hold < RT_MUTEX_HOLD_MAX)
{
mutex->hold ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
/* resume thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mutex->parent.suspend_thread));
need_schedule = RT_TRUE;
}
else
{
2020-10-23 01:04:06 +08:00
if(mutex->value < RT_MUTEX_VALUE_MAX)
{
/* increase value */
mutex->value ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
2021-03-08 11:25:38 +08:00
/* clear owner */
mutex->owner = RT_NULL;
mutex->original_priority = 0xff;
}
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* perform a schedule */
if (need_schedule == RT_TRUE)
rt_schedule();
return RT_EOK;
}
RTM_EXPORT(rt_mutex_release);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will set some extra attributions of a mutex object.
*
* @note Currently this function does not implement the control function.
*
2021-07-09 10:54:51 +08:00
* @param mutex is a pointer to a mutex object.
*
2021-07-09 10:54:51 +08:00
* @param cmd is a command word used to configure some attributions of the mutex.
*
* @param arg is the argument of the function to execute the command.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that this function failed to execute.
*/
rt_err_t rt_mutex_control(rt_mutex_t mutex, int cmd, void *arg)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mutex != RT_NULL);
RT_ASSERT(rt_object_get_type(&mutex->parent.parent) == RT_Object_Class_Mutex);
return -RT_ERROR;
}
RTM_EXPORT(rt_mutex_control);
2021-07-09 10:54:51 +08:00
/**@}*/
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_MUTEX */
#ifdef RT_USING_EVENT
/**
2021-07-09 10:54:51 +08:00
* @addtogroup event
*/
/**@{*/
/**
* @brief The function will initialize a static event object.
*
* @note For the static event object, its memory space is allocated by the compiler during compiling,
* and shall placed on the read-write data segment or on the uninitialized data segment.
* By contrast, the rt_event_create() function will allocate memory space automatically
* and initialize the event.
*
* @see rt_event_create()
*
* @param event is a pointer to the event to initialize. It is assumed that storage for the event
* will be allocated in your application.
*
* @param name is a pointer to the name that given to the event.
*
* @param flag is the event flag, which determines the queuing way of how multiple threads wait
* when the event is not available.
* The event flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
2021-07-09 10:54:51 +08:00
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
2021-07-09 10:54:51 +08:00
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this event will become non-real-time threads.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it represents the initialization failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_err_t rt_event_init(rt_event_t event, const char *name, rt_uint8_t flag)
{
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(event != RT_NULL);
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
2019-12-16 13:59:46 +08:00
/* initialize object */
rt_object_init(&(event->parent.parent), RT_Object_Class_Event, name);
/* set parent flag */
event->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(event->parent));
2019-12-16 13:59:46 +08:00
/* initialize event */
event->set = 0;
return RT_EOK;
}
RTM_EXPORT(rt_event_init);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will detach a static event object.
*
* @note This function is used to detach a static event object which is initialized by rt_event_init() function.
* By contrast, the rt_event_delete() function will delete an event object.
* When the event is successfully detached, it will resume all suspended threads in the event list.
*
2021-07-09 10:54:51 +08:00
* @see rt_event_delete()
*
2021-07-09 10:54:51 +08:00
* @param event is a pointer to an event object to be detached.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it means that the event detach failed.
*
* @warning This function can ONLY detach a static event initialized by the rt_event_init() function.
* If the event is created by the rt_event_create() function, you MUST NOT USE this function to detach it,
* ONLY USE the rt_event_delete() function to complete the deletion.
*/
rt_err_t rt_event_detach(rt_event_t event)
{
/* parameter check */
RT_ASSERT(event != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&event->parent.parent) == RT_Object_Class_Event);
RT_ASSERT(rt_object_is_systemobject(&event->parent.parent));
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(event->parent.suspend_thread));
/* detach event object */
rt_object_detach(&(event->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_event_detach);
#ifdef RT_USING_HEAP
/**
2021-07-09 10:54:51 +08:00
* @brief Creating an event object.
*
* @note For the event object, its memory space is allocated automatically.
* By contrast, the rt_event_init() function will initialize a static event object.
*
* @see rt_event_init()
*
2021-07-09 10:54:51 +08:00
* @param name is a pointer to the name that given to the event.
*
2021-07-09 10:54:51 +08:00
* @param flag is the event flag, which determines the queuing way of how multiple threads wait when the event
* is not available.
* The event flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this event will become non-real-time threads.
*
* @return Return a pointer to the event object. When the return value is RT_NULL, it means the creation failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_event_t rt_event_create(const char *name, rt_uint8_t flag)
{
rt_event_t event;
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
RT_DEBUG_NOT_IN_INTERRUPT;
/* allocate object */
event = (rt_event_t)rt_object_allocate(RT_Object_Class_Event, name);
if (event == RT_NULL)
return event;
/* set parent */
event->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(event->parent));
2019-12-16 13:59:46 +08:00
/* initialize event */
event->set = 0;
return event;
}
RTM_EXPORT(rt_event_create);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will delete an event object and release the memory space.
*
* @note This function is used to delete an event object which is created by the rt_event_create() function.
* By contrast, the rt_event_detach() function will detach a static event object.
* When the event is successfully deleted, it will resume all suspended threads in the event list.
*
* @see rt_event_detach()
*
2021-07-09 10:54:51 +08:00
* @param event is a pointer to an event object to be deleted.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the event detach failed.
*
* @warning This function can ONLY delete an event initialized by the rt_event_create() function.
* If the event is initialized by the rt_event_init() function, you MUST NOT USE this function to delete it,
* ONLY USE the rt_event_detach() function to complete the detachment.
*/
rt_err_t rt_event_delete(rt_event_t event)
{
/* parameter check */
RT_ASSERT(event != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&event->parent.parent) == RT_Object_Class_Event);
RT_ASSERT(rt_object_is_systemobject(&event->parent.parent) == RT_FALSE);
RT_DEBUG_NOT_IN_INTERRUPT;
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(event->parent.suspend_thread));
/* delete event object */
rt_object_delete(&(event->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_event_delete);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HEAP */
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send an event to the event object.
* If there is a thread suspended on the event, the thread will be resumed.
*
* @note When using this function, you need to use the parameter (set) to specify the event flag of the event object,
* then the function will traverse the list of suspended threads waiting on the event object.
* If there is a thread suspended on the event, and the thread's event_info and the event flag of
* the current event object matches, the thread will be resumed.
*
* @param event is a pointer to the event object to be sent.
*
2021-07-09 10:54:51 +08:00
* @param set is a flag that you will set for this event's flag.
* You can set an event flag, or you can set multiple flags through OR logic operation.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the event detach failed.
*/
rt_err_t rt_event_send(rt_event_t event, rt_uint32_t set)
{
struct rt_list_node *n;
struct rt_thread *thread;
register rt_ubase_t level;
register rt_base_t status;
rt_bool_t need_schedule;
/* parameter check */
RT_ASSERT(event != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&event->parent.parent) == RT_Object_Class_Event);
if (set == 0)
return -RT_ERROR;
need_schedule = RT_FALSE;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* set event */
event->set |= set;
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(event->parent.parent)));
2019-12-16 13:59:46 +08:00
if (!rt_list_isempty(&event->parent.suspend_thread))
{
/* search thread list to resume thread */
n = event->parent.suspend_thread.next;
while (n != &(event->parent.suspend_thread))
{
/* get thread */
thread = rt_list_entry(n, struct rt_thread, tlist);
status = -RT_ERROR;
if (thread->event_info & RT_EVENT_FLAG_AND)
{
if ((thread->event_set & event->set) == thread->event_set)
{
/* received an AND event */
status = RT_EOK;
}
}
else if (thread->event_info & RT_EVENT_FLAG_OR)
{
if (thread->event_set & event->set)
{
2019-12-16 13:59:46 +08:00
/* save the received event set */
thread->event_set = thread->event_set & event->set;
/* received an OR event */
status = RT_EOK;
}
}
else
{
/* enable interrupt */
rt_hw_interrupt_enable(level);
return -RT_EINVAL;
}
/* move node to the next */
n = n->next;
/* condition is satisfied, resume thread */
if (status == RT_EOK)
{
/* clear event */
if (thread->event_info & RT_EVENT_FLAG_CLEAR)
event->set &= ~thread->event_set;
/* resume thread, and thread list breaks out */
rt_thread_resume(thread);
/* need do a scheduling */
need_schedule = RT_TRUE;
}
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* do a schedule */
if (need_schedule == RT_TRUE)
rt_schedule();
return RT_EOK;
}
RTM_EXPORT(rt_event_send);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will receive an event from event object. if the event is unavailable, the thread shall wait for
* the event up to a specified time.
*
* @note If there are threads suspended on this semaphore, the first thread in the list of this semaphore object
* will be resumed, and a thread scheduling (rt_schedule) will be executed.
* If no threads are suspended on this semaphore, the count value sem->value of this semaphore will increase by 1.
*
* @param event is a pointer to the event object to be received.
*
* @param set is a flag that you will set for this event's flag.
* You can set an event flag, or you can set multiple flags through OR logic operation.
*
2021-07-09 10:54:51 +08:00
* @param option is the option of this receiving event, it indicates how the receiving event is operated.
* The option can be one or more of the following values, When selecting multiple values,use logical OR to operate.
* (NOTE: RT_EVENT_FLAG_OR and RT_EVENT_FLAG_AND can only select one):
*
2021-07-09 10:54:51 +08:00
*
* RT_EVENT_FLAG_OR The thread select to use logical OR to receive the event.
*
* RT_EVENT_FLAG_AND The thread select to use logical OR to receive the event.
*
* RT_EVENT_FLAG_CLEAR When the thread receives the corresponding event, the function
* determines whether to clear the event flag.
*
* @param timeout is a timeout period (unit: an OS tick).
*
* @param recved is a pointer to the received event. If you don't care about this value, you can use RT_NULL to set.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the semaphore release failed.
*/
rt_err_t rt_event_recv(rt_event_t event,
rt_uint32_t set,
rt_uint8_t option,
rt_int32_t timeout,
rt_uint32_t *recved)
{
struct rt_thread *thread;
register rt_ubase_t level;
register rt_base_t status;
RT_DEBUG_IN_THREAD_CONTEXT;
/* parameter check */
RT_ASSERT(event != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&event->parent.parent) == RT_Object_Class_Event);
if (set == 0)
return -RT_ERROR;
2019-12-16 13:59:46 +08:00
/* initialize status */
status = -RT_ERROR;
/* get current thread */
thread = rt_thread_self();
/* reset thread error */
thread->error = RT_EOK;
RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(event->parent.parent)));
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* check event set */
if (option & RT_EVENT_FLAG_AND)
{
if ((event->set & set) == set)
status = RT_EOK;
}
else if (option & RT_EVENT_FLAG_OR)
{
if (event->set & set)
status = RT_EOK;
}
else
{
/* either RT_EVENT_FLAG_AND or RT_EVENT_FLAG_OR should be set */
RT_ASSERT(0);
}
if (status == RT_EOK)
{
/* set received event */
if (recved)
2015-11-23 13:23:55 +08:00
*recved = (event->set & set);
2021-03-08 11:25:38 +08:00
/* fill thread event info */
thread->event_set = (event->set & set);
thread->event_info = option;
2021-03-08 11:25:38 +08:00
/* received event */
if (option & RT_EVENT_FLAG_CLEAR)
event->set &= ~set;
}
else if (timeout == 0)
{
/* no waiting */
thread->error = -RT_ETIMEOUT;
/* enable interrupt */
rt_hw_interrupt_enable(level);
return -RT_ETIMEOUT;
}
else
{
/* fill thread event info */
thread->event_set = set;
thread->event_info = option;
/* put thread to suspended thread list */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(event->parent.suspend_thread),
thread,
event->parent.parent.flag);
/* if there is a waiting timeout, active thread timer */
if (timeout > 0)
{
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* do a schedule */
rt_schedule();
if (thread->error != RT_EOK)
{
/* return error */
return thread->error;
}
/* received an event, disable interrupt to protect */
level = rt_hw_interrupt_disable();
/* set received event */
2015-11-23 16:10:49 +08:00
if (recved)
*recved = thread->event_set;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(event->parent.parent)));
return thread->error;
}
RTM_EXPORT(rt_event_recv);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will set some extra attributions of an event object.
*
* @note Currently this function only supports the RT_IPC_CMD_RESET command to reset the event.
*
* @param event is a pointer to an event object.
*
2021-07-09 10:54:51 +08:00
* @param cmd is a command word used to configure some attributions of the event.
*
2021-07-09 10:54:51 +08:00
* @param arg is the argument of the function to execute the command.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that this function failed to execute.
*/
rt_err_t rt_event_control(rt_event_t event, int cmd, void *arg)
{
rt_ubase_t level;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(event != RT_NULL);
RT_ASSERT(rt_object_get_type(&event->parent.parent) == RT_Object_Class_Event);
2019-12-16 13:59:46 +08:00
if (cmd == RT_IPC_CMD_RESET)
{
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* resume all waiting thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&event->parent.suspend_thread);
2019-12-16 13:59:46 +08:00
/* initialize event set */
event->set = 0;
/* enable interrupt */
rt_hw_interrupt_enable(level);
rt_schedule();
return RT_EOK;
}
return -RT_ERROR;
}
2013-06-24 17:06:09 +08:00
RTM_EXPORT(rt_event_control);
2021-07-09 10:54:51 +08:00
/**@}*/
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_EVENT */
#ifdef RT_USING_MAILBOX
/**
2021-07-09 10:54:51 +08:00
* @addtogroup mailbox
*/
/**@{*/
/**
* @brief Initialize a static mailbox object.
*
2021-07-09 10:54:51 +08:00
* @note For the static mailbox object, its memory space is allocated by the compiler during compiling,
* and shall placed on the read-write data segment or on the uninitialized data segment.
* By contrast, the rt_mb_create() function will allocate memory space automatically and initialize the mailbox.
*
2021-07-09 10:54:51 +08:00
* @see rt_mb_create()
*
* @param mb is a pointer to the mailbox to initialize.
* It is assumed that storage for the mailbox will be allocated in your application.
*
* @param name is a pointer to the name that given to the mailbox.
*
* @param size is the maximum number of mails in the mailbox.
* For example, when the mailbox buffer capacity is N, size is N/4.
*
* @param flag is the mailbox flag, which determines the queuing way of how multiple threads wait
* when the mailbox is not available.
* The mailbox flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this mailbox will become non-real-time threads.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it represents the initialization failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_err_t rt_mb_init(rt_mailbox_t mb,
const char *name,
void *msgpool,
rt_size_t size,
rt_uint8_t flag)
{
RT_ASSERT(mb != RT_NULL);
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
2019-12-16 13:59:46 +08:00
/* initialize object */
rt_object_init(&(mb->parent.parent), RT_Object_Class_MailBox, name);
/* set parent flag */
mb->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mb->parent));
2019-12-16 13:59:46 +08:00
/* initialize mailbox */
mb->msg_pool = (rt_ubase_t *)msgpool;
mb->size = size;
mb->entry = 0;
mb->in_offset = 0;
mb->out_offset = 0;
2019-12-16 13:59:46 +08:00
/* initialize an additional list of sender suspend thread */
rt_list_init(&(mb->suspend_sender_thread));
return RT_EOK;
}
RTM_EXPORT(rt_mb_init);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will detach a static mailbox object.
*
* @note This function is used to detach a static mailbox object which is initialized by rt_mb_init() function.
* By contrast, the rt_mb_delete() function will delete a mailbox object.
* When the mailbox is successfully detached, it will resume all suspended threads in the mailbox list.
*
2021-07-09 10:54:51 +08:00
* @see rt_mb_delete()
*
2021-07-09 10:54:51 +08:00
* @param mb is a pointer to a mailbox object to be detached.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*
* @warning This function can ONLY detach a static mailbox initialized by the rt_mb_init() function.
* If the mailbox is created by the rt_mb_create() function, you MUST NOT USE this function to detach it,
* ONLY USE the rt_mb_delete() function to complete the deletion.
*/
rt_err_t rt_mb_detach(rt_mailbox_t mb)
{
/* parameter check */
RT_ASSERT(mb != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
RT_ASSERT(rt_object_is_systemobject(&mb->parent.parent));
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->parent.suspend_thread));
/* also resume all mailbox private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->suspend_sender_thread));
/* detach mailbox object */
rt_object_detach(&(mb->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mb_detach);
#ifdef RT_USING_HEAP
/**
2021-07-09 10:54:51 +08:00
* @brief Creating a mailbox object.
*
* @note For the mailbox object, its memory space is allocated automatically.
* By contrast, the rt_mb_init() function will initialize a static mailbox object.
*
* @see rt_mb_init()
*
2021-07-09 10:54:51 +08:00
* @param name is a pointer that given to the mailbox.
*
2021-07-09 10:54:51 +08:00
* @param size is the maximum number of mails in the mailbox.
* For example, when mailbox buffer capacity is N, size is N/4.
*
* @param flag is the mailbox flag, which determines the queuing way of how multiple threads wait
* when the mailbox is not available.
* The mailbox flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this mailbox will become non-real-time threads.
*
* @return Return a pointer to the mailbox object. When the return value is RT_NULL, it means the creation failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_mailbox_t rt_mb_create(const char *name, rt_size_t size, rt_uint8_t flag)
{
rt_mailbox_t mb;
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
RT_DEBUG_NOT_IN_INTERRUPT;
/* allocate object */
mb = (rt_mailbox_t)rt_object_allocate(RT_Object_Class_MailBox, name);
if (mb == RT_NULL)
return mb;
/* set parent */
mb->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mb->parent));
2019-12-16 13:59:46 +08:00
/* initialize mailbox */
mb->size = size;
mb->msg_pool = (rt_ubase_t *)RT_KERNEL_MALLOC(mb->size * sizeof(rt_ubase_t));
if (mb->msg_pool == RT_NULL)
{
/* delete mailbox object */
rt_object_delete(&(mb->parent.parent));
return RT_NULL;
}
mb->entry = 0;
mb->in_offset = 0;
mb->out_offset = 0;
2019-12-16 13:59:46 +08:00
/* initialize an additional list of sender suspend thread */
rt_list_init(&(mb->suspend_sender_thread));
return mb;
}
RTM_EXPORT(rt_mb_create);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will delete a mailbox object and release the memory space.
*
* @note This function is used to delete a mailbox object which is created by the rt_mb_create() function.
* By contrast, the rt_mb_detach() function will detach a static mailbox object.
* When the mailbox is successfully deleted, it will resume all suspended threads in the mailbox list.
*
2021-07-09 10:54:51 +08:00
* @see rt_mb_detach()
*
2021-07-09 10:54:51 +08:00
* @param mb is a pointer to a mailbox object to be deleted.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*
* @warning This function can only delete mailbox created by the rt_mb_create() function.
* If the mailbox is initialized by the rt_mb_init() function, you MUST NOT USE this function to delete it,
* ONLY USE the rt_mb_detach() function to complete the detachment.
*/
rt_err_t rt_mb_delete(rt_mailbox_t mb)
{
/* parameter check */
RT_ASSERT(mb != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
RT_ASSERT(rt_object_is_systemobject(&mb->parent.parent) == RT_FALSE);
RT_DEBUG_NOT_IN_INTERRUPT;
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->parent.suspend_thread));
/* also resume all mailbox private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->suspend_sender_thread));
/* free mailbox pool */
RT_KERNEL_FREE(mb->msg_pool);
/* delete mailbox object */
rt_object_delete(&(mb->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mb_delete);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HEAP */
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send an mail to the mailbox object. If there is a thread suspended on the mailbox,
* the thread will be resumed.
*
* @note When using this function to send a mail, if the mailbox if fully used, the current thread will
* wait for a timeout. If the set timeout time is reached and there is still no space available,
* the sending thread will be resumed and an error code will be returned.
* By contrast, the rt_mb_send() function will return an error code immediately without waiting time
* when the mailbox if fully used.
*
* @see rt_mb_send()
*
* @param mb is a pointer to the mailbox object to be sent.
*
* @param value is a value to the content of the mail you want to send.
*
* @param timeout is a timeout period (unit: an OS tick).
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*
2021-07-09 10:54:51 +08:00
* @warning This function can be called in interrupt context and thread context.
*/
rt_err_t rt_mb_send_wait(rt_mailbox_t mb,
2018-10-26 06:35:42 +08:00
rt_ubase_t value,
rt_int32_t timeout)
{
struct rt_thread *thread;
register rt_ubase_t temp;
rt_uint32_t tick_delta;
/* parameter check */
RT_ASSERT(mb != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
/* initialize delta tick */
tick_delta = 0;
/* get current thread */
thread = rt_thread_self();
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mb->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* for non-blocking call */
if (mb->entry == mb->size && timeout == 0)
{
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
/* mailbox is full */
while (mb->entry == mb->size)
{
/* reset error number in thread */
thread->error = RT_EOK;
/* no waiting, return timeout */
if (timeout == 0)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
RT_DEBUG_IN_THREAD_CONTEXT;
/* suspend current thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(mb->suspend_sender_thread),
thread,
mb->parent.parent.flag);
/* has waiting time, start thread timer */
if (timeout > 0)
{
/* get the start tick of timer */
tick_delta = rt_tick_get();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("mb_send_wait: start timer of thread:%s\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* re-schedule */
rt_schedule();
/* resume from suspend state */
if (thread->error != RT_EOK)
{
/* return error */
return thread->error;
}
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* if it's not waiting forever and then re-calculate timeout tick */
if (timeout > 0)
{
tick_delta = rt_tick_get() - tick_delta;
timeout -= tick_delta;
if (timeout < 0)
timeout = 0;
}
}
/* set ptr */
mb->msg_pool[mb->in_offset] = value;
/* increase input offset */
++ mb->in_offset;
if (mb->in_offset >= mb->size)
mb->in_offset = 0;
2021-03-08 11:25:38 +08:00
2020-10-23 01:04:06 +08:00
if(mb->entry < RT_MB_ENTRY_MAX)
{
/* increase message entry */
mb->entry ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
2021-03-08 11:25:38 +08:00
/* resume suspended thread */
if (!rt_list_isempty(&mb->parent.suspend_thread))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mb->parent.suspend_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return RT_EOK;
}
RTM_EXPORT(rt_mb_send_wait);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send an mail to the mailbox object. If there is a thread suspended on the mailbox,
* the thread will be resumed.
*
* @note When using this function to send a mail, if the mailbox is fully used, this function will return an error
* code immediately without waiting time.
* By contrast, the rt_mb_send_wait() function is set a timeout to wait for the mail to be sent.
*
* @see rt_mb_send_wait()
*
* @param mb is a pointer to the mailbox object to be sent.
*
2021-07-09 10:54:51 +08:00
* @param value is a value to the content of the mail you want to send.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*/
2018-10-26 06:35:42 +08:00
rt_err_t rt_mb_send(rt_mailbox_t mb, rt_ubase_t value)
{
return rt_mb_send_wait(mb, value, 0);
}
RTM_EXPORT(rt_mb_send);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send an urgent mail to the mailbox object.
*
* @note This function is almost the same as the rt_mb_send() function. The only difference is that
* when sending an urgent mail, the mail will be placed at the head of the mail queue so that
* the recipient can receive the urgent mail first.
*
* @see rt_mb_send()
*
* @param mb is a pointer to the mailbox object to be sent.
*
2021-07-09 10:54:51 +08:00
* @param value is the content of the mail you want to send.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*/
2021-01-03 23:28:15 +08:00
rt_err_t rt_mb_urgent(rt_mailbox_t mb, rt_ubase_t value)
{
register rt_ubase_t temp;
/* parameter check */
RT_ASSERT(mb != RT_NULL);
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mb->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
2021-01-04 22:34:50 +08:00
if (mb->entry == mb->size)
{
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
/* rewind to the previous position */
2021-01-04 22:34:50 +08:00
if (mb->out_offset > 0)
{
mb->out_offset --;
}
else
{
mb->out_offset = mb->size - 1;
}
/* set ptr */
mb->msg_pool[mb->out_offset] = value;
2021-01-05 09:20:53 +08:00
/* increase message entry */
mb->entry ++;
/* resume suspended thread */
if (!rt_list_isempty(&mb->parent.suspend_thread))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mb->parent.suspend_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return RT_EOK;
}
RTM_EXPORT(rt_mb_urgent);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will receive a mail from mailbox object, if there is no mail in mailbox object,
* the thread shall wait for a specified time.
*
* @note Only when there is mail in the mailbox, the receiving thread can get the mail immediately and
* return RT_EOK, otherwise the receiving thread will be suspended until the set timeout. If the mail
* is still not received within the specified time, it will return-RT_ETIMEOUT.
*
* @param mb is a pointer to the mailbox object to be received.
*
* @param value is a flag that you will set for this mailbox's flag.
* You can set an mailbox flag, or you can set multiple flags through OR logic operations.
*
2021-07-09 10:54:51 +08:00
* @param timeout is a timeout period (unit: an OS tick).
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox release failed.
*/
2018-10-26 06:35:42 +08:00
rt_err_t rt_mb_recv(rt_mailbox_t mb, rt_ubase_t *value, rt_int32_t timeout)
{
struct rt_thread *thread;
register rt_ubase_t temp;
rt_uint32_t tick_delta;
/* parameter check */
RT_ASSERT(mb != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
/* initialize delta tick */
tick_delta = 0;
/* get current thread */
thread = rt_thread_self();
RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(mb->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* for non-blocking call */
if (mb->entry == 0 && timeout == 0)
{
rt_hw_interrupt_enable(temp);
return -RT_ETIMEOUT;
}
/* mailbox is empty */
while (mb->entry == 0)
{
/* reset error number in thread */
thread->error = RT_EOK;
/* no waiting, return timeout */
if (timeout == 0)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
thread->error = -RT_ETIMEOUT;
2013-06-24 17:06:09 +08:00
return -RT_ETIMEOUT;
}
RT_DEBUG_IN_THREAD_CONTEXT;
/* suspend current thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(mb->parent.suspend_thread),
thread,
mb->parent.parent.flag);
/* has waiting time, start thread timer */
if (timeout > 0)
{
/* get the start tick of timer */
tick_delta = rt_tick_get();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("mb_recv: start timer of thread:%s\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* re-schedule */
rt_schedule();
/* resume from suspend state */
if (thread->error != RT_EOK)
{
/* return error */
return thread->error;
}
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* if it's not waiting forever and then re-calculate timeout tick */
if (timeout > 0)
{
tick_delta = rt_tick_get() - tick_delta;
timeout -= tick_delta;
if (timeout < 0)
timeout = 0;
}
}
/* fill ptr */
*value = mb->msg_pool[mb->out_offset];
/* increase output offset */
++ mb->out_offset;
if (mb->out_offset >= mb->size)
mb->out_offset = 0;
/* decrease message entry */
if(mb->entry > 0)
{
mb->entry --;
}
/* resume suspended thread */
if (!rt_list_isempty(&(mb->suspend_sender_thread)))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mb->suspend_sender_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mb->parent.parent)));
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mb->parent.parent)));
return RT_EOK;
}
RTM_EXPORT(rt_mb_recv);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will set some extra attributions of a mailbox object.
*
* @note Currently this function only supports the RT_IPC_CMD_RESET command to reset the mailbox.
*
* @param mb is a pointer to a mailbox object.
*
* @param cmd is a command used to configure some attributions of the mailbox.
*
2021-07-09 10:54:51 +08:00
* @param arg is the argument of the function to execute the command.
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that this function failed to execute.
*/
rt_err_t rt_mb_control(rt_mailbox_t mb, int cmd, void *arg)
{
rt_ubase_t level;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mb != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mb->parent.parent) == RT_Object_Class_MailBox);
if (cmd == RT_IPC_CMD_RESET)
{
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* resume all waiting thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->parent.suspend_thread));
/* also resume all mailbox private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mb->suspend_sender_thread));
/* re-init mailbox */
mb->entry = 0;
mb->in_offset = 0;
mb->out_offset = 0;
/* enable interrupt */
rt_hw_interrupt_enable(level);
rt_schedule();
return RT_EOK;
}
return -RT_ERROR;
}
2013-06-24 17:06:09 +08:00
RTM_EXPORT(rt_mb_control);
2021-07-09 10:54:51 +08:00
/**@}*/
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_MAILBOX */
#ifdef RT_USING_MESSAGEQUEUE
2021-07-09 10:54:51 +08:00
/**
* @addtogroup messagequeue
*/
/**@{*/
struct rt_mq_message
{
struct rt_mq_message *next;
};
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief Initialize a static messagequeue object.
*
* @note For the static messagequeue object, its memory space is allocated by the compiler during compiling,
* and shall placed on the read-write data segment or on the uninitialized data segment.
* By contrast, the rt_mq_create() function will allocate memory space automatically
* and initialize the messagequeue.
*
* @see rt_mq_create()
*
* @param mq is a pointer to the messagequeue to initialize. It is assumed that storage for
* the messagequeue will be allocated in your application.
*
* @param name is a pointer to the name that given to the messagequeue.
*
* @param msgpool is a pointer to the starting address of the memory space you allocated for
* the messagequeue in advance.
* In other words, msgpool is a pointer to the messagequeue buffer of the starting address.
*
* @param msg_size is the maximum length of a message in the messagequeue (Unit: Byte).
*
* @param pool_size is the size of the memory space allocated for the messagequeue in advance.
*
* @param flag is the messagequeue flag, which determines the queuing way of how multiple threads wait
* when the messagequeue is not available.
* The messagequeue flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
2021-07-09 10:54:51 +08:00
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
2021-07-09 10:54:51 +08:00
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this messagequeue will become non-real-time threads.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it represents the initialization failed.
*
* @warning This function can ONLY be called from threads.
*/
rt_err_t rt_mq_init(rt_mq_t mq,
const char *name,
void *msgpool,
rt_size_t msg_size,
rt_size_t pool_size,
rt_uint8_t flag)
{
struct rt_mq_message *head;
register rt_base_t temp;
/* parameter check */
RT_ASSERT(mq != RT_NULL);
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
2019-12-16 13:59:46 +08:00
/* initialize object */
rt_object_init(&(mq->parent.parent), RT_Object_Class_MessageQueue, name);
/* set parent flag */
mq->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mq->parent));
2019-12-16 13:59:46 +08:00
/* set message pool */
mq->msg_pool = msgpool;
/* get correct message size */
mq->msg_size = RT_ALIGN(msg_size, RT_ALIGN_SIZE);
mq->max_msgs = pool_size / (mq->msg_size + sizeof(struct rt_mq_message));
2019-12-16 13:59:46 +08:00
/* initialize message list */
mq->msg_queue_head = RT_NULL;
mq->msg_queue_tail = RT_NULL;
2019-12-16 13:59:46 +08:00
/* initialize message empty list */
mq->msg_queue_free = RT_NULL;
for (temp = 0; temp < mq->max_msgs; temp ++)
{
head = (struct rt_mq_message *)((rt_uint8_t *)mq->msg_pool +
temp * (mq->msg_size + sizeof(struct rt_mq_message)));
head->next = (struct rt_mq_message *)mq->msg_queue_free;
mq->msg_queue_free = head;
}
/* the initial entry is zero */
mq->entry = 0;
2019-12-16 13:59:46 +08:00
/* initialize an additional list of sender suspend thread */
rt_list_init(&(mq->suspend_sender_thread));
return RT_EOK;
}
RTM_EXPORT(rt_mq_init);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will detach a static messagequeue object.
*
* @note This function is used to detach a static messagequeue object which is initialized by rt_mq_init() function.
* By contrast, the rt_mq_delete() function will delete a messagequeue object.
* When the messagequeue is successfully detached, it will resume all suspended threads in the messagequeue list.
*
2021-07-09 10:54:51 +08:00
* @see rt_mq_delete()
*
2021-07-09 10:54:51 +08:00
* @param mq is a pointer to a messagequeue object to be detached.
*
* @return Return the operation status. When the return value is RT_EOK, the initialization is successful.
* If the return value is any other values, it means that the messagequeue detach failed.
*
* @warning This function can ONLY detach a static messagequeue initialized by the rt_mq_init() function.
* If the messagequeue is created by the rt_mq_create() function, you MUST NOT USE this function to detach it,
* and ONLY USE the rt_mq_delete() function to complete the deletion.
*/
rt_err_t rt_mq_detach(rt_mq_t mq)
{
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
RT_ASSERT(rt_object_is_systemobject(&mq->parent.parent));
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&mq->parent.suspend_thread);
/* also resume all message queue private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mq->suspend_sender_thread));
/* detach message queue object */
rt_object_detach(&(mq->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mq_detach);
#ifdef RT_USING_HEAP
/**
2021-07-09 10:54:51 +08:00
* @brief Creating a messagequeue object.
*
* @note For the messagequeue object, its memory space is allocated automatically.
* By contrast, the rt_mq_init() function will initialize a static messagequeue object.
*
* @see rt_mq_init()
*
2021-07-09 10:54:51 +08:00
* @param name is a pointer that given to the messagequeue.
*
2021-07-09 10:54:51 +08:00
* @param msg_size is the maximum length of a message in the messagequeue (Unit: Byte).
*
* @param max_msgs is the maximum number of messages in the messagequeue.
*
* @param flag is the messagequeue flag, which determines the queuing way of how multiple threads wait
* when the messagequeue is not available.
* The messagequeue flag can be ONE of the following values:
*
* RT_IPC_FLAG_PRIO The pending threads will queue in order of priority.
*
* RT_IPC_FLAG_FIFO The pending threads will queue in the first-in-first-out method
* (also known as first-come-first-served (FCFS) scheduling strategy).
*
* NOTE: RT_IPC_FLAG_FIFO is a non-real-time scheduling mode. It is strongly recommended to
* use RT_IPC_FLAG_PRIO to ensure the thread is real-time UNLESS your applications concern about
* the first-in-first-out principle, and you clearly understand that all threads involved in
* this messagequeue will become non-real-time threads.
*
* @return Return a pointer to the messagequeue object. When the return value is RT_NULL, it means the creation failed.
*
* @warning This function can NOT be called in interrupt context. You can use macor RT_DEBUG_NOT_IN_INTERRUPT to check it.
*/
rt_mq_t rt_mq_create(const char *name,
rt_size_t msg_size,
rt_size_t max_msgs,
rt_uint8_t flag)
{
struct rt_messagequeue *mq;
struct rt_mq_message *head;
register rt_base_t temp;
RT_ASSERT((flag == RT_IPC_FLAG_FIFO) || (flag == RT_IPC_FLAG_PRIO));
RT_DEBUG_NOT_IN_INTERRUPT;
/* allocate object */
mq = (rt_mq_t)rt_object_allocate(RT_Object_Class_MessageQueue, name);
if (mq == RT_NULL)
return mq;
/* set parent */
mq->parent.parent.flag = flag;
2019-12-16 13:59:46 +08:00
/* initialize ipc object */
2021-07-13 13:20:36 +08:00
_ipc_object_init(&(mq->parent));
2019-12-16 13:59:46 +08:00
/* initialize message queue */
/* get correct message size */
mq->msg_size = RT_ALIGN(msg_size, RT_ALIGN_SIZE);
mq->max_msgs = max_msgs;
/* allocate message pool */
mq->msg_pool = RT_KERNEL_MALLOC((mq->msg_size + sizeof(struct rt_mq_message)) * mq->max_msgs);
if (mq->msg_pool == RT_NULL)
{
rt_object_delete(&(mq->parent.parent));
return RT_NULL;
}
2019-12-16 13:59:46 +08:00
/* initialize message list */
mq->msg_queue_head = RT_NULL;
mq->msg_queue_tail = RT_NULL;
2019-12-16 13:59:46 +08:00
/* initialize message empty list */
mq->msg_queue_free = RT_NULL;
for (temp = 0; temp < mq->max_msgs; temp ++)
{
head = (struct rt_mq_message *)((rt_uint8_t *)mq->msg_pool +
temp * (mq->msg_size + sizeof(struct rt_mq_message)));
head->next = (struct rt_mq_message *)mq->msg_queue_free;
mq->msg_queue_free = head;
}
/* the initial entry is zero */
mq->entry = 0;
2019-12-16 13:59:46 +08:00
/* initialize an additional list of sender suspend thread */
rt_list_init(&(mq->suspend_sender_thread));
return mq;
}
RTM_EXPORT(rt_mq_create);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will delete a messagequeue object and release the memory.
*
2021-07-09 10:54:51 +08:00
* @note This function is used to delete a messagequeue object which is created by the rt_mq_create() function.
* By contrast, the rt_mq_detach() function will detach a static messagequeue object.
* When the messagequeue is successfully deleted, it will resume all suspended threads in the messagequeue list.
*
2021-07-09 10:54:51 +08:00
* @see rt_mq_detach()
*
* @param mq is a pointer to a messagequeue object to be deleted.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the messagequeue detach failed.
*
* @warning This function can ONLY delete a messagequeue initialized by the rt_mq_create() function.
* If the messagequeue is initialized by the rt_mq_init() function, you MUST NOT USE this function to delete it,
* ONLY USE the rt_mq_detach() function to complete the detachment.
* for example,the rt_mq_create() function, it cannot be called in interrupt context.
*/
rt_err_t rt_mq_delete(rt_mq_t mq)
{
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
RT_ASSERT(rt_object_is_systemobject(&mq->parent.parent) == RT_FALSE);
RT_DEBUG_NOT_IN_INTERRUPT;
/* resume all suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mq->parent.suspend_thread));
/* also resume all message queue private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mq->suspend_sender_thread));
/* free message queue pool */
RT_KERNEL_FREE(mq->msg_pool);
/* delete message queue object */
rt_object_delete(&(mq->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_mq_delete);
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_HEAP */
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send a message to the messagequeue object. If
* there is a thread suspended on the messagequeue, the thread will be
* resumed.
*
* @note When using this function to send a message, if the messagequeue is
* fully used, the current thread will wait for a timeout. If reaching
* the timeout and there is still no space available, the sending
* thread will be resumed and an error code will be returned. By
* contrast, the rt_mq_send() function will return an error code
* immediately without waiting when the messagequeue if fully used.
*
* @see rt_mq_send()
*
* @param mq is a pointer to the messagequeue object to be sent.
*
* @param buffer is the content of the message.
*
2021-07-09 10:54:51 +08:00
* @param size is the length of the message(Unit: Byte).
*
2021-07-09 10:54:51 +08:00
* @param timeout is a timeout period (unit: an OS tick).
*
* @return Return the operation status. When the return value is RT_EOK, the
* operation is successful. If the return value is any other values,
* it means that the messagequeue detach failed.
*
* @warning This function can be called in interrupt context and thread
* context.
*/
rt_err_t rt_mq_send_wait(rt_mq_t mq,
const void *buffer,
rt_size_t size,
rt_int32_t timeout)
{
register rt_ubase_t temp;
struct rt_mq_message *msg;
rt_uint32_t tick_delta;
struct rt_thread *thread;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
RT_ASSERT(buffer != RT_NULL);
RT_ASSERT(size != 0);
/* greater than one message size */
if (size > mq->msg_size)
return -RT_ERROR;
/* initialize delta tick */
tick_delta = 0;
/* get current thread */
thread = rt_thread_self();
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mq->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* get a free list, there must be an empty item */
msg = (struct rt_mq_message *)mq->msg_queue_free;
/* for non-blocking call */
if (msg == RT_NULL && timeout == 0)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
/* message queue is full */
2021-02-20 20:44:46 +08:00
while ((msg = (struct rt_mq_message *)mq->msg_queue_free) == RT_NULL)
{
/* reset error number in thread */
thread->error = RT_EOK;
/* no waiting, return timeout */
if (timeout == 0)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
RT_DEBUG_IN_THREAD_CONTEXT;
/* suspend current thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(mq->suspend_sender_thread),
thread,
mq->parent.parent.flag);
/* has waiting time, start thread timer */
if (timeout > 0)
{
/* get the start tick of timer */
tick_delta = rt_tick_get();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("mq_send_wait: start timer of thread:%s\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* re-schedule */
rt_schedule();
/* resume from suspend state */
if (thread->error != RT_EOK)
{
/* return error */
return thread->error;
}
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* if it's not waiting forever and then re-calculate timeout tick */
if (timeout > 0)
{
tick_delta = rt_tick_get() - tick_delta;
timeout -= tick_delta;
if (timeout < 0)
timeout = 0;
}
}
/* move free list pointer */
mq->msg_queue_free = msg->next;
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* the msg is the new tailer of list, the next shall be NULL */
msg->next = RT_NULL;
/* copy buffer */
rt_memcpy(msg + 1, buffer, size);
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* link msg to message queue */
if (mq->msg_queue_tail != RT_NULL)
{
/* if the tail exists, */
((struct rt_mq_message *)mq->msg_queue_tail)->next = msg;
}
/* set new tail */
mq->msg_queue_tail = msg;
/* if the head is empty, set head */
if (mq->msg_queue_head == RT_NULL)
mq->msg_queue_head = msg;
2020-10-23 01:04:06 +08:00
if(mq->entry < RT_MQ_ENTRY_MAX)
{
/* increase message entry */
mq->entry ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
/* resume suspended thread */
if (!rt_list_isempty(&mq->parent.suspend_thread))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mq->parent.suspend_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return RT_EOK;
}
RTM_EXPORT(rt_mq_send_wait)
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send a message to the messagequeue object.
* If there is a thread suspended on the messagequeue, the thread will be resumed.
*
* @note When using this function to send a message, if the messagequeue is fully used,
* the current thread will wait for a timeout.
* By contrast, when the messagequeue is fully used, the rt_mq_send_wait() function will
* return an error code immediately without waiting.
*
* @see rt_mq_send_wait()
*
* @param mq is a pointer to the messagequeue object to be sent.
*
* @param buffer is the content of the message.
*
* @param size is the length of the message(Unit: Byte).
*
2021-07-09 10:54:51 +08:00
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the messagequeue detach failed.
*
2021-07-09 10:54:51 +08:00
* @warning This function can be called in interrupt context and thread context.
*/
rt_err_t rt_mq_send(rt_mq_t mq, const void *buffer, rt_size_t size)
{
return rt_mq_send_wait(mq, buffer, size, 0);
}
RTM_EXPORT(rt_mq_send);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will send an urgent message to the messagequeue object.
*
* @note This function is almost the same as the rt_mq_send() function. The only difference is that
* when sending an urgent message, the message is placed at the head of the messagequeue so that
* the recipient can receive the urgent message first.
*
* @see rt_mq_send()
*
* @param mq is a pointer to the messagequeue object to be sent.
*
2021-07-09 10:54:51 +08:00
* @param buffer is the content of the message.
*
2021-07-09 10:54:51 +08:00
* @param size is the length of the message(Unit: Byte).
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox detach failed.
*/
rt_err_t rt_mq_urgent(rt_mq_t mq, const void *buffer, rt_size_t size)
{
register rt_ubase_t temp;
struct rt_mq_message *msg;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
RT_ASSERT(buffer != RT_NULL);
RT_ASSERT(size != 0);
/* greater than one message size */
if (size > mq->msg_size)
return -RT_ERROR;
RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mq->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* get a free list, there must be an empty item */
msg = (struct rt_mq_message *)mq->msg_queue_free;
/* message queue is full */
if (msg == RT_NULL)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return -RT_EFULL;
}
/* move free list pointer */
mq->msg_queue_free = msg->next;
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* copy buffer */
rt_memcpy(msg + 1, buffer, size);
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* link msg to the beginning of message queue */
msg->next = (struct rt_mq_message *)mq->msg_queue_head;
mq->msg_queue_head = msg;
/* if there is no tail */
if (mq->msg_queue_tail == RT_NULL)
mq->msg_queue_tail = msg;
2020-10-23 01:04:06 +08:00
if(mq->entry < RT_MQ_ENTRY_MAX)
{
/* increase message entry */
mq->entry ++;
}
else
{
rt_hw_interrupt_enable(temp); /* enable interrupt */
return -RT_EFULL; /* value overflowed */
}
2021-03-08 11:25:38 +08:00
/* resume suspended thread */
if (!rt_list_isempty(&mq->parent.suspend_thread))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mq->parent.suspend_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
return RT_EOK;
}
RTM_EXPORT(rt_mq_urgent);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will receive a message from message queue object,
* if there is no message in messagequeue object, the thread shall wait for a specified time.
*
* @note Only when there is mail in the mailbox, the receiving thread can get the mail immediately and return RT_EOK,
* otherwise the receiving thread will be suspended until timeout.
* If the mail is not received within the specified time, it will return -RT_ETIMEOUT.
*
* @param mq is a pointer to the messagequeue object to be received.
*
2021-07-09 10:54:51 +08:00
* @param buffer is the content of the message.
*
2021-07-09 10:54:51 +08:00
* @param size is the length of the message(Unit: Byte).
*
* @param timeout is a timeout period (unit: an OS tick).
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that the mailbox release failed.
*/
rt_err_t rt_mq_recv(rt_mq_t mq,
void *buffer,
rt_size_t size,
rt_int32_t timeout)
{
struct rt_thread *thread;
register rt_ubase_t temp;
struct rt_mq_message *msg;
rt_uint32_t tick_delta;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
RT_ASSERT(buffer != RT_NULL);
RT_ASSERT(size != 0);
/* initialize delta tick */
tick_delta = 0;
/* get current thread */
thread = rt_thread_self();
RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(mq->parent.parent)));
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* for non-blocking call */
if (mq->entry == 0 && timeout == 0)
{
rt_hw_interrupt_enable(temp);
return -RT_ETIMEOUT;
}
/* message queue is empty */
while (mq->entry == 0)
{
RT_DEBUG_IN_THREAD_CONTEXT;
/* reset error number in thread */
thread->error = RT_EOK;
/* no waiting, return timeout */
if (timeout == 0)
{
/* enable interrupt */
rt_hw_interrupt_enable(temp);
thread->error = -RT_ETIMEOUT;
return -RT_ETIMEOUT;
}
/* suspend current thread */
2021-07-13 13:20:36 +08:00
_ipc_list_suspend(&(mq->parent.suspend_thread),
thread,
mq->parent.parent.flag);
/* has waiting time, start thread timer */
if (timeout > 0)
{
/* get the start tick of timer */
tick_delta = rt_tick_get();
RT_DEBUG_LOG(RT_DEBUG_IPC, ("set thread:%s to timer list\n",
thread->name));
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(thread->thread_timer));
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* re-schedule */
rt_schedule();
/* recv message */
if (thread->error != RT_EOK)
{
/* return error */
return thread->error;
}
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* if it's not waiting forever and then re-calculate timeout tick */
if (timeout > 0)
{
tick_delta = rt_tick_get() - tick_delta;
timeout -= tick_delta;
if (timeout < 0)
timeout = 0;
}
}
/* get message from queue */
msg = (struct rt_mq_message *)mq->msg_queue_head;
/* move message queue head */
mq->msg_queue_head = msg->next;
/* reach queue tail, set to NULL */
if (mq->msg_queue_tail == msg)
mq->msg_queue_tail = RT_NULL;
/* decrease message entry */
if(mq->entry > 0)
{
mq->entry --;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
/* copy message */
rt_memcpy(buffer, msg + 1, size > mq->msg_size ? mq->msg_size : size);
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* put message to free list */
msg->next = (struct rt_mq_message *)mq->msg_queue_free;
mq->msg_queue_free = msg;
/* resume suspended thread */
if (!rt_list_isempty(&(mq->suspend_sender_thread)))
{
2021-07-13 13:20:36 +08:00
_ipc_list_resume(&(mq->suspend_sender_thread));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mq->parent.parent)));
rt_schedule();
return RT_EOK;
}
/* enable interrupt */
rt_hw_interrupt_enable(temp);
RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mq->parent.parent)));
return RT_EOK;
}
2013-06-24 17:06:09 +08:00
RTM_EXPORT(rt_mq_recv);
2021-07-09 10:54:51 +08:00
/**
2021-07-09 10:54:51 +08:00
* @brief This function will set some extra attributions of a messagequeue object.
*
* @note Currently this function only supports the RT_IPC_CMD_RESET command to reset the messagequeue.
*
2021-07-09 10:54:51 +08:00
* @param mq is a pointer to a messagequeue object.
*
2021-07-09 10:54:51 +08:00
* @param cmd is a command used to configure some attributions of the messagequeue.
*
* @param arg is the argument of the function to execute the command.
*
* @return Return the operation status. When the return value is RT_EOK, the operation is successful.
* If the return value is any other values, it means that this function failed to execute.
*/
rt_err_t rt_mq_control(rt_mq_t mq, int cmd, void *arg)
{
rt_ubase_t level;
struct rt_mq_message *msg;
2018-07-07 13:56:42 +08:00
/* parameter check */
RT_ASSERT(mq != RT_NULL);
2018-07-07 13:56:42 +08:00
RT_ASSERT(rt_object_get_type(&mq->parent.parent) == RT_Object_Class_MessageQueue);
if (cmd == RT_IPC_CMD_RESET)
{
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* resume all waiting thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&mq->parent.suspend_thread);
/* also resume all message queue private suspended thread */
2021-07-13 13:20:36 +08:00
_ipc_list_resume_all(&(mq->suspend_sender_thread));
/* release all message in the queue */
while (mq->msg_queue_head != RT_NULL)
{
/* get message from queue */
msg = (struct rt_mq_message *)mq->msg_queue_head;
/* move message queue head */
mq->msg_queue_head = msg->next;
/* reach queue tail, set to NULL */
if (mq->msg_queue_tail == msg)
mq->msg_queue_tail = RT_NULL;
/* put message to free list */
msg->next = (struct rt_mq_message *)mq->msg_queue_free;
mq->msg_queue_free = msg;
}
/* clean entry */
mq->entry = 0;
/* enable interrupt */
rt_hw_interrupt_enable(level);
rt_schedule();
return RT_EOK;
}
return -RT_ERROR;
}
RTM_EXPORT(rt_mq_control);
2021-07-09 10:54:51 +08:00
/**@}*/
2021-06-10 17:58:31 +08:00
#endif /* RT_USING_MESSAGEQUEUE */
/**@}*/