rt-thread/bsp/wch/arm/ch579m/board/drv_uart.c

422 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-02-16 Tuber first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#include "drv_uart.h"
#ifdef BSP_USING_UART
struct uart_device
{
struct rt_serial_device serial;
char *name;
};
#ifdef BSP_USING_UART0
static struct uart_device uart_device0 =
{
.name = "uart0",
};
#endif
#ifdef BSP_USING_UART1
static struct uart_device uart_device1 =
{
.name = "uart1",
};
#endif
#ifdef BSP_USING_UART2
static struct uart_device uart_device2 =
{
.name = "uart2",
};
#endif
#ifdef BSP_USING_UART3
static struct uart_device uart_device3 =
{
.name = "uart3",
};
#endif
static rt_err_t uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
UINT32 x;
UINT8V R8_UARTx_FCR = 0, R8_UARTx_LCR = 0, R8_UARTx_IER = 0, R8_UARTx_DIV = 0;
UINT16V R16_UARTx_DL = 0;
struct uart_device *uart_device = serial->parent.user_data;
//设置波特率
x = 10 * GetSysClock() / 8 / cfg->baud_rate;
x = (x + 5) / 10;
R16_UARTx_DL = (UINT16)x;
//设置数据长度
switch (cfg->data_bits)
{
case DATA_BITS_5:
//R8_UARTx_LCR |= 0x00;
break;
case DATA_BITS_6:
R8_UARTx_LCR |= 0x01;
break;
case DATA_BITS_7:
R8_UARTx_LCR |= 0x02;
break;
case DATA_BITS_8:
default:
R8_UARTx_LCR |= 0x03;
break;
}
//设置停止位
switch (cfg->stop_bits)
{
case STOP_BITS_2:
R8_UARTx_LCR |= 0x04;
break;
case STOP_BITS_1:
default:
//R8_UARTx_LCR |= 0x00;
break;
}
//设置校验位
switch (cfg->parity)
{
case PARITY_ODD:
R8_UART1_LCR |= R8_LCR_PAR_EN;
//R8_UART1_LCR |= 0x00;
break;
case PARITY_EVEN:
R8_UART1_LCR |= R8_LCR_PAR_EN;
R8_UART1_LCR |= 0x10;
break;
case PARITY_NONE:
default:
//R8_UART1_LCR &= (~R8_UART1_LCR);
break;
}
#ifdef BSP_USING_UART0
if (uart_device == &uart_device0)
{
GPIOB_SetBits(GPIO_Pin_7);
GPIOB_ModeCfg(GPIO_Pin_4, GPIO_ModeIN_PU); // RXD-配置上拉输入
GPIOB_ModeCfg(GPIO_Pin_7, GPIO_ModeOut_PP_5mA); // TXD-配置推挽输出注意先让IO口输出高电平
R16_UART0_DL = R16_UARTx_DL;
R8_UART0_FCR = (2 << 6) | RB_FCR_TX_FIFO_CLR | RB_FCR_RX_FIFO_CLR | RB_FCR_FIFO_EN; // FIFO打开触发点4字节
R8_UART0_LCR = R8_UARTx_LCR;
R8_UART0_IER = RB_IER_TXD_EN;
R8_UART0_DIV = 1;
}
#endif
#ifdef BSP_USING_UART1
if (uart_device == &uart_device1)
{
GPIOA_SetBits(GPIO_Pin_9);
GPIOA_ModeCfg(GPIO_Pin_8, GPIO_ModeIN_PU); // RXD-配置上拉输入
GPIOA_ModeCfg(GPIO_Pin_9, GPIO_ModeOut_PP_5mA); // TXD-配置推挽输出注意先让IO口输出高电平
R16_UART1_DL = R16_UARTx_DL;
R8_UART1_FCR = (2 << 6) | RB_FCR_TX_FIFO_CLR | RB_FCR_RX_FIFO_CLR | RB_FCR_FIFO_EN; // FIFO打开触发点4字节
R8_UART1_LCR = R8_UARTx_LCR;
R8_UART1_IER = RB_IER_TXD_EN;
R8_UART1_DIV = 1;
}
#endif
#ifdef BSP_USING_UART2
if (uart_device == &uart_device2)
{
GPIOA_SetBits(GPIO_Pin_7);
GPIOA_ModeCfg(GPIO_Pin_6, GPIO_ModeIN_PU); // RXD-配置上拉输入
GPIOA_ModeCfg(GPIO_Pin_7, GPIO_ModeOut_PP_5mA); // TXD-配置推挽输出注意先让IO口输出高电平
R16_UART2_DL = R16_UARTx_DL;
R8_UART2_FCR = (2 << 6) | RB_FCR_TX_FIFO_CLR | RB_FCR_RX_FIFO_CLR | RB_FCR_FIFO_EN; // FIFO打开触发点4字节
R8_UART2_LCR = R8_UARTx_LCR;
R8_UART2_IER = RB_IER_TXD_EN;
R8_UART2_DIV = 1;
}
#endif
#ifdef BSP_USING_UART3
if (uart_device == &uart_device3)
{
GPIOA_SetBits(GPIO_Pin_5);
GPIOA_ModeCfg(GPIO_Pin_4, GPIO_ModeIN_PU); // RXD-配置上拉输入
GPIOA_ModeCfg(GPIO_Pin_5, GPIO_ModeOut_PP_5mA); // TXD-配置推挽输出注意先让IO口输出高电平
R16_UART3_DL = R16_UARTx_DL;
R8_UART3_FCR = (2 << 6) | RB_FCR_TX_FIFO_CLR | RB_FCR_RX_FIFO_CLR | RB_FCR_FIFO_EN; // FIFO打开触发点4字节
R8_UART3_LCR = R8_UARTx_LCR;
R8_UART3_IER = RB_IER_TXD_EN;
R8_UART3_DIV = 1;
}
#endif
return RT_EOK;
}
static rt_err_t uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct uart_device *uart_device = serial->parent.user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
#ifdef BSP_USING_UART0
if (uart_device == &uart_device0)
{
UART0_INTCfg(DISABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART0_IRQn);
}
#endif
#ifdef BSP_USING_UART1
if (uart_device == &uart_device1)
{
UART1_INTCfg(DISABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART1_IRQn);
}
#endif
#ifdef BSP_USING_UART2
if (uart_device == &uart_device2)
{
UART2_INTCfg(DISABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART2_IRQn);
}
#endif
#ifdef BSP_USING_UART3
if (uart_device == &uart_device3)
{
UART3_INTCfg(DISABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART3_IRQn);
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
#ifdef BSP_USING_UART0
if (uart_device == &uart_device0)
{
UART0_ByteTrigCfg(UART_1BYTE_TRIG);
UART0_INTCfg(ENABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART0_IRQn);
}
#endif
#ifdef BSP_USING_UART1
if (uart_device == &uart_device1)
{
UART1_ByteTrigCfg(UART_1BYTE_TRIG);
UART1_INTCfg(ENABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART1_IRQn);
}
#endif
#ifdef BSP_USING_UART2
if (uart_device == &uart_device2)
{
UART2_ByteTrigCfg(UART_1BYTE_TRIG);
UART2_INTCfg(ENABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART2_IRQn);
}
#endif
#ifdef BSP_USING_UART3
if (uart_device == &uart_device3)
{
UART3_ByteTrigCfg(UART_1BYTE_TRIG);
UART3_INTCfg(ENABLE, RB_IER_RECV_RDY);
NVIC_EnableIRQ(UART3_IRQn);
}
#endif
break;
default:
break;
}
return RT_EOK;
}
static int uart_putc(struct rt_serial_device *serial, char ch)
{
struct uart_device *uart_device = serial->parent.user_data;
#ifdef BSP_USING_UART0
if (uart_device == &uart_device0)
{
while (R8_UART0_TFC >= UART_FIFO_SIZE);
R8_UART0_THR = ch;
}
#endif
#ifdef BSP_USING_UART1
if (uart_device == &uart_device1)
{
while (R8_UART1_TFC >= UART_FIFO_SIZE);
R8_UART1_THR = ch;
}
#endif
#ifdef BSP_USING_UART2
if (uart_device == &uart_device2)
{
while (R8_UART2_TFC >= UART_FIFO_SIZE);
R8_UART2_THR = ch;
}
#endif
#ifdef BSP_USING_UART3
if (uart_device == &uart_device3)
{
while (R8_UART3_TFC >= UART_FIFO_SIZE);
R8_UART3_THR = ch;
}
#endif
return 1;
}
static int uart_getc(struct rt_serial_device *serial)
{
struct uart_device *uart_device = serial->parent.user_data;
#ifdef BSP_USING_UART0
if (uart_device == &uart_device0)
{
if (R8_UART0_RFC > 0)
{
return R8_UART0_RBR;
}
}
#endif
#ifdef BSP_USING_UART1
if (uart_device == &uart_device1)
{
if (R8_UART1_RFC > 0)
{
return R8_UART1_RBR;
}
}
#endif
#ifdef BSP_USING_UART2
if (uart_device == &uart_device2)
{
if (R8_UART2_RFC > 0)
{
return R8_UART2_RBR;
}
}
#endif
#ifdef BSP_USING_UART3
if (uart_device == &uart_device3)
{
if (R8_UART3_RFC > 0)
{
return R8_UART3_RBR;
}
}
#endif
return -1;
}
static const struct rt_uart_ops uart_ops =
{
.configure = uart_configure,
.control = uart_control,
.putc = uart_putc,
.getc = uart_getc,
.dma_transmit = RT_NULL,
};
void uart_isr(struct rt_serial_device *serial, UINT8 flag)
{
switch (flag)
{
case UART_II_RECV_RDY: // 数据达到设置触发点
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
break;
case UART_II_RECV_TOUT: // 接收超时,暂时一帧数据接收完成
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_TIMEOUT);
break;
case UART_II_THR_EMPTY: // 发送缓存区空,可继续发送
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
break;
default:
break;
}
}
#ifdef BSP_USING_UART0
void UART0_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uart_device0.serial, UART0_GetITFlag());
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART1
void UART1_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uart_device1.serial, UART1_GetITFlag());
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART2
void UART2_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uart_device2.serial, UART2_GetITFlag());
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART3
void UART3_IRQHandler(void)
{
rt_interrupt_enter();
uart_isr(&uart_device3.serial, UART3_GetITFlag());
rt_interrupt_leave();
}
#endif
int rt_hw_uart_init(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef BSP_USING_UART0
uart_device0.serial.config = config;
uart_device0.serial.ops = &uart_ops;
rt_hw_serial_register(&uart_device0.serial, uart_device0.name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX,
&uart_device0);
#endif
#ifdef BSP_USING_UART1
uart_device1.serial.config = config;
uart_device1.serial.ops = &uart_ops;
rt_hw_serial_register(&uart_device1.serial, uart_device1.name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX,
&uart_device1);
#endif
#ifdef BSP_USING_UART2
uart_device2.serial.config = config;
uart_device2.serial.ops = &uart_ops;
rt_hw_serial_register(&uart_device2.serial, uart_device2.name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX,
&uart_device2);
#endif
#ifdef BSP_USING_UART3
uart_device3.serial.config = config;
uart_device3.serial.ops = &uart_ops;
rt_hw_serial_register(&uart_device3.serial, uart_device3.name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX,
&uart_device3);
#endif
return RT_EOK;
}
#endif /* BSP_USING_UART */