rt-thread/bsp/swm341/libraries/SWM341_StdPeriph_Driver/SWM341_spi.h

116 lines
5.3 KiB
C
Raw Normal View History

#ifndef __SWM341_SPI_H__
#define __SWM341_SPI_H__
typedef struct {
uint8_t FrameFormat; //帧格式SPI_FORMAT_SPI、SPI_FORMAT_TI_SSI
uint8_t SampleEdge; //在SPI帧格式下选择数据采样边沿SPI_FIRST_EDGE、SPI_SECOND_EDGE
uint8_t IdleLevel; //在SPI帧格式下选择空闲时无数据传输时时钟线的电平SPI_LOW_LEVEL、SPI_HIGH_LEVEL
uint8_t WordSize; //字长度, 有效值4-16
uint8_t Master; //1 主机模式 0 从机模式
uint8_t clkDiv; //SPI_CLK = SYS_CLK / clkDiv有效值SPI_CLKDIV_4、SPI_CLKDIV_8、... ... 、SPI_CLKDIV_512
uint8_t RXThreshold; //取值1--8
uint8_t RXThresholdIEn;//当RX FIFO中数据个数 >= RXThreshold时触发中断
uint8_t TXThreshold; //取值0--7
uint8_t TXThresholdIEn;//当TX FIFO中数据个数 <= TXThreshold时触发中断
uint8_t TXCompleteIEn; //发送FIFO空且发送移位寄存器空中断使能
} SPI_InitStructure;
#define SPI_FORMAT_SPI 0 //Motorola SPI 格式
#define SPI_FORMAT_TI_SSI 1 //TI SSI 格式
#define SPI_FORMAT_I2S 2
#define SPI_FORMAT_FLASH 3 //SPI Flash 四线读模式
#define SPI_FIRST_EDGE 0 //第一个时钟沿开始采样
#define SPI_SECOND_EDGE 1 //第二个时钟沿开始采样
#define SPI_LOW_LEVEL 0 //空闲时时钟线保持低电平
#define SPI_HIGH_LEVEL 1 //空闲时时钟线保持高电平
#define SPI_CLKDIV_2 8
#define SPI_CLKDIV_4 0
#define SPI_CLKDIV_8 1
#define SPI_CLKDIV_16 2
#define SPI_CLKDIV_32 3
#define SPI_CLKDIV_64 4
#define SPI_CLKDIV_128 5
#define SPI_CLKDIV_256 6
#define SPI_CLKDIV_512 7
/* Interrupt Type */
#define SPI_IT_RX_OVF (1 << 0) //RX FIFO Overflow
#define SPI_IT_RX_FULL (1 << 1) //RX FIFO Full
#define SPI_IT_RX_HFULL (1 << 2) //RX FIFO Half Full
#define SPI_IT_TX_EMPTY (1 << 3) //TX FIFO Empty
#define SPI_IT_TX_HFULL (1 << 4) //TX FIFO Half Full
#define SPI_IT_RX_THRES (1 << 5) //RX FIFO Threshold接收FIFO中数据个数大于CTRL.RFTHR设定值
#define SPI_IT_TX_THRES (1 << 6) //TX FIFO Threshold发送FIFO中数据个数小于CTRL.TFTHR设定值
#define SPI_IT_TX_DONE (1 << 9) //TX Done发送FIFO空且发送移位寄存器空
#define SPI_IT_CS_FALL (1 << 10) //从机模式下CS下降沿中断
#define SPI_IT_CS_RISE (1 << 11) //从机模式下CS上升沿中断
void SPI_Init(SPI_TypeDef * SPIx, SPI_InitStructure * initStruct); //SPI初始化
void SPI_Open(SPI_TypeDef * SPIx); //SPI打开允许收发
void SPI_Close(SPI_TypeDef * SPIx); //SPI关闭禁止收发
uint32_t SPI_Read(SPI_TypeDef * SPIx);
void SPI_Write(SPI_TypeDef * SPIx, uint32_t data);
void SPI_WriteWithWait(SPI_TypeDef * SPIx, uint32_t data);
uint32_t SPI_ReadWrite(SPI_TypeDef * SPIx, uint32_t data);
uint32_t SPI_IsRXEmpty(SPI_TypeDef * SPIx); //接收FIFO是否空如果不空则可以继续SPI_Read()
uint32_t SPI_IsTXFull(SPI_TypeDef * SPIx); //发送FIFO是否满如果不满则可以继续SPI_Write()
uint32_t SPI_IsTXEmpty(SPI_TypeDef * SPIx); //发送FIFO是否空
void SPI_INTEn(SPI_TypeDef * SPIx, uint32_t it); //中断使能
void SPI_INTDis(SPI_TypeDef * SPIx, uint32_t it); //中断禁止
void SPI_INTClr(SPI_TypeDef * SPIx, uint32_t it); //中断标志清除
uint32_t SPI_INTStat(SPI_TypeDef * SPIx, uint32_t it); //中断状态查询
typedef struct {
uint8_t Mode; //I2S_MASTER_TX、I2S_MASTER_RX、I2S_MASTER_TX_RX、I2S_SLAVE_TX、I2S_SLAVE_RX、I2S_SLAVE_TX_RX
uint8_t FrameFormat; //I2S_I2S_PHILIPS、I2S_MSB_JUSTIFIED、I2S_PCM_SHORT、I2S_PCM_LONG0、I2S_PCM_LONG1
uint8_t DataLen; //I2S_DATALEN_8、I2S_DATALEN_16、I2S_DATALEN_24、I2S_DATALEN_32
uint32_t ClkFreq; //I2S_SCLK Frequency
uint8_t RXThreshold; //取值1--8
uint8_t RXThresholdIEn;//当RX FIFO中数据个数 >= RXThreshold时触发中断
uint8_t TXThreshold; //取值0--7
uint8_t TXThresholdIEn;//当TX FIFO中数据个数 <= TXThreshold时触发中断
uint8_t TXCompleteIEn; //发送FIFO空且发送移位寄存器空中断使能
} I2S_InitStructure;
#define I2S_MASTER_RX 5
#define I2S_MASTER_TX 6
#define I2S_SLAVE_RX 1
#define I2S_SLAVE_TX 2
#define I2S_I2S_PHILIPS 0
#define I2S_MSB_JUSTIFIED 1
#define I2S_PCM_SHORT 2
#define I2S_PCM_LONG0 3 //PCM Long Mode Sync Width 1 SCLK period
#define I2S_PCM_LONG1 4 //PCM Long Mode Sync Width 1 Data Length
#define I2S_DATALEN_8 0
#define I2S_DATALEN_16 1
#define I2S_DATALEN_24 2
#define I2S_DATALEN_32 3
void I2S_Init(SPI_TypeDef * SPIx, I2S_InitStructure * initStruct); //I2S初始化
void I2S_Open(SPI_TypeDef * SPIx); //I2S打开允许收发
void I2S_Close(SPI_TypeDef * SPIx); //I2S关闭禁止收发
void I2S_MCLKConfig(SPI_TypeDef * SPIx, uint32_t output_enable, uint32_t mclk_freq);
#endif //__SWM341_SPI_H__