rt-thread/bsp/at32/libraries/rt_drivers/drv_spi.c

894 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-16 shelton first version
* 2022-11-10 shelton support spi dma
2023-01-30 09:44:30 +08:00
* 2023-01-31 shelton add support f421/f425
* 2023-04-08 shelton add support f423
*/
#include "drv_common.h"
#include "drv_spi.h"
#include "drv_config.h"
#include <string.h>
#ifdef RT_USING_SPI
#if !defined(BSP_USING_SPI1) && !defined(BSP_USING_SPI2) && \
!defined(BSP_USING_SPI3) && !defined(BSP_USING_SPI4)
#error "Please define at least one BSP_USING_SPIx"
#endif
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
};
static struct at32_spi_config spi_config[] = {
#ifdef BSP_USING_SPI1
SPI1_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_CONFIG,
#endif
};
/* private rt-thread spi ops function */
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration);
static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message);
static struct rt_spi_ops at32_spi_ops =
{
configure,
xfer
};
/**
* attach the spi device to spi bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, gpio_type *cs_gpiox, uint16_t cs_gpio_pin)
{
gpio_init_type gpio_init_struct;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct at32_spi_cs *cs_pin;
/* initialize the cs pin & select the slave*/
gpio_default_para_init(&gpio_init_struct);
gpio_init_struct.gpio_pins = cs_gpio_pin;
gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init(cs_gpiox, &gpio_init_struct);
gpio_bits_set(cs_gpiox, cs_gpio_pin);
/* attach the device to spi bus */
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct at32_spi_cs *)rt_malloc(sizeof(struct at32_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->gpio_x = cs_gpiox;
cs_pin->gpio_pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_D("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
static rt_err_t configure(struct rt_spi_device* device,
struct rt_spi_configuration* configuration)
{
struct rt_spi_bus * spi_bus = (struct rt_spi_bus *)device->bus;
struct at32_spi *instance = (struct at32_spi *)spi_bus->parent.user_data;
spi_init_type spi_init_struct;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
at32_msp_spi_init(instance->config->spi_x);
/* data_width */
if(configuration->data_width <= 8)
{
spi_init_struct.frame_bit_num = SPI_FRAME_8BIT;
}
else if(configuration->data_width <= 16)
{
spi_init_struct.frame_bit_num = SPI_FRAME_16BIT;
}
else
{
return -RT_EIO;
}
/* baudrate */
{
uint32_t spi_apb_clock;
uint32_t max_hz;
crm_clocks_freq_type clocks_struct;
max_hz = configuration->max_hz;
crm_clocks_freq_get(&clocks_struct);
LOG_D("sys freq: %d\n", clocks_struct.sclk_freq);
LOG_D("max freq: %d\n", max_hz);
if (instance->config->spi_x == SPI1)
{
spi_apb_clock = clocks_struct.apb2_freq;
LOG_D("pclk2 freq: %d\n", clocks_struct.apb2_freq);
}
else
{
spi_apb_clock = clocks_struct.apb1_freq;
LOG_D("pclk1 freq: %d\n", clocks_struct.apb1_freq);
}
if(max_hz >= (spi_apb_clock / 2))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_2;
}
else if (max_hz >= (spi_apb_clock / 4))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_4;
}
else if (max_hz >= (spi_apb_clock / 8))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_8;
}
else if (max_hz >= (spi_apb_clock / 16))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_16;
}
else if (max_hz >= (spi_apb_clock / 32))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_32;
}
else if (max_hz >= (spi_apb_clock / 64))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_64;
}
else if (max_hz >= (spi_apb_clock / 128))
{
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_128;
}
else
{
/* min prescaler 256 */
spi_init_struct.mclk_freq_division = SPI_MCLK_DIV_256;
}
} /* baudrate */
switch(configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
break;
case RT_SPI_MODE_1:
spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_LOW;
break;
case RT_SPI_MODE_2:
spi_init_struct.clock_phase = SPI_CLOCK_PHASE_1EDGE;
spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
break;
case RT_SPI_MODE_3:
spi_init_struct.clock_phase = SPI_CLOCK_PHASE_2EDGE;
spi_init_struct.clock_polarity = SPI_CLOCK_POLARITY_HIGH;
break;
}
/* msb or lsb */
if(configuration->mode & RT_SPI_MSB)
{
spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_MSB;
}
else
{
spi_init_struct.first_bit_transmission = SPI_FIRST_BIT_LSB;
}
spi_init_struct.transmission_mode = SPI_TRANSMIT_FULL_DUPLEX;
spi_init_struct.master_slave_mode = SPI_MODE_MASTER;
spi_init_struct.cs_mode_selection = SPI_CS_SOFTWARE_MODE;
/* disable spi to change transfer size */
spi_enable(instance->config->spi_x, FALSE);
/* init spi */
spi_init(instance->config->spi_x, &spi_init_struct);
/* enable spi */
spi_enable(instance->config->spi_x, TRUE);
/* disable spi crc */
spi_crc_enable(instance->config->spi_x, FALSE);
return RT_EOK;
};
static void _spi_dma_receive(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
{
dma_channel_type* dma_channel = instance->config->dma_rx->dma_channel;
dma_channel->dtcnt = size;
dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
dma_channel->maddr = (rt_uint32_t)buffer;
/* enable transmit complete interrupt */
dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
/* enable dma receive */
spi_i2s_dma_receiver_enable(instance->config->spi_x, TRUE);
/* mark dma flag */
instance->config->dma_rx->dma_done = RT_FALSE;
/* enable dma channel */
dma_channel_enable(dma_channel, TRUE);
}
static void _spi_dma_transmit(struct at32_spi *instance, rt_uint8_t *buffer, rt_uint32_t size)
{
dma_channel_type *dma_channel = instance->config->dma_tx->dma_channel;
dma_channel->dtcnt = size;
dma_channel->paddr = (rt_uint32_t)&(instance->config->spi_x->dt);
dma_channel->maddr = (rt_uint32_t)buffer;
/* enable spi error interrupt */
spi_i2s_interrupt_enable(instance->config->spi_x, SPI_I2S_ERROR_INT, TRUE);
/* enable transmit complete interrupt */
dma_interrupt_enable(dma_channel, DMA_FDT_INT, TRUE);
/* enable dma transmit */
spi_i2s_dma_transmitter_enable(instance->config->spi_x, TRUE);
/* mark dma flag */
instance->config->dma_tx->dma_done = RT_FALSE;
/* enable dma channel */
dma_channel_enable(dma_channel, TRUE);
}
static void _spi_polling_receive_transmit(struct at32_spi *instance, rt_uint8_t *recv_buf, rt_uint8_t *send_buf, \
rt_uint32_t size, rt_uint8_t data_mode)
{
/* data frame length 8 bit */
if(data_mode <= 8)
{
const rt_uint8_t *send_ptr = send_buf;
rt_uint8_t * recv_ptr = recv_buf;
LOG_D("spi poll transfer start: %d\n", size);
while(size--)
{
rt_uint8_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* wait until the transmit buffer is empty */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
/* send the byte */
spi_i2s_data_transmit(instance->config->spi_x, data);
/* wait until a data is received */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
/* get the received data */
data = spi_i2s_data_receive(instance->config->spi_x);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
LOG_D("spi poll transfer finsh\n");
}
/* data frame length 16 bit */
else if(data_mode <= 16)
{
const rt_uint16_t * send_ptr = (rt_uint16_t *)send_buf;
rt_uint16_t * recv_ptr = (rt_uint16_t *)recv_buf;
while(size--)
{
rt_uint16_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* wait until the transmit buffer is empty */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_TDBE_FLAG) == RESET);
/* send the byte */
spi_i2s_data_transmit(instance->config->spi_x, data);
/* wait until a data is received */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_RDBF_FLAG) == RESET);
/* get the received data */
data = spi_i2s_data_receive(instance->config->spi_x);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
static rt_ssize_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct rt_spi_bus * at32_spi_bus = (struct rt_spi_bus *)device->bus;
struct at32_spi *instance = (struct at32_spi *)at32_spi_bus->parent.user_data;
struct rt_spi_configuration *config = &device->config;
struct at32_spi_cs * at32_spi_cs = device->parent.user_data;
rt_size_t message_length = 0, already_send_length = 0;
rt_uint16_t send_length = 0;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take cs */
if(message->cs_take)
{
gpio_bits_reset(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
LOG_D("spi take cs\n");
}
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
/* avoid null pointer problems */
if (message->send_buf)
{
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
}
if (message->recv_buf)
{
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
}
/* start once data exchange in dma mode */
if (message->send_buf && message->recv_buf)
{
if ((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX) && \
(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX))
{
_spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
_spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
/* wait transfer complete */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
/* clear rx overrun flag */
spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
spi_enable(instance->config->spi_x, FALSE);
spi_enable(instance->config->spi_x, TRUE);
}
else
{
_spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)send_buf, send_length, config->data_width);
}
}
else if (message->send_buf)
{
if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
_spi_dma_transmit(instance, (uint8_t *)send_buf, send_length);
/* wait transfer complete */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
while(instance->config->dma_tx->dma_done == RT_FALSE);
/* clear rx overrun flag */
spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
spi_enable(instance->config->spi_x, FALSE);
spi_enable(instance->config->spi_x, TRUE);
}
else
{
_spi_polling_receive_transmit(instance, RT_NULL, (uint8_t *)send_buf, send_length, config->data_width);
}
if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
{
/* release the cs by disable spi when using 3 wires spi */
spi_enable(instance->config->spi_x, FALSE);
}
}
else
{
memset((void *)recv_buf, 0xff, send_length);
if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
_spi_dma_receive(instance, (uint8_t *)recv_buf, send_length);
_spi_dma_transmit(instance, (uint8_t *)recv_buf, send_length);
/* wait transfer complete */
while(spi_i2s_flag_get(instance->config->spi_x, SPI_I2S_BF_FLAG) != RESET);
while((instance->config->dma_tx->dma_done == RT_FALSE) || (instance->config->dma_rx->dma_done == RT_FALSE));
/* clear rx overrun flag */
spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
spi_enable(instance->config->spi_x, FALSE);
spi_enable(instance->config->spi_x, TRUE);
}
else
{
/* clear the old error flag */
spi_i2s_flag_clear(instance->config->spi_x, SPI_I2S_ROERR_FLAG);
_spi_polling_receive_transmit(instance, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, config->data_width);
}
}
}
/* release cs */
if(message->cs_release)
{
gpio_bits_set(at32_spi_cs->gpio_x, at32_spi_cs->gpio_pin);
LOG_D("spi release cs\n");
}
return message->length;
}
static void _dma_base_channel_check(struct at32_spi *instance)
{
dma_channel_type *rx_channel = instance->config->dma_rx->dma_channel;
dma_channel_type *tx_channel = instance->config->dma_tx->dma_channel;
if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
instance->config->dma_rx->dma_done = RT_TRUE;
instance->config->dma_rx->dma_x = (dma_type *)((rt_uint32_t)rx_channel & ~0xFF);
instance->config->dma_rx->channel_index = ((((rt_uint32_t)rx_channel & 0xFF) - 8) / 0x14) + 1;
}
if(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
instance->config->dma_tx->dma_done = RT_TRUE;
instance->config->dma_tx->dma_x = (dma_type *)((rt_uint32_t)tx_channel & ~0xFF);
instance->config->dma_tx->channel_index = ((((rt_uint32_t)tx_channel & 0xFF) - 8) / 0x14) + 1;
}
}
static void at32_spi_dma_init(struct at32_spi *instance)
{
dma_init_type dma_init_struct;
/* search dma base and channel index */
_dma_base_channel_check(instance);
/* config dma channel */
dma_default_para_init(&dma_init_struct);
dma_init_struct.peripheral_inc_enable = FALSE;
dma_init_struct.memory_inc_enable = TRUE;
dma_init_struct.peripheral_data_width = DMA_PERIPHERAL_DATA_WIDTH_BYTE;
dma_init_struct.memory_data_width = DMA_MEMORY_DATA_WIDTH_BYTE;
dma_init_struct.priority = DMA_PRIORITY_MEDIUM;
dma_init_struct.loop_mode_enable = FALSE;
if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX)
{
crm_periph_clock_enable(instance->config->dma_rx->dma_clock, TRUE);
dma_init_struct.direction = DMA_DIR_PERIPHERAL_TO_MEMORY;
dma_reset(instance->config->dma_rx->dma_channel);
dma_init(instance->config->dma_rx->dma_channel, &dma_init_struct);
2023-01-30 09:44:30 +08:00
#if defined (SOC_SERIES_AT32F425)
dma_flexible_config(instance->config->dma_rx->dma_x, instance->config->dma_rx->flex_channel, \
(dma_flexible_request_type)instance->config->dma_rx->request_id);
#endif
#if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
defined (SOC_SERIES_AT32F423)
dmamux_enable(instance->config->dma_rx->dma_x, TRUE);
dmamux_init(instance->config->dma_rx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_rx->request_id);
#endif
/* dma irq should set in dma rx mode */
nvic_irq_enable(instance->config->dma_rx->dma_irqn, 0, 1);
}
if (instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX)
{
crm_periph_clock_enable(instance->config->dma_tx->dma_clock, TRUE);
dma_init_struct.direction = DMA_DIR_MEMORY_TO_PERIPHERAL;
dma_reset(instance->config->dma_tx->dma_channel);
dma_init(instance->config->dma_tx->dma_channel, &dma_init_struct);
2023-01-30 09:44:30 +08:00
#if defined (SOC_SERIES_AT32F425)
dma_flexible_config(instance->config->dma_tx->dma_x, instance->config->dma_tx->flex_channel, \
(dma_flexible_request_type)instance->config->dma_tx->request_id);
#endif
#if defined (SOC_SERIES_AT32F435) || defined (SOC_SERIES_AT32F437) || \
defined (SOC_SERIES_AT32F423)
dmamux_enable(instance->config->dma_tx->dma_x, TRUE);
dmamux_init(instance->config->dma_tx->dmamux_channel, (dmamux_requst_id_sel_type)instance->config->dma_tx->request_id);
#endif
/* dma irq should set in dma tx mode */
nvic_irq_enable(instance->config->dma_tx->dma_irqn, 0, 1);
}
if((instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_TX) || \
(instance->config->spi_dma_flag & RT_DEVICE_FLAG_DMA_RX))
{
nvic_irq_enable(instance->config->irqn, 0, 0);
}
}
void dma_isr(struct dma_config *dma_instance)
{
volatile rt_uint32_t reg_sts = 0, index = 0;
reg_sts = dma_instance->dma_x->sts;
index = dma_instance->channel_index;
if ((reg_sts & (DMA_FDT_FLAG << (4 * (index - 1)))) != RESET)
{
/* clear dma flag */
dma_instance->dma_x->clr |= (rt_uint32_t)((DMA_FDT_FLAG << (4 * (index - 1))) | \
(DMA_HDT_FLAG << (4 * (index - 1))));
/* disable interrupt */
dma_interrupt_enable(dma_instance->dma_channel, DMA_FDT_INT, FALSE);
/* disable dma channel */
dma_channel_enable(dma_instance->dma_channel, FALSE);
/* mark done flag */
dma_instance->dma_done = RT_TRUE;
}
}
void spi_isr(spi_type *spi_x)
{
if(spi_i2s_flag_get(spi_x, SPI_I2S_ROERR_FLAG) != RESET)
{
/* clear rx overrun error flag */
spi_i2s_flag_clear(spi_x, SPI_I2S_ROERR_FLAG);
}
if(spi_i2s_flag_get(spi_x, SPI_MMERR_FLAG) != RESET)
{
/* clear master mode error flag */
spi_i2s_flag_clear(spi_x, SPI_MMERR_FLAG);
}
}
#ifdef BSP_USING_SPI1
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
spi_isr(spi_config[SPI1_INDEX].spi_x);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(BSP_SPI1_RX_USING_DMA)
void SPI1_RX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI1_INDEX].dma_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI1_RX_USING_DMA) */
#if defined(BSP_SPI1_TX_USING_DMA)
void SPI1_TX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI1_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI1_TX_USING_DMA) */
#endif
#ifdef BSP_USING_SPI2
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
spi_isr(spi_config[SPI2_INDEX].spi_x);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(BSP_SPI2_RX_USING_DMA)
void SPI2_RX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI2_INDEX].dma_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI2_RX_USING_DMA) */
#if defined(BSP_SPI2_TX_USING_DMA)
void SPI2_TX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI2_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI2_TX_USING_DMA) */
#endif
#ifdef BSP_USING_SPI3
void SPI3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
spi_isr(spi_config[SPI3_INDEX].spi_x);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(BSP_SPI3_RX_USING_DMA)
void SPI3_RX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI3_INDEX].dma_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI3_RX_USING_DMA) */
#if defined(BSP_SPI3_TX_USING_DMA)
void SPI3_TX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI3_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI3_TX_USING_DMA) */
#endif
#ifdef BSP_USING_SPI4
void SPI4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
spi_isr(spi_config[SPI4_INDEX].spi_x);
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(BSP_SPI4_RX_USING_DMA)
void SPI4_RX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI4_INDEX].dma_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI4_RX_USING_DMA) */
#if defined(BSP_SPI4_TX_USING_DMA)
void SPI4_TX_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_isr(spi_config[SPI4_INDEX].dma_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_SPI14_TX_USING_DMA) */
#endif
2023-01-30 09:44:30 +08:00
#if defined (SOC_SERIES_AT32F421)
void SPI1_TX_RX_DMA_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_TX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_RX_DMA_IRQHandler();
#endif
}
void SPI2_TX_RX_DMA_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_TX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_RX_DMA_IRQHandler();
#endif
}
#endif
#if defined (SOC_SERIES_AT32F425)
void SPI1_TX_RX_DMA_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_TX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_RX_DMA_IRQHandler();
#endif
}
void SPI3_2_TX_RX_DMA_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_TX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_RX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
SPI3_TX_DMA_IRQHandler();
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
SPI3_RX_DMA_IRQHandler();
#endif
}
#endif
static struct at32_spi spis[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static void at32_spi_get_dma_config(void)
{
#ifdef BSP_USING_SPI1
spi_config[SPI1_INDEX].spi_dma_flag = 0;
#ifdef BSP_SPI1_RX_USING_DMA
spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_config[SPI1_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#endif
#ifdef BSP_USING_SPI2
spi_config[SPI2_INDEX].spi_dma_flag = 0;
#ifdef BSP_SPI2_RX_USING_DMA
spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_config[SPI2_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#endif
#ifdef BSP_USING_SPI3
spi_config[SPI3_INDEX].spi_dma_flag = 0;
#ifdef BSP_SPI3_RX_USING_DMA
spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_config[SPI3_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#endif
#ifdef BSP_USING_SPI4
spi_config[SPI4_INDEX].spi_dma_flag = 0;
#ifdef BSP_SPI4_RX_USING_DMA
spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_config[SPI4_INDEX].spi_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#endif
}
int rt_hw_spi_init(void)
{
int i;
rt_err_t result;
rt_size_t obj_num = sizeof(spi_config) / sizeof(spi_config[0]);
at32_spi_get_dma_config();
for (i = 0; i < obj_num; i++)
{
spis[i].config = &spi_config[i];
spis[i].spi_bus.parent.user_data = (void *)&spis[i];
if(spis[i].config->spi_dma_flag & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX))
{
at32_spi_dma_init(&spis[i]);
}
result = rt_spi_bus_register(&(spis[i].spi_bus), spis[i].config->spi_name, &at32_spi_ops);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif