rt-thread/bsp/stm32/stm32h750-artpi/board/port/drv_eth.c

578 lines
16 KiB
C
Raw Normal View History

2021-09-11 13:54:34 +08:00
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
2021-09-11 13:54:34 +08:00
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 SummerGift first version
* 2018-12-25 zylx fix some bugs
* 2019-06-10 SummerGift optimize PHY state detection process
* 2019-09-03 xiaofan optimize link change detection process
* 2020-07-17 wanghaijing support h7
* 2020-11-30 wanghaijing add phy reset
*/
#include<rtthread.h>
#include<rtdevice.h>
#include "board.h"
#include "drv_config.h"
#ifdef BSP_USING_ETH_H750
2021-09-11 13:54:34 +08:00
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "drv_eth.h"
/*
* Emac driver uses CubeMX tool to generate emac and phy's configuration,
* the configuration files can be found in CubeMX_Config folder.
*/
/* debug option */
#define LOG_TAG "drv.emac"
#include <drv_log.h>
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
uint32_t ETH_Speed;
/* ETH_Duplex_Mode */
uint32_t ETH_Mode;
};
static ETH_HandleTypeDef EthHandle;
static ETH_TxPacketConfig TxConfig;
static struct rt_stm32_eth stm32_eth_device;
static uint8_t PHY_ADDR = 0x1F;
static rt_uint32_t reset_pin = 0;
#if defined ( __ICCARM__ ) /*!< IAR Compiler */
#pragma location=0x30040000
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
#pragma location=0x30040060
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
#pragma location=0x30040200
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffers */
#elif defined ( __CC_ARM ) /* MDK ARM Compiler */
__attribute__((at(0x30040000))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */
__attribute__((at(0x30040060))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */
__attribute__((at(0x30040200))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffer */
#elif defined ( __GNUC__ ) /* GNU Compiler */
ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */
#endif
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
static void phy_reset(void)
{
rt_pin_write(reset_pin, PIN_LOW);
rt_thread_mdelay(50);
rt_pin_write(reset_pin, PIN_HIGH);
}
/* EMAC initialization function */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
ETH_MACConfigTypeDef MACConf;
uint32_t regvalue = 0;
uint8_t status = RT_EOK;
__HAL_RCC_D2SRAM3_CLK_ENABLE();
phy_reset();
/* ETHERNET Configuration */
EthHandle.Instance = ETH;
EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0];
EthHandle.Init.MediaInterface = HAL_ETH_RMII_MODE;
EthHandle.Init.TxDesc = DMATxDscrTab;
EthHandle.Init.RxDesc = DMARxDscrTab;
EthHandle.Init.RxBuffLen = ETH_MAX_PACKET_SIZE;
SCB_InvalidateDCache();
HAL_ETH_DeInit(&EthHandle);
/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
if (HAL_ETH_Init(&EthHandle) != HAL_OK)
{
LOG_E("eth hardware init failed");
}
else
{
LOG_D("eth hardware init success");
}
rt_memset(&TxConfig, 0, sizeof(ETH_TxPacketConfig));
TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD;
TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC;
TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT;
for (int idx = 0; idx < ETH_RX_DESC_CNT; idx++)
{
HAL_ETH_DescAssignMemory(&EthHandle, idx, &Rx_Buff[idx][0], NULL);
}
HAL_ETH_SetMDIOClockRange(&EthHandle);
for(int i = 0; i <= PHY_ADDR; i ++)
{
if(HAL_ETH_ReadPHYRegister(&EthHandle, i, PHY_SPECIAL_MODES_REG, &regvalue) != HAL_OK)
{
status = -RT_ERROR;
2021-09-11 13:54:34 +08:00
/* Can't read from this device address continue with next address */
continue;
}
if((regvalue & PHY_BASIC_STATUS_REG) == i)
{
PHY_ADDR = i;
status = RT_EOK;
LOG_D("Found a phy, address:0x%02X", PHY_ADDR);
break;
}
}
if(HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK) == HAL_OK)
{
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_SPECIAL_MODES_REG, &regvalue);
uint32_t tickstart = rt_tick_get();
/* wait until software reset is done or timeout occured */
while(regvalue & PHY_RESET_MASK)
{
if((rt_tick_get() - tickstart) <= 500)
{
if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, &regvalue) != HAL_OK)
{
status = -RT_ERROR;
2021-09-11 13:54:34 +08:00
break;
}
}
else
{
status = -RT_ETIMEOUT;
2021-09-11 13:54:34 +08:00
}
}
}
rt_thread_delay(2000);
if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, &regvalue) == HAL_OK)
{
regvalue |= PHY_AUTO_NEGOTIATION_MASK;
HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, regvalue);
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
HAL_ETH_GetMACConfig(&EthHandle, &MACConf);
MACConf.DuplexMode = ETH_FULLDUPLEX_MODE;
MACConf.Speed = ETH_SPEED_100M;
HAL_ETH_SetMACConfig(&EthHandle, &MACConf);
HAL_ETH_Start_IT(&EthHandle);
}
else
{
status = -RT_ERROR;
2021-09-11 13:54:34 +08:00
}
return status;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_ssize_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
2021-09-11 13:54:34 +08:00
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_ssize_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
2021-09-11 13:54:34 +08:00
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t ret = -RT_ERROR;
2021-09-11 13:54:34 +08:00
HAL_StatusTypeDef state;
uint32_t i = 0, framelen = 0;
struct pbuf *q;
ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT];
rt_memset(Txbuffer, 0, ETH_TX_DESC_CNT * sizeof(ETH_BufferTypeDef));
for (q = p; q != NULL; q = q->next)
{
if (i >= ETH_TX_DESC_CNT)
return ERR_IF;
Txbuffer[i].buffer = q->payload;
Txbuffer[i].len = q->len;
framelen += q->len;
if (i > 0)
{
Txbuffer[i - 1].next = &Txbuffer[i];
}
if (q->next == NULL)
{
Txbuffer[i].next = NULL;
}
i++;
}
TxConfig.Length = framelen;
TxConfig.TxBuffer = Txbuffer;
#ifdef ETH_TX_DUMP
rt_kprintf("Tx dump, len= %d\r\n", framelen);
dump_hex(&Txbuffer[0]);
#endif
if (stm32_eth_device.parent.link_status)
{
SCB_CleanInvalidateDCache();
state = HAL_ETH_Transmit(&EthHandle, &TxConfig, 1000);
if (state != HAL_OK)
{
LOG_W("eth transmit frame faild: %d", EthHandle.ErrorCode);
EthHandle.ErrorCode = HAL_ETH_STATE_READY;
EthHandle.gState = HAL_ETH_STATE_READY;
}
}
else
{
LOG_E("eth transmit frame faild, netif not up");
}
ret = ERR_OK;
return ret;
}
/* receive data*/
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
uint32_t framelength = 0;
rt_uint16_t l;
struct pbuf *p = RT_NULL, *q;
ETH_BufferTypeDef RxBuff;
uint32_t alignedAddr;
if(HAL_ETH_GetRxDataBuffer(&EthHandle, &RxBuff) == HAL_OK)
{
HAL_ETH_GetRxDataLength(&EthHandle, &framelength);
/* Build Rx descriptor to be ready for next data reception */
HAL_ETH_BuildRxDescriptors(&EthHandle);
/* Invalidate data cache for ETH Rx Buffers */
alignedAddr = (uint32_t)RxBuff.buffer & ~0x1F;
SCB_InvalidateDCache_by_Addr((uint32_t *)alignedAddr, (uint32_t)RxBuff.buffer - alignedAddr + framelength);
p = pbuf_alloc(PBUF_RAW, framelength, PBUF_RAM);
if (p != NULL)
{
for (q = p, l = 0; q != NULL; q = q->next)
{
memcpy((rt_uint8_t *)q->payload, (rt_uint8_t *)&RxBuff.buffer[l], q->len);
l = l + q->len;
}
}
}
return p;
}
/* interrupt service routine */
void ETH_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_ETH_IRQHandler(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth)
{
rt_err_t result;
result = eth_device_ready(&(stm32_eth_device.parent));
if (result != RT_EOK)
LOG_I("RxCpltCallback err = %d", result);
}
void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth)
{
LOG_E("eth err");
}
enum
{
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
static void phy_linkchange()
{
static rt_uint8_t phy_speed = 0;
rt_uint8_t phy_speed_new = 0;
rt_uint32_t status;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_STATUS_REG, (uint32_t *)&status);
LOG_D("phy basic status reg is 0x%X", status);
if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
rt_uint32_t SR = 0;
phy_speed_new |= PHY_LINK;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_Status_REG, (uint32_t *)&SR);
LOG_D("phy control status reg is 0x%X", SR);
if (PHY_Status_SPEED_100M(SR))
{
phy_speed_new |= PHY_100M;
}
if (PHY_Status_FULL_DUPLEX(SR))
{
phy_speed_new |= PHY_FULL_DUPLEX;
}
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed & PHY_LINK)
{
LOG_D("link up");
if (phy_speed & PHY_100M)
{
LOG_D("100Mbps");
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
}
else
{
stm32_eth_device.ETH_Speed = ETH_SPEED_10M;
LOG_D("10Mbps");
}
if (phy_speed & PHY_FULL_DUPLEX)
{
LOG_D("full-duplex");
stm32_eth_device.ETH_Mode = ETH_FULLDUPLEX_MODE;
}
else
{
LOG_D("half-duplex");
stm32_eth_device.ETH_Mode = ETH_HALFDUPLEX_MODE;
}
/* send link up. */
eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE);
}
}
}
#ifdef PHY_USING_INTERRUPT_MODE
static void eth_phy_isr(void *args)
{
rt_uint32_t status = 0;
HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status);
LOG_D("phy interrupt status reg is 0x%X", status);
phy_linkchange();
}
#endif /* PHY_USING_INTERRUPT_MODE */
static void phy_monitor_thread_entry(void *parameter)
{
phy_linkchange();
#ifdef PHY_USING_INTERRUPT_MODE
/* configuration intterrupt pin */
rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs");
rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
/* enable phy interrupt */
HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
#if defined(PHY_INTERRUPT_CTRL_REG)
HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
#endif
#else /* PHY_USING_INTERRUPT_MODE */
stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
#endif /* PHY_USING_INTERRUPT_MODE */
}
/* Register the EMAC device */
static int rt_hw_stm32_eth_init(void)
{
rt_err_t state = RT_EOK;
reset_pin = rt_pin_get(ETH_RESET_PIN);
rt_pin_mode(reset_pin, PIN_MODE_OUTPUT);
rt_pin_write(reset_pin, PIN_HIGH);
stm32_eth_device.ETH_Speed = ETH_SPEED_100M;
stm32_eth_device.ETH_Mode = ETH_FULLDUPLEX_MODE;
/* OUI 00-80-E1 STMICROELECTRONICS. */
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x80;
stm32_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4);
stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2);
stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
/* register eth device */
state = eth_device_init(&(stm32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
}
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
1024,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init);
#endif /* BSP_USING_ETH_ARTPI */