rt-thread/bsp/nxp/imx/imxrt/libraries/drivers/drv_eth.c

1325 lines
42 KiB
C
Raw Normal View History

/*
2023-02-11 08:13:40 +08:00
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-10 Tanek the first version
* 2019-5-10 misonyo add DMA TX and RX function
* 2020-10-14 wangqiang use phy device in phy monitor thread
* 2022-08-29 xjy198903 add 1170 rgmii support
*/
#include <rtthread.h>
#include "board.h"
#include <rtdevice.h>
#ifdef RT_USING_FINSH
#include <finsh.h>
#endif
#include "fsl_enet.h"
#include "fsl_gpio.h"
#include "fsl_cache.h"
#include "fsl_iomuxc.h"
2020-08-27 11:43:20 +08:00
#include "fsl_common.h"
#ifdef RT_USING_LWIP
#include <netif/ethernetif.h>
#include "lwipopts.h"
#define ENET_RXBD_NUM (5)
#define ENET_TXBD_NUM (3)
#define ENET_RXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN)
#define ENET_TXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN)
/* debug option */
#define ETH_RX_DUMP
#undef ETH_RX_DUMP
#define ETH_TX_DUMP
#undef ETH_TX_DUMP
#define DBG_ENABLE
#define DBG_SECTION_NAME "[ETH]"
#define DBG_COLOR
#define DBG_LEVEL DBG_INFO
#include <rtdbg.h>
#define RING_ID 0
#define ENET_RING_NUM 1U
#define MAX_ADDR_LEN 6
//#ifdef SOC_IMXRT1170_SERIES
typedef uint8_t rx_buffer_t[RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
typedef uint8_t tx_buffer_t[RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
#ifndef ENET_RXBUFF_NUM
#define ENET_RXBUFF_NUM (ENET_RXBD_NUM * 2)
#endif
//#endif
//#ifdef SOC_IMXRT1170_SERIES
typedef void (*pbuf_free_custom_fn)(struct pbuf *p);
/** A custom pbuf: like a pbuf, but following a function pointer to free it. */
struct pbuf_custom
{
/** The actual pbuf */
struct pbuf pbuf;
/** This function is called when pbuf_free deallocates this pbuf(_custom) */
pbuf_free_custom_fn custom_free_function;
};
typedef struct rx_pbuf_wrapper
{
struct pbuf_custom p; /*!< Pbuf wrapper. Has to be first. */
void *buffer; /*!< Original buffer wrapped by p. */
volatile bool buffer_used; /*!< Wrapped buffer is used by ENET */
} rx_pbuf_wrapper_t;
//#endif
struct rt_imxrt_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enet_handle_t enet_handle;
ENET_Type *enet_base;
enet_data_error_stats_t error_statistic;
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_bool_t tx_is_waiting;
struct rt_semaphore tx_wait;
struct rt_semaphore buff_wait;
enet_mii_speed_t speed;
enet_mii_duplex_t duplex;
//#ifdef SOC_IMXRT1170_SERIES
enet_rx_bd_struct_t *RxBuffDescrip;
enet_tx_bd_struct_t *TxBuffDescrip;
rx_buffer_t *RxDataBuff;
tx_buffer_t *TxDataBuff;
rx_pbuf_wrapper_t RxPbufs[ENET_RXBUFF_NUM];
//#endif
};
//#if defined(__ICCARM__) /* IAR Workbench */
//#pragma location = "enet_mem_section"
//ALIGN(ENET_BUFF_ALIGNMENT)
//static enet_tx_bd_struct_t g_txBuffDescrip[ENET_TXBD_NUM];
//
//ALIGN(ENET_BUFF_ALIGNMENT)
//rt_uint8_t g_txDataBuff[ENET_TXBD_NUM][RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
//
//#pragma location = "enet_mem_section"
//ALIGN(ENET_BUFF_ALIGNMENT)
//static enet_rx_bd_struct_t g_rxBuffDescrip[ENET_RXBD_NUM];
//
//ALIGN(ENET_BUFF_ALIGNMENT)
//rt_uint8_t g_rxDataBuff[ENET_RXBD_NUM][RT_ALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
//
//#else
AT_NONCACHEABLE_SECTION_ALIGN(static enet_tx_bd_struct_t g_txBuffDescrip[ENET_TXBD_NUM], ENET_BUFF_ALIGNMENT);
rt_align(ENET_BUFF_ALIGNMENT)
rt_uint8_t g_txDataBuff[ENET_TXBD_NUM][RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
AT_NONCACHEABLE_SECTION_ALIGN(static enet_rx_bd_struct_t g_rxBuffDescrip[ENET_RXBD_NUM], ENET_BUFF_ALIGNMENT);
rt_align(ENET_BUFF_ALIGNMENT)
rt_uint8_t g_rxDataBuff[ENET_RXBD_NUM][RT_ALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT)];
//#endif
static struct rt_imxrt_eth imxrt_eth_device;
void _enet_rx_callback(struct rt_imxrt_eth *eth)
{
rt_err_t result;
ENET_DisableInterrupts(eth->enet_base, kENET_RxFrameInterrupt);
result = eth_device_ready(&(eth->parent));
if (result != RT_EOK)
rt_kprintf("RX err =%d\n", result);
}
void _enet_tx_callback(struct rt_imxrt_eth *eth)
{
dbg_log(DBG_LOG, "_enet_tx_callback\n");
if (eth->tx_is_waiting == RT_TRUE)
{
eth->tx_is_waiting = RT_FALSE;
rt_sem_release(&eth->tx_wait);
}
}
static void _enet_callback(ENET_Type *base,
enet_handle_t *handle,
#if FSL_FEATURE_ENET_QUEUE > 1
uint32_t ringId,
#endif /* FSL_FEATURE_ENET_QUEUE */
enet_event_t event,
enet_frame_info_t *frameInfo,
void *userData)
{
switch (event)
{
case kENET_RxEvent:
_enet_rx_callback((struct rt_imxrt_eth *)userData);
break;
case kENET_TxEvent:
_enet_tx_callback((struct rt_imxrt_eth *)userData);
break;
case kENET_ErrEvent:
dbg_log(DBG_LOG, "kENET_ErrEvent\n");
break;
case kENET_WakeUpEvent:
dbg_log(DBG_LOG, "kENET_WakeUpEvent\n");
break;
case kENET_TimeStampEvent:
dbg_log(DBG_LOG, "kENET_TimeStampEvent\n");
break;
case kENET_TimeStampAvailEvent:
dbg_log(DBG_LOG, "kENET_TimeStampAvailEvent \n");
break;
default:
dbg_log(DBG_LOG, "unknow error\n");
break;
}
}
static void _enet_clk_init(void)
{
#ifdef SOC_IMXRT1170_SERIES
#ifdef PHY_USING_RTL8211F
const clock_sys_pll1_config_t sysPll1Config = {
.pllDiv2En = true,
};
CLOCK_InitSysPll1(&sysPll1Config);
clock_root_config_t rootCfg = {.mux = 4, .div = 4}; /* Generate 125M root clock. */
CLOCK_SetRootClock(kCLOCK_Root_Enet2, &rootCfg);
IOMUXC_GPR->GPR5 |= IOMUXC_GPR_GPR5_ENET1G_RGMII_EN_MASK; /* bit1:iomuxc_gpr_enet_clk_dir
bit0:GPR_ENET_TX_CLK_SEL(internal or OSC) */
#else
const clock_sys_pll1_config_t sysPll1Config = {
.pllDiv2En = true,
};
CLOCK_InitSysPll1(&sysPll1Config);
clock_root_config_t rootCfg = {.mux = 4, .div = 10}; /* Generate 50M root clock. */
CLOCK_SetRootClock(kCLOCK_Root_Enet1, &rootCfg);
/* Select syspll2pfd3, 528*18/24 = 396M */
CLOCK_InitPfd(kCLOCK_PllSys2, kCLOCK_Pfd3, 24);
rootCfg.mux = 7;
rootCfg.div = 2;
CLOCK_SetRootClock(kCLOCK_Root_Bus, &rootCfg); /* Generate 198M bus clock. */
IOMUXC_GPR->GPR4 |= 0x3;
#endif
#else
// const clock_enet_pll_config_t config = {.enableClkOutput = true, .enableClkOutput25M = false, .loopDivider = 1};
// CLOCK_InitEnetPll(&config);
//
// IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, true);
// IOMUXC_GPR->GPR1 |= 1 << 23;
/* Set 50MHz output clock required by PHY. */
const clock_enet_pll_config_t config = {.enableClkOutput = true, .loopDivider = 1};
2023-04-11 17:16:22 +08:00
#if defined(SOC_IMXRT1020_SERIES)
const clock_enet_pll_config_t config = {.enableClkOutput = true, .enableClkOutput500M = true, .loopDivider = 1};
#endif
CLOCK_InitEnetPll(&config);
/* Output 50M clock to PHY. */
IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, true);
#endif
}
//#ifdef SOC_IMXRT1170_SERIES
static void *_enet_rx_alloc(ENET_Type *base, void *userData, uint8_t ringId)
{
void *buffer = NULL;
int i;
// dbg_log(DBG_LOG, "get buff_wait sem in %d\r\n", __LINE__);
rt_sem_take(&imxrt_eth_device.buff_wait, RT_WAITING_FOREVER);
for (i = 0; i < ENET_RXBUFF_NUM; i++)
{
if (!imxrt_eth_device.RxPbufs[i].buffer_used)
{
imxrt_eth_device.RxPbufs[i].buffer_used = true;
buffer = &imxrt_eth_device.RxDataBuff[i];
break;
}
}
rt_sem_release(&imxrt_eth_device.buff_wait);
// dbg_log(DBG_LOG, "release buff_wait sem in %d\r\n", __LINE__);
return buffer;
}
static void _enet_rx_free(ENET_Type *base, void *buffer, void *userData, uint8_t ringId)
{
int idx = ((rx_buffer_t *)buffer) - imxrt_eth_device.RxDataBuff;
if (!((idx >= 0) && (idx < ENET_RXBUFF_NUM)))
{
LOG_E("Freed buffer out of range\r\n");
}
// dbg_log(DBG_LOG, "get buff_wait sem in %d\r\n", __LINE__);
rt_sem_take(&imxrt_eth_device.buff_wait, RT_WAITING_FOREVER);
if (!(imxrt_eth_device.RxPbufs[idx].buffer_used))
{
LOG_E("_enet_rx_free: freeing unallocated buffer\r\n");
}
imxrt_eth_device.RxPbufs[idx].buffer_used = false;
rt_sem_release(&imxrt_eth_device.buff_wait);
// dbg_log(DBG_LOG, "release buff_wait sem in %d\r\n", __LINE__);
}
/**
* Reclaims RX buffer held by the p after p is no longer used
* by the application / lwIP.
*/
static void _enet_rx_release(struct pbuf *p)
{
rx_pbuf_wrapper_t *wrapper = (rx_pbuf_wrapper_t *)p;
_enet_rx_free(imxrt_eth_device.enet_base, wrapper->buffer, &imxrt_eth_device, 0);
}
//#endif
static void _enet_config(void)
{
enet_config_t config;
uint32_t sysClock;
/* prepare the buffer configuration. */
//#ifndef SOC_IMXRT1170_SERIES
// enet_buffer_config_t buffConfig[] =
// {
// ENET_RXBD_NUM,
// ENET_TXBD_NUM,
// SDK_SIZEALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT),
// SDK_SIZEALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT),
// &g_rxBuffDescrip[0],
// &g_txBuffDescrip[0],
// &g_rxDataBuff[0][0],
// &g_txDataBuff[0][0],
// };
// /* Get default configuration. */
// /*
// * config.miiMode = kENET_RmiiMode;
// * config.miiSpeed = kENET_MiiSpeed100M;
// * config.miiDuplex = kENET_MiiFullDuplex;
// * config.rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
// */
//
// ENET_GetDefaultConfig(&config);
// config.ringNum = ENET_RING_NUM;
// config.miiSpeed = imxrt_eth_device.speed;
// config.miiDuplex = imxrt_eth_device.duplex;
//
////#ifdef PHY_USING_RTL8211F
//// config.miiMode = kENET_RgmiiMode;
//// EnableIRQ(ENET_1G_MAC0_Tx_Rx_1_IRQn);
//// EnableIRQ(ENET_1G_MAC0_Tx_Rx_2_IRQn);
////#else
//// config.miiMode = kENET_RmiiMode;
////#endif
//
//
// config.interrupt |= kENET_TxFrameInterrupt | kENET_RxFrameInterrupt;
// config.callback = _enet_callback;
//
//// ENET_GetDefaultConfig(&config);
// config.ringNum = ENET_RING_NUM;
//// config.interrupt = kENET_TxFrameInterrupt | kENET_RxFrameInterrupt;
// config.miiSpeed = imxrt_eth_device.speed;
// config.miiDuplex = imxrt_eth_device.duplex;
//
// /* Set SMI to get PHY link status. */
// sysClock = CLOCK_GetFreq(kCLOCK_IpgClk);
//
// dbg_log(DBG_LOG, "deinit\n");
// ENET_Deinit(imxrt_eth_device.enet_base);
// dbg_log(DBG_LOG, "init\n");
// ENET_Init(imxrt_eth_device.enet_base, &imxrt_eth_device.enet_handle, &config, &buffConfig[0], &imxrt_eth_device.dev_addr[0], sysClock);
//// dbg_log(DBG_LOG, "set call back\n");
//// ENET_SetCallback(&imxrt_eth_device.enet_handle, _enet_callback, &imxrt_eth_device);
// dbg_log(DBG_LOG, "active read\n");
// ENET_ActiveRead(imxrt_eth_device.enet_base);
//#else
int i;
enet_buffer_config_t buffConfig[ENET_RING_NUM];
imxrt_eth_device.RxBuffDescrip = &g_rxBuffDescrip[0];
imxrt_eth_device.TxBuffDescrip = &g_txBuffDescrip[0];
imxrt_eth_device.RxDataBuff = &g_rxDataBuff[0];
imxrt_eth_device.TxDataBuff = &g_txDataBuff[0];
buffConfig[0].rxBdNumber = ENET_RXBD_NUM; /* Receive buffer descriptor number. */
buffConfig[0].txBdNumber = ENET_TXBD_NUM; /* Transmit buffer descriptor number. */
buffConfig[0].rxBuffSizeAlign = sizeof(rx_buffer_t); /* Aligned receive data buffer size. */
buffConfig[0].txBuffSizeAlign = sizeof(tx_buffer_t); /* Aligned transmit data buffer size. */
buffConfig[0].rxBdStartAddrAlign =
&(imxrt_eth_device.RxBuffDescrip[0]); /* Aligned receive buffer descriptor start address. */
buffConfig[0].txBdStartAddrAlign =
&(imxrt_eth_device.TxBuffDescrip[0]); /* Aligned transmit buffer descriptor start address. */
buffConfig[0].rxBufferAlign =
NULL; /* Receive data buffer start address. NULL when buffers are allocated by callback for RX zero-copy. */
buffConfig[0].txBufferAlign = &(imxrt_eth_device.TxDataBuff[0][0]); /* Transmit data buffer start address. */
buffConfig[0].txFrameInfo = NULL; /* Transmit frame information start address. Set only if using zero-copy transmit. */
buffConfig[0].rxMaintainEnable = true; /* Receive buffer cache maintain. */
buffConfig[0].txMaintainEnable = true; /* Transmit buffer cache maintain. */
/* Get default configuration. */
/*
* config.miiMode = kENET_RmiiMode;
* config.miiSpeed = kENET_MiiSpeed100M;
* config.miiDuplex = kENET_MiiFullDuplex;
* config.rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
*/
ENET_GetDefaultConfig(&config);
config.ringNum = ENET_RING_NUM;
config.miiSpeed = imxrt_eth_device.speed;
config.miiDuplex = imxrt_eth_device.duplex;
#ifdef PHY_USING_RTL8211F
config.miiMode = kENET_RgmiiMode;
EnableIRQ(ENET_1G_MAC0_Tx_Rx_1_IRQn);
EnableIRQ(ENET_1G_MAC0_Tx_Rx_2_IRQn);
#else
config.miiMode = kENET_RmiiMode;
#endif
config.rxBuffAlloc = _enet_rx_alloc;
config.rxBuffFree = _enet_rx_free;
config.userData = &imxrt_eth_device;
#ifdef SOC_IMXRT1170_SERIES
/* Set SMI to get PHY link status. */
sysClock = CLOCK_GetRootClockFreq(kCLOCK_Root_Bus);
#else
sysClock = CLOCK_GetFreq(kCLOCK_IpgClk);
#endif
config.interrupt |= kENET_TxFrameInterrupt | kENET_RxFrameInterrupt | kENET_TxBufferInterrupt | kENET_LateCollisionInterrupt;
config.callback = _enet_callback;
for (i = 0; i < ENET_RXBUFF_NUM; i++)
{
imxrt_eth_device.RxPbufs[i].p.custom_free_function = _enet_rx_release;
imxrt_eth_device.RxPbufs[i].buffer = &(imxrt_eth_device.RxDataBuff[i][0]);
imxrt_eth_device.RxPbufs[i].buffer_used = false;
}
// dbg_log(DBG_LOG, "deinit\n");
// ENET_Deinit(imxrt_eth_device.enet_base);
dbg_log(DBG_LOG, "init\n");
ENET_Init(imxrt_eth_device.enet_base, &imxrt_eth_device.enet_handle, &config, &buffConfig[0], &imxrt_eth_device.dev_addr[0], sysClock);
// dbg_log(DBG_LOG, "set call back\n");
// ENET_SetCallback(&imxrt_eth_device.enet_handle, _enet_callback, &imxrt_eth_device);
dbg_log(DBG_LOG, "active read\n");
ENET_ActiveRead(imxrt_eth_device.enet_base);
//#endif
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char *msg, const struct pbuf *p)
{
const struct pbuf *q;
rt_uint32_t i, j;
rt_uint8_t *ptr;
rt_kprintf("%s %d byte\n", msg, p->tot_len);
i = 0;
for (q = p; q != RT_NULL; q = q->next)
{
ptr = q->payload;
for (j = 0; j < q->len; j++)
{
if ((i % 8) == 0)
{
rt_kprintf(" ");
}
if ((i % 16) == 0)
{
rt_kprintf("\r\n");
}
rt_kprintf("%02x ", *ptr);
i++;
ptr++;
}
}
rt_kprintf("\n\n");
}
#else
#define packet_dump(...)
#endif /* dump */
/* initialize the interface */
static rt_err_t rt_imxrt_eth_init(rt_device_t dev)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_init...\n");
_enet_config();
return RT_EOK;
}
static rt_err_t rt_imxrt_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_open...\n");
return RT_EOK;
}
static rt_err_t rt_imxrt_eth_close(rt_device_t dev)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_close...\n");
return RT_EOK;
}
static rt_ssize_t rt_imxrt_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_read...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_ssize_t rt_imxrt_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_write...\n");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_imxrt_eth_control(rt_device_t dev, int cmd, void *args)
{
dbg_log(DBG_LOG, "rt_imxrt_eth_control...\n");
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args)
rt_memcpy(args, imxrt_eth_device.dev_addr, 6);
else
return -RT_ERROR;
break;
default:
break;
}
return RT_EOK;
}
static bool _ENET_TxDirtyRingAvailable(enet_tx_dirty_ring_t *txDirtyRing)
{
return !txDirtyRing->isFull;
}
static uint16_t _ENET_IncreaseIndex(uint16_t index, uint16_t max)
{
assert(index < max);
/* Increase the index. */
index++;
if (index >= max)
{
index = 0;
}
return index;
}
static void _ENET_ActiveSendRing(ENET_Type *base, uint8_t ringId)
{
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
volatile uint32_t *txDesActive = NULL;
/* Ensure previous data update is completed with Data Synchronization Barrier before activing Tx BD. */
__DSB();
switch (ringId)
{
case 0:
txDesActive = &(base->TDAR);
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case 1:
txDesActive = &(base->TDAR1);
break;
case 2:
txDesActive = &(base->TDAR2);
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
txDesActive = &(base->TDAR);
break;
}
#if defined(FSL_FEATURE_ENET_HAS_ERRATA_007885) && FSL_FEATURE_ENET_HAS_ERRATA_007885
/* There is a TDAR race condition for mutliQ when the software sets TDAR
* and the UDMA clears TDAR simultaneously or in a small window (2-4 cycles).
* This will cause the udma_tx and udma_tx_arbiter state machines to hang.
* Software workaround: introduces a delay by reading the relevant ENET_TDARn_TDAR 4 times
*/
for (uint8_t i = 0; i < 4U; i++)
{
if (*txDesActive == 0U)
{
break;
}
}
#endif
/* Write to active tx descriptor */
*txDesActive = 0;
}
static status_t _ENET_SendFrame(ENET_Type *base,
enet_handle_t *handle,
const uint8_t *data,
uint32_t length,
uint8_t ringId,
bool tsFlag,
void *context)
{
assert(handle != NULL);
assert(data != NULL);
assert(FSL_FEATURE_ENET_INSTANCE_QUEUEn(base) != -1);
assert(ringId < (uint8_t)FSL_FEATURE_ENET_INSTANCE_QUEUEn(base));
volatile enet_tx_bd_struct_t *curBuffDescrip;
enet_tx_bd_ring_t *txBdRing = &handle->txBdRing[ringId];
enet_tx_dirty_ring_t *txDirtyRing = &handle->txDirtyRing[ringId];
enet_frame_info_t *txDirty = NULL;
uint32_t len = 0;
uint32_t sizeleft = 0;
uint32_t address;
status_t result = kStatus_Success;
uint32_t src;
uint32_t configVal;
bool isReturn = false;
uint32_t primask;
/* Check the frame length. */
if (length > ENET_FRAME_TX_LEN_LIMITATION(base))
{
result = kStatus_ENET_TxFrameOverLen;
}
else
{
/* Check if the transmit buffer is ready. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
if (0U != (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK))
{
result = kStatus_ENET_TxFrameBusy;
}
/* Check txDirtyRing if need frameinfo in tx interrupt callback. */
else if ((handle->txReclaimEnable[ringId]) && !_ENET_TxDirtyRingAvailable(txDirtyRing))
{
result = kStatus_ENET_TxFrameBusy;
}
else
{
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[ringId] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
pbuf_copy_partial((const struct pbuf *)data, (void *)address, length, 0);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
DCACHE_CleanByRange(address, length);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Set data length. */
curBuffDescrip->length = (uint16_t)length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
txBdRing->txGenIdx = _ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
/* Add context to frame info ring */
if (handle->txReclaimEnable[ringId])
{
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = _ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
_ENET_ActiveSendRing(base, ringId);
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (tsFlag)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= (uint16_t)(~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Update the size left to be transmit. */
sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer, kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
src = (uint32_t)data + len;
/* Increase the current software index of BD */
txBdRing->txGenIdx = _ENET_IncreaseIndex(txBdRing->txGenIdx, txBdRing->txRingLen);
if (sizeleft > handle->txBuffSizeAlign[ringId])
{
/* Data copy. */
(void)memcpy((void *)(uint32_t *)address, (void *)(uint32_t *)src,
handle->txBuffSizeAlign[ringId]);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, handle->txBuffSizeAlign[ringId]);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[ringId];
len += handle->txBuffSizeAlign[ringId];
/* Sets the control flag. */
configVal = (uint32_t)curBuffDescrip->control;
configVal &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
configVal |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
curBuffDescrip->control = (uint16_t)configVal;
if (handle->txReclaimEnable[ringId])
{
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor*/
_ENET_ActiveSendRing(base, ringId);
}
else
{
(void)memcpy((void *)(uint32_t *)address, (void *)(uint32_t *)src, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
if (handle->txMaintainEnable[ringId])
{
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, sizeleft);
}
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
curBuffDescrip->length = (uint16_t)sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
if (handle->txReclaimEnable[ringId])
{
/* Add context to frame info ring */
txDirty = txDirtyRing->txDirtyBase + txDirtyRing->txGenIdx;
txDirty->context = context;
txDirtyRing->txGenIdx = _ENET_IncreaseIndex(txDirtyRing->txGenIdx, txDirtyRing->txRingLen);
if (txDirtyRing->txGenIdx == txDirtyRing->txConsumIdx)
{
txDirtyRing->isFull = true;
}
primask = DisableGlobalIRQ();
txBdRing->txDescUsed++;
EnableGlobalIRQ(primask);
}
/* Active the transmit buffer descriptor. */
_ENET_ActiveSendRing(base, ringId);
isReturn = true;
break;
}
/* Update the buffer descriptor address. */
curBuffDescrip = txBdRing->txBdBase + txBdRing->txGenIdx;
} while (0U == (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
if (isReturn == false)
{
result = kStatus_ENET_TxFrameBusy;
}
}
}
}
return result;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_imxrt_eth_tx(rt_device_t dev, struct pbuf *p)
{
2022-01-26 12:24:09 +08:00
rt_err_t result = RT_EOK;
enet_handle_t *enet_handle = &imxrt_eth_device.enet_handle;
RT_ASSERT(p != NULL);
RT_ASSERT(enet_handle != RT_NULL);
dbg_log(DBG_LOG, "rt_imxrt_eth_tx: %d\n", p->len);
#ifdef ETH_TX_DUMP
packet_dump("send", p);
#endif
do
{
result = _ENET_SendFrame(imxrt_eth_device.enet_base, enet_handle, (const uint8_t *)p, p->tot_len, RING_ID, false, NULL);
if (result == kStatus_ENET_TxFrameBusy)
{
imxrt_eth_device.tx_is_waiting = RT_TRUE;
rt_sem_take(&imxrt_eth_device.tx_wait, RT_WAITING_FOREVER);
}
} while (result == kStatus_ENET_TxFrameBusy);
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_imxrt_eth_rx(rt_device_t dev)
{
uint32_t length = 0;
status_t status;
struct pbuf *p = RT_NULL;
enet_handle_t *enet_handle = &imxrt_eth_device.enet_handle;
ENET_Type *enet_base = imxrt_eth_device.enet_base;
enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic;
/* Get the Frame size */
status = ENET_GetRxFrameSize(enet_handle, &length, RING_ID);
/* Call ENET_ReadFrame when there is a received frame. */
if (length != 0)
{
/* Received valid frame. Deliver the rx buffer with the size equal to length. */
p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL);
if (p != NULL)
{
status = ENET_ReadFrame(enet_base, enet_handle, p->payload, length, RING_ID, NULL);
if (status == kStatus_Success)
{
#ifdef ETH_RX_DUMP
packet_dump("recv", p);
#endif
return p;
}
else
{
dbg_log(DBG_LOG, " A frame read failed\n");
pbuf_free(p);
}
}
else
{
dbg_log(DBG_LOG, " pbuf_alloc faild\n");
}
}
else if (status == kStatus_ENET_RxFrameError)
{
dbg_log(DBG_WARNING, "ENET_GetRxFrameSize: kStatus_ENET_RxFrameError\n");
/* Update the received buffer when error happened. */
/* Get the error information of the received g_frame. */
ENET_GetRxErrBeforeReadFrame(enet_handle, error_statistic, RING_ID);
/* update the receive buffer. */
ENET_ReadFrame(enet_base, enet_handle, NULL, 0, RING_ID, NULL);
}
ENET_EnableInterrupts(enet_base, kENET_RxFrameInterrupt);
return NULL;
}
#ifdef BSP_USING_PHY
static struct rt_phy_device *phy_dev = RT_NULL;
static void phy_monitor_thread_entry(void *parameter)
{
rt_uint32_t speed;
rt_uint32_t duplex;
rt_bool_t link = RT_FALSE;
#ifdef SOC_IMXRT1170_SERIES
#ifdef PHY_USING_RTL8211F
phy_dev = (struct rt_phy_device *)rt_device_find("rtl8211f");
if ((RT_NULL == phy_dev) || (RT_NULL == phy_dev->ops))
{
// TODO print warning information
LOG_E("Can not find phy device called \"rtl8211f\"");
return;
}
#else
phy_dev = (struct rt_phy_device *)rt_device_find("ksz8081");
if ((RT_NULL == phy_dev) || (RT_NULL == phy_dev->ops))
{
// TODO print warning information
LOG_E("Can not find phy device called \"ksz8081\"");
return;
}
#endif
#else
phy_dev = (struct rt_phy_device *)rt_device_find("ksz8081");
if ((RT_NULL == phy_dev) || (RT_NULL == phy_dev->ops))
{
// TODO print warning information
LOG_E("Can not find phy device called \"rtt-phy\"");
return;
}
#endif
if (RT_NULL == phy_dev->ops->init)
{
LOG_E("phy driver error!");
return;
}
#ifdef SOC_IMXRT1170_SERIES
#ifdef PHY_USING_RTL8211F
rt_phy_status status = phy_dev->ops->init(imxrt_eth_device.enet_base, PHY_RTL8211F_ADDRESS, CLOCK_GetRootClockFreq(kCLOCK_Root_Bus));
#else
rt_phy_status status = phy_dev->ops->init(imxrt_eth_device.enet_base, PHY_KSZ8081_ADDRESS, CLOCK_GetRootClockFreq(kCLOCK_Root_Bus));
#endif
#else
rt_phy_status status = phy_dev->ops->init(imxrt_eth_device.enet_base, PHY_KSZ8081_ADDRESS, CLOCK_GetFreq(kCLOCK_IpgClk));
#endif
if (PHY_STATUS_OK != status)
{
LOG_E("Phy device initialize unsuccessful!\n");
return;
}
LOG_I("Phy device initialize successfully!\n");
while (1)
{
rt_bool_t new_link = RT_FALSE;
rt_phy_status status = phy_dev->ops->get_link_status(&new_link);
if ((PHY_STATUS_OK == status) && (link != new_link))
{
link = new_link;
if (link) // link up
{
phy_dev->ops->get_link_speed_duplex(&speed, &duplex);
if (PHY_SPEED_10M == speed)
{
dbg_log(DBG_LOG, "10M\n");
}
else if (PHY_SPEED_100M == speed)
{
dbg_log(DBG_LOG, "100M\n");
}
else
{
dbg_log(DBG_LOG, "1000M\n");
}
if (PHY_HALF_DUPLEX == duplex)
{
dbg_log(DBG_LOG, "half dumplex\n");
}
else
{
dbg_log(DBG_LOG, "full dumplex\n");
}
if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed) || (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex))
{
imxrt_eth_device.speed = (enet_mii_speed_t)speed;
imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex;
dbg_log(DBG_LOG, "link up, and update eth mode.\n");
rt_imxrt_eth_init((rt_device_t)&imxrt_eth_device);
}
else
{
dbg_log(DBG_LOG, "link up, eth not need re-config.\n");
}
dbg_log(DBG_LOG, "link up.\n");
eth_device_linkchange(&imxrt_eth_device.parent, RT_TRUE);
}
else
{
dbg_log(DBG_LOG, "link down.\n");
eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE);
}
}
rt_thread_delay(RT_TICK_PER_SECOND * 2);
// rt_thread_mdelay(300);
}
}
#endif
static int rt_hw_imxrt_eth_init(void)
{
rt_err_t state;
_enet_clk_init();
#ifdef PHY_USING_RTL8211F
/* NXP (Freescale) MAC OUI */
imxrt_eth_device.dev_addr[0] = 0x54;
imxrt_eth_device.dev_addr[1] = 0x27;
imxrt_eth_device.dev_addr[2] = 0x8d;
/* generate MAC addr from 96bit unique ID (only for test). */
imxrt_eth_device.dev_addr[3] = 0x11;
imxrt_eth_device.dev_addr[4] = 0x22;
imxrt_eth_device.dev_addr[5] = 0x33;
imxrt_eth_device.speed = kENET_MiiSpeed100M;//要支持千兆直接赋值为kENET_MiiSpeed1000M
imxrt_eth_device.duplex = kENET_MiiFullDuplex;
imxrt_eth_device.enet_base = ENET_1G;
#else
/* NXP (Freescale) MAC OUI */
imxrt_eth_device.dev_addr[0] = 0x54;
imxrt_eth_device.dev_addr[1] = 0x27;
imxrt_eth_device.dev_addr[2] = 0x8d;
/* generate MAC addr from 96bit unique ID (only for test). */
imxrt_eth_device.dev_addr[3] = 0x00;
imxrt_eth_device.dev_addr[4] = 0x00;
imxrt_eth_device.dev_addr[5] = 0x00;
imxrt_eth_device.speed = kENET_MiiSpeed100M;
imxrt_eth_device.duplex = kENET_MiiFullDuplex;
imxrt_eth_device.enet_base = ENET;
#endif
imxrt_eth_device.parent.parent.init = rt_imxrt_eth_init;
imxrt_eth_device.parent.parent.open = rt_imxrt_eth_open;
imxrt_eth_device.parent.parent.close = rt_imxrt_eth_close;
imxrt_eth_device.parent.parent.read = rt_imxrt_eth_read;
imxrt_eth_device.parent.parent.write = rt_imxrt_eth_write;
imxrt_eth_device.parent.parent.control = rt_imxrt_eth_control;
imxrt_eth_device.parent.parent.user_data = RT_NULL;
imxrt_eth_device.parent.eth_rx = rt_imxrt_eth_rx;
imxrt_eth_device.parent.eth_tx = rt_imxrt_eth_tx;
dbg_log(DBG_LOG, "sem init: tx_wait\r\n");
/* init tx semaphore */
rt_sem_init(&imxrt_eth_device.tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
dbg_log(DBG_LOG, "sem init: buff_wait\r\n");
/* init tx semaphore */
rt_sem_init(&imxrt_eth_device.buff_wait, "buff_wait", 1, RT_IPC_FLAG_FIFO);
/* register eth device */
dbg_log(DBG_LOG, "eth_device_init start\r\n");
state = eth_device_init(&(imxrt_eth_device.parent), "e0");
if (RT_EOK == state)
{
dbg_log(DBG_LOG, "eth_device_init success\r\n");
}
else
{
dbg_log(DBG_LOG, "eth_device_init faild: %d\r\n", state);
}
eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE);
/* start phy monitor */
{
#ifdef BSP_USING_PHY
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
4096,
/*RT_THREAD_PRIORITY_MAX - 2,*/
15,
2);
if (tid != RT_NULL)
rt_thread_startup(tid);
#endif
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init);
#endif
#if defined(RT_USING_FINSH) && defined(RT_USING_PHY)
#include <finsh.h>
void phy_read(rt_uint32_t phy_reg)
{
rt_uint32_t data;
rt_phy_status status = phy_dev->ops->read(phy_reg, &data);
if (PHY_STATUS_OK == status)
{
rt_kprintf("PHY_Read: %02X --> %08X", phy_reg, data);
}
else
{
rt_kprintf("PHY_Read: %02X --> faild", phy_reg);
}
}
void phy_write(rt_uint32_t phy_reg, rt_uint32_t data)
{
rt_phy_status status = phy_dev->ops->write(phy_reg, data);
if (PHY_STATUS_OK == status)
{
rt_kprintf("PHY_Write: %02X --> %08X\n", phy_reg, data);
}
else
{
rt_kprintf("PHY_Write: %02X --> faild\n", phy_reg);
}
}
void phy_dump(void)
{
rt_uint32_t data;
rt_phy_status status;
int i;
for (i = 0; i < 32; i++)
{
status = phy_dev->ops->read(i, &data);
if (PHY_STATUS_OK != status)
{
rt_kprintf("phy_dump: %02X --> faild", i);
break;
}
if (i % 8 == 7)
{
rt_kprintf("%02X --> %08X ", i, data);
}
else
{
rt_kprintf("%02X --> %08X\n", i, data);
}
}
}
#endif
#if defined(RT_USING_FINSH) && defined(RT_USING_LWIP)
void enet_reg_dump(void)
{
ENET_Type *enet_base = imxrt_eth_device.enet_base;
#define DUMP_REG(__REG) \
rt_kprintf("%s(%08X): %08X\n", #__REG, (uint32_t)&enet_base->__REG, enet_base->__REG)
DUMP_REG(EIR);
DUMP_REG(EIMR);
DUMP_REG(RDAR);
DUMP_REG(TDAR);
DUMP_REG(ECR);
DUMP_REG(MMFR);
DUMP_REG(MSCR);
DUMP_REG(MIBC);
DUMP_REG(RCR);
DUMP_REG(TCR);
DUMP_REG(PALR);
DUMP_REG(PAUR);
DUMP_REG(OPD);
DUMP_REG(TXIC);
DUMP_REG(RXIC);
DUMP_REG(IAUR);
DUMP_REG(IALR);
DUMP_REG(GAUR);
DUMP_REG(GALR);
DUMP_REG(TFWR);
DUMP_REG(RDSR);
DUMP_REG(TDSR);
DUMP_REG(MRBR);
DUMP_REG(RSFL);
DUMP_REG(RSEM);
DUMP_REG(RAEM);
DUMP_REG(RAFL);
DUMP_REG(TSEM);
DUMP_REG(TAEM);
DUMP_REG(TAFL);
DUMP_REG(TIPG);
DUMP_REG(FTRL);
DUMP_REG(TACC);
DUMP_REG(RACC);
// DUMP_REG(RMON_T_DROP);
DUMP_REG(RMON_T_PACKETS);
DUMP_REG(RMON_T_BC_PKT);
DUMP_REG(RMON_T_MC_PKT);
DUMP_REG(RMON_T_CRC_ALIGN);
DUMP_REG(RMON_T_UNDERSIZE);
DUMP_REG(RMON_T_OVERSIZE);
DUMP_REG(RMON_T_FRAG);
DUMP_REG(RMON_T_JAB);
DUMP_REG(RMON_T_COL);
DUMP_REG(RMON_T_P64);
DUMP_REG(RMON_T_P65TO127);
DUMP_REG(RMON_T_P128TO255);
DUMP_REG(RMON_T_P256TO511);
DUMP_REG(RMON_T_P512TO1023);
DUMP_REG(RMON_T_P1024TO2047);
DUMP_REG(RMON_T_P_GTE2048);
DUMP_REG(RMON_T_OCTETS);
// DUMP_REG(IEEE_T_DROP);
DUMP_REG(IEEE_T_FRAME_OK);
DUMP_REG(IEEE_T_1COL);
DUMP_REG(IEEE_T_MCOL);
DUMP_REG(IEEE_T_DEF);
DUMP_REG(IEEE_T_LCOL);
DUMP_REG(IEEE_T_EXCOL);
DUMP_REG(IEEE_T_MACERR);
DUMP_REG(IEEE_T_CSERR);
DUMP_REG(IEEE_T_SQE);
DUMP_REG(IEEE_T_FDXFC);
DUMP_REG(IEEE_T_OCTETS_OK);
DUMP_REG(RMON_R_PACKETS);
DUMP_REG(RMON_R_BC_PKT);
DUMP_REG(RMON_R_MC_PKT);
DUMP_REG(RMON_R_CRC_ALIGN);
DUMP_REG(RMON_R_UNDERSIZE);
DUMP_REG(RMON_R_OVERSIZE);
DUMP_REG(RMON_R_FRAG);
DUMP_REG(RMON_R_JAB);
// DUMP_REG(RMON_R_RESVD_0);
DUMP_REG(RMON_R_P64);
DUMP_REG(RMON_R_P65TO127);
DUMP_REG(RMON_R_P128TO255);
DUMP_REG(RMON_R_P256TO511);
DUMP_REG(RMON_R_P512TO1023);
DUMP_REG(RMON_R_P1024TO2047);
DUMP_REG(RMON_R_P_GTE2048);
DUMP_REG(RMON_R_OCTETS);
DUMP_REG(IEEE_R_DROP);
DUMP_REG(IEEE_R_FRAME_OK);
DUMP_REG(IEEE_R_CRC);
DUMP_REG(IEEE_R_ALIGN);
DUMP_REG(IEEE_R_MACERR);
DUMP_REG(IEEE_R_FDXFC);
DUMP_REG(IEEE_R_OCTETS_OK);
DUMP_REG(ATCR);
DUMP_REG(ATVR);
DUMP_REG(ATOFF);
DUMP_REG(ATPER);
DUMP_REG(ATCOR);
DUMP_REG(ATINC);
DUMP_REG(ATSTMP);
DUMP_REG(TGSR);
}
void enet_nvic_tog(void)
{
NVIC_SetPendingIRQ(ENET_IRQn);
}
void enet_rx_stat(void)
{
enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic;
#define DUMP_STAT(__VAR) \
rt_kprintf("%-25s: %08X\n", #__VAR, error_statistic->__VAR);
DUMP_STAT(statsRxLenGreaterErr);
DUMP_STAT(statsRxAlignErr);
DUMP_STAT(statsRxFcsErr);
DUMP_STAT(statsRxOverRunErr);
DUMP_STAT(statsRxTruncateErr);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
DUMP_STAT(statsRxProtocolChecksumErr);
DUMP_STAT(statsRxIpHeadChecksumErr);
DUMP_STAT(statsRxMacErr);
DUMP_STAT(statsRxPhyErr);
DUMP_STAT(statsRxCollisionErr);
DUMP_STAT(statsTxErr);
DUMP_STAT(statsTxFrameErr);
DUMP_STAT(statsTxOverFlowErr);
DUMP_STAT(statsTxLateCollisionErr);
DUMP_STAT(statsTxExcessCollisionErr);
DUMP_STAT(statsTxUnderFlowErr);
DUMP_STAT(statsTxTsErr);
#endif
}
void enet_buf_info(void)
{
int i = 0;
for (i = 0; i < ENET_RXBD_NUM; i++)
{
rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n",
i,
g_rxBuffDescrip[i].length,
g_rxBuffDescrip[i].control,
g_rxBuffDescrip[i].buffer);
}
for (i = 0; i < ENET_TXBD_NUM; i++)
{
rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n",
i,
g_txBuffDescrip[i].length,
g_txBuffDescrip[i].control,
g_txBuffDescrip[i].buffer);
}
}
FINSH_FUNCTION_EXPORT(phy_read, read phy register);
FINSH_FUNCTION_EXPORT(phy_write, write phy register);
FINSH_FUNCTION_EXPORT(phy_dump, dump phy registers);
FINSH_FUNCTION_EXPORT(enet_reg_dump, dump enet registers);
FINSH_FUNCTION_EXPORT(enet_nvic_tog, toggle enet nvic pendding bit);
FINSH_FUNCTION_EXPORT(enet_rx_stat, dump enet rx statistic);
FINSH_FUNCTION_EXPORT(enet_buf_info, dump enet tx and tx buffer descripter);
#endif