rt-thread/bsp/imxrt/Libraries/imxrt1021/drivers/drv_spi_bus.c

355 lines
8.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-03-27 Liuguang the first version.
* 2019-03-11 JiCheng Adapt RT1020's IO MAP
*/
#include "drv_spi_bus.h"
#include "fsl_common.h"
#include "fsl_iomuxc.h"
#include "fsl_lpspi.h"
#if defined(RT_USING_SPIBUS1) || defined(RT_USING_SPIBUS2) || \
defined(RT_USING_SPIBUS3) || defined(RT_USING_SPIBUS4)
#if defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
#error "Please don't define 'FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL'!"
#endif
#if !defined(LPSPI_CLK_SOURCE)
#define LPSPI_CLK_SOURCE (1U) /* PLL3 PFD0 */
#endif
#if !defined(LPSPI_CLK_SOURCE_DIVIDER)
#define LPSPI_CLK_SOURCE_DIVIDER (8U) /* 8div */
#endif
/* LPSPI1 SCK SDO SDI IOMUX Config */
#define LPSPI1_SCK_GPIO IOMUXC_GPIO_SD_B0_02_LPSPI1_SCK
#define LPSPI1_SDO_GPIO IOMUXC_GPIO_SD_B0_04_LPSPI1_SDO
#define LPSPI1_SDI_GPIO IOMUXC_GPIO_SD_B0_05_LPSPI1_SDI
/* LPSPI2 SCK SDO SDI IOMUX Config */
#define LPSPI2_SCK_GPIO IOMUXC_GPIO_SD_B1_07_LPSPI2_SCK
#define LPSPI2_SDO_GPIO IOMUXC_GPIO_SD_B1_08_LPSPI2_SD0
#define LPSPI2_SDI_GPIO IOMUXC_GPIO_SD_B1_09_LPSPI2_SDI
/* LPSPI3 SCK SDO SDI IOMUX Config */
#define LPSPI3_SCK_GPIO IOMUXC_GPIO_AD_B1_12_LPSPI3_SCK
#define LPSPI3_SDO_GPIO IOMUXC_GPIO_AD_B1_14_LPSPI3_SDO
#define LPSPI3_SDI_GPIO IOMUXC_GPIO_AD_B1_15_LPSPI3_SDI
/* LPSPI4 SCK SDO SDI IOMUX Config */
#define LPSPI4_SCK_GPIO IOMUXC_GPIO_AD_B1_02_LPSPI4_SCK
#define LPSPI4_SDO_GPIO IOMUXC_GPIO_AD_B1_04_LPSPI4_SDO
#define LPSPI4_SDI_GPIO IOMUXC_GPIO_AD_B1_05_LPSPI4_SDI
struct rt1021_spi
{
LPSPI_Type *base;
struct rt_spi_configuration *cfg;
};
struct rt1021_sw_spi_cs
{
rt_uint32_t pin;
};
static uint32_t rt1021_get_lpspi_freq(void)
{
uint32_t freq = 0;
/* CLOCK_GetMux(kCLOCK_LpspiMux):
00b: derive clock from PLL3 PFD1 720M
01b: derive clock from PLL3 PFD0 720M
10b: derive clock from PLL2 528M
11b: derive clock from PLL2 PFD2 396M
*/
switch(CLOCK_GetMux(kCLOCK_LpspiMux))
{
case 0:
freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd1Clk);
break;
case 1:
freq = CLOCK_GetFreq(kCLOCK_Usb1PllPfd0Clk);
break;
case 2:
freq = CLOCK_GetFreq(kCLOCK_SysPllClk);
break;
case 3:
freq = CLOCK_GetFreq(kCLOCK_SysPllPfd2Clk);
break;
}
freq /= (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1U);
return freq;
}
static rt_err_t rt1021_spi_init(LPSPI_Type *base, struct rt_spi_configuration *cfg)
{
lpspi_master_config_t masterConfig;
RT_ASSERT(cfg != RT_NULL);
if(cfg->data_width != 8 && cfg->data_width != 16 && cfg->data_width != 32)
{
return RT_EINVAL;
}
#if defined(RT_USING_SPIBUS1)
if(base == LPSPI1)
{
IOMUXC_SetPinMux (LPSPI1_SCK_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI1_SCK_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI1_SDO_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI1_SDO_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI1_SDI_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI1_SDI_GPIO, 0x10B0u);
}
#endif
#if defined(RT_USING_SPIBUS2)
if(base == LPSPI2)
{
IOMUXC_SetPinMux (LPSPI2_SCK_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI2_SCK_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI2_SDO_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI2_SDO_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI2_SDI_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI2_SDI_GPIO, 0x10B0u);
}
#endif
#if defined(RT_USING_SPIBUS3)
if(base == LPSPI3)
{
IOMUXC_SetPinMux (LPSPI3_SCK_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI3_SCK_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI3_SDO_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI3_SDO_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI3_SDI_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI3_SDI_GPIO, 0x10B0u);
}
#endif
#if defined(RT_USING_SPIBUS4)
if(base == LPSPI4)
{
IOMUXC_SetPinMux (LPSPI4_SCK_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI4_SCK_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI4_SDO_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI4_SDO_GPIO, 0x10B0u);
IOMUXC_SetPinMux (LPSPI4_SDI_GPIO, 0U);
IOMUXC_SetPinConfig(LPSPI4_SDI_GPIO, 0x10B0u);
}
#endif
LPSPI_MasterGetDefaultConfig(&masterConfig);
if(cfg->max_hz > 40*1000*1000)
{
cfg->max_hz = 40*1000*1000;
}
masterConfig.baudRate = cfg->max_hz;
masterConfig.bitsPerFrame = cfg->data_width;
if(cfg->mode & RT_SPI_MSB)
{
masterConfig.direction = kLPSPI_MsbFirst;
}
else
{
masterConfig.direction = kLPSPI_LsbFirst;
}
if(cfg->mode & RT_SPI_CPHA)
{
masterConfig.cpha = kLPSPI_ClockPhaseSecondEdge;
}
else
{
masterConfig.cpha = kLPSPI_ClockPhaseFirstEdge;
}
if(cfg->mode & RT_SPI_CPOL)
{
masterConfig.cpol = kLPSPI_ClockPolarityActiveLow;
}
else
{
masterConfig.cpol = kLPSPI_ClockPolarityActiveHigh;
}
masterConfig.pinCfg = kLPSPI_SdiInSdoOut;
masterConfig.dataOutConfig = kLpspiDataOutTristate;
masterConfig.pcsToSckDelayInNanoSec = 1000000000 / masterConfig.baudRate;
masterConfig.lastSckToPcsDelayInNanoSec = 1000000000 / masterConfig.baudRate;
masterConfig.betweenTransferDelayInNanoSec = 1000000000 / masterConfig.baudRate;
LPSPI_MasterInit(base, &masterConfig, rt1021_get_lpspi_freq());
base->CFGR1 |= LPSPI_CFGR1_PCSCFG_MASK;
return RT_EOK;
}
rt_err_t rt1021_spi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin)
{
rt_err_t ret = RT_EOK;
struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
struct rt1021_sw_spi_cs *cs_pin = (struct rt1021_sw_spi_cs *)rt_malloc(sizeof(struct rt1021_sw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->pin = pin;
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, PIN_HIGH);
ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
return ret;
}
static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
rt_err_t ret = RT_EOK;
struct rt1021_spi *spi = RT_NULL;
RT_ASSERT(cfg != RT_NULL);
RT_ASSERT(device != RT_NULL);
spi = (struct rt1021_spi *)(device->bus->parent.user_data);
spi->cfg = cfg;
ret = rt1021_spi_init(spi->base, cfg);
return ret;
}
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
lpspi_transfer_t transfer;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct rt1021_spi *spi = (struct rt1021_spi *)(device->bus->parent.user_data);
struct rt1021_sw_spi_cs *cs = device->parent.user_data;
if(message->cs_take)
{
rt_pin_write(cs->pin, PIN_LOW);
}
transfer.dataSize = message->length;
transfer.rxData = (uint8_t *)(message->recv_buf);
transfer.txData = (uint8_t *)(message->send_buf);
LPSPI_MasterTransferBlocking(spi->base, &transfer);
if(message->cs_release)
{
rt_pin_write(cs->pin, PIN_HIGH);
}
return message->length;
}
#if defined(RT_USING_SPIBUS1)
static struct rt1021_spi spi1 =
{
.base = LPSPI1
};
static struct rt_spi_bus spi1_bus =
{
.parent.user_data = &spi1
};
#endif
#if defined(RT_USING_SPIBUS2)
static struct rt1021_spi spi2 =
{
.base = LPSPI2
};
static struct rt_spi_bus spi2_bus =
{
.parent.user_data = &spi2
};
#endif
#if defined(RT_USING_SPIBUS3)
static struct rt1021_spi spi3 =
{
.base = LPSPI3
};
static struct rt_spi_bus spi3_bus =
{
.parent.user_data = &spi3
};
#endif
#if defined(RT_USING_SPIBUS4)
static struct rt1021_spi spi4 =
{
.base = LPSPI4
};
static struct rt_spi_bus spi4_bus =
{
.parent.user_data = &spi4
};
#endif
static struct rt_spi_ops rt1021_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer
};
int rt_hw_spi_bus_init(void)
{
CLOCK_SetMux(kCLOCK_LpspiMux, LPSPI_CLK_SOURCE);
CLOCK_SetDiv(kCLOCK_LpspiDiv, LPSPI_CLK_SOURCE_DIVIDER-1);
CLOCK_EnableClock(kCLOCK_Iomuxc);
#if defined(RT_USING_SPIBUS1)
rt_spi_bus_register(&spi1_bus, "spi1", &rt1021_spi_ops);
#endif
#if defined(RT_USING_SPIBUS2)
rt_spi_bus_register(&spi2_bus, "spi2", &rt1021_spi_ops);
#endif
#if defined(RT_USING_SPIBUS3)
rt_spi_bus_register(&spi3_bus, "spi3", &rt1021_spi_ops);
#endif
#if defined(RT_USING_SPIBUS4)
rt_spi_bus_register(&spi4_bus, "spi4", &rt1021_spi_ops);
#endif
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_spi_bus_init);
#endif