677 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2019-2025 Allwinner Technology Co., Ltd. ALL rights reserved.
*
* Allwinner is a trademark of Allwinner Technology Co.,Ltd., registered in
* the the people's Republic of China and other countries.
* All Allwinner Technology Co.,Ltd. trademarks are used with permission.
*
* DISCLAIMER
* THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT.
* IF YOU NEED TO INTEGRATE THIRD PARTYS TECHNOLOGY (SONY, DTS, DOLBY, AVS OR MPEGLA, ETC.)
* IN ALLWINNERSSDK OR PRODUCTS, YOU SHALL BE SOLELY RESPONSIBLE TO OBTAIN
* ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES.
* ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS
* COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.
* YOU ARE SOLELY RESPONSIBLE FOR YOUR USAGE OF THIRD PARTYS TECHNOLOGY.
*
*
* THIS SOFTWARE IS PROVIDED BY ALLWINNER"AS IS" AND TO THE MAXIMUM EXTENT
* PERMITTED BY LAW, ALLWINNER EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION REGARDING
* THE TITLE, NON-INFRINGEMENT, ACCURACY, CONDITION, COMPLETENESS, PERFORMANCE
* OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL ALLWINNER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <hal_cmd.h>
#include <hal_mem.h>
#include <sunxi_hal_ce.h>
#include "test_ce.h"
#define AES_MODE_ECB (0)
#define AES_MODE_CBC (1)
#define AES_MODE_CTR (2)
#define AES_MODE_CTS (3)
#define AES_MODE_OFB (4)
#define AES_MODE_CFB (5)
#define AES_DIR_ENCRYPT (0)
#define AES_DIR_DECRYPT (1)
#define HASH_METHOD_MD5 (16)
#define HASH_METHOD_SHA1 (17)
#define HASH_METHOD_SHA224 (18)
#define HASH_METHOD_SHA256 (19)
#define HASH_METHOD_SHA384 (20)
#define HASH_METHOD_SHA512 (21)
void ce_dump(char *str,unsigned char *data, int len, int align)
{
int i = 0;
if(str)
printf("\n%s: ",str);
for(i = 0; i<len; i++)
{
if((i%align) == 0)
{
printf("\n");
printf("0x08%x: ", data + i * align);
}
printf("%02x ",*(data++));
}
printf("\n");
}
int aes_test(void)
{
int ret = -1;
int i = 0;
int j = 0;
int m = 0;
uint8_t *enc_buffer = 0;
uint32_t enc_len = 0;
uint32_t blk_num = 0;
uint8_t iv_next[AES_BLOCK_SIZE] = {0};
uint8_t *(*aes_enc[])[5] = {aes_ecb, aes_cbc, aes_ctr, aes_cbc, aes_ofb, aes_cfb8};
crypto_aes_req_ctx_t *aes_ctx = NULL;
aes_ctx = (crypto_aes_req_ctx_t *)hal_malloc_align(sizeof(crypto_aes_req_ctx_t), CE_ALIGN_SIZE);
if (aes_ctx == NULL) {
printf (" malloc data buffer fail\n");
return -1;
}
memset(aes_ctx, 0x0, sizeof(crypto_aes_req_ctx_t));
aes_ctx->dst_buffer = (u8 *)hal_malloc_align(512, CE_ALIGN_SIZE);
if (aes_ctx->dst_buffer == NULL) {
printf (" malloc dest buffer fail\n");
ret = -1;
goto out;
}
for (m = AES_MODE_ECB; m < AES_MODE_CFB + 1; m++) {
for (i = 0; i < sizeof(aes_key_len)/sizeof(aes_key_len[0]); i++) {
for (j = 0; j < sizeof(aes_src)/sizeof(aes_src[0]); j++) {
/* aes encrypt */
aes_ctx->src_buffer = aes_src[j];
aes_ctx->src_length = aes_src_len[j];
aes_ctx->key = aes_key[i];
aes_ctx->key_length = aes_key_len[i];
if (m == AES_MODE_ECB)
aes_ctx->iv = NULL;
else
aes_ctx->iv = aes_iv;
if (m == AES_MODE_CTR) {
memset(iv_next, 0, AES_BLOCK_SIZE);
aes_ctx->iv_next = iv_next;
} else
aes_ctx->iv_next = NULL;
if (m == AES_MODE_CFB)
aes_ctx->bitwidth = 8;
else
aes_ctx->bitwidth = 0;
aes_ctx->mode = m;
aes_ctx->dir = AES_DIR_ENCRYPT;
aes_ctx->dst_length = CE_ROUND_UP(aes_ctx->src_length, AES_BLOCK_SIZE);
printf("###############AES, mode: %d, ksize %d, src len %d, begin###############\n", m, aes_key_len[i], aes_src_len[j]);
ret = do_aes_crypto(aes_ctx);
if (ret < 0) {
printf ("aes encrypt fail %d\n", ret);
goto out;
}
// for ecb/cbc/cts, enc data len should be 16 bytes aligned
if (m == AES_MODE_ECB || m == AES_MODE_CBC || m == AES_MODE_CTS)
enc_len = aes_ctx->dst_length;
else
enc_len = aes_src_len[j];
// openssl enc do not support cts, so create enc data manually.
if (m == AES_MODE_CTS){
enc_buffer = (uint8_t *)hal_malloc(enc_len);
if (enc_buffer == NULL) {
printf ("malloc ctr buffer fail\n");
ret = -1;
goto out;
}
blk_num = enc_len / AES_BLOCK_SIZE;
if (blk_num > 1) {
if (blk_num > 2)
memcpy(enc_buffer, aes_enc[m - AES_MODE_ECB][i][j], (blk_num - 2) * AES_BLOCK_SIZE);
memcpy(enc_buffer + (blk_num - 2) * AES_BLOCK_SIZE,
aes_enc[m - AES_MODE_ECB][i][j] + (blk_num - 1) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
memcpy(enc_buffer + (blk_num - 1) * AES_BLOCK_SIZE,
aes_enc[m - AES_MODE_ECB][i][j] + (blk_num - 2) * AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
} else {
memcpy(enc_buffer, aes_enc[m - AES_MODE_ECB][i][j], enc_len);
}
} else
enc_buffer = aes_enc[m - AES_MODE_ECB][i][j];
if (memcmp(aes_ctx->dst_buffer, enc_buffer, enc_len) != 0) {
ce_dump("want data: ", enc_buffer, enc_len, 16);
ce_dump("calc data: ", aes_ctx->dst_buffer, enc_len, 16);
printf("###############AES ENC, mode: %d, ksize %d, src len %d, fail###############\n", m, aes_key_len[i], aes_src_len[j]);
ret = -1;
goto out;
}
/* aes decrypt */
memset(aes_ctx->dst_buffer, 0x0, aes_ctx->dst_length);
aes_ctx->dir = AES_DIR_DECRYPT;
aes_ctx->src_buffer = enc_buffer;
aes_ctx->src_length = enc_len;
ret = do_aes_crypto(aes_ctx);
if (ret < 0) {
printf("aes decrypt fail %d\n", ret);
goto out;
}
if (memcmp(aes_ctx->dst_buffer, aes_src[j], aes_src_len[j]) != 0) {
ce_dump("want data: ", aes_src[j], aes_src_len[j], 16);
ce_dump("calc data: ", aes_ctx->dst_buffer, aes_src_len[j], 16);
printf("###############AES DEC, mode: %d, ksize %d, src len %d, fail###############\n", m, aes_key_len[i], aes_src_len[j]);
ret = -1;
goto out;
}
if (m == AES_MODE_CTS) {
if (enc_buffer)
hal_free(enc_buffer);
}
printf("###############AES, mode: %d, ksize %d, src len %d, pass###############\n\n\n", m, aes_key_len[i], aes_src_len[j]);
}
}
}
out:
if (aes_ctx->dst_buffer != NULL) {
hal_free_align(aes_ctx->dst_buffer);
}
if (m == AES_MODE_CTS) {
if (enc_buffer)
hal_free(enc_buffer);
}
hal_free_align(aes_ctx);
return ret;
}
int hash_test(void)
{
int i = 0;
int j = 0;
uint8_t *dst_data = NULL;
//uint32_t data_size = 512; SHA_MAX_DIGEST_SIZE
uint32_t data_size = SHA_MAX_DIGEST_SIZE;
uint32_t hash_length = 0;
int ret = -1;
uint8_t *(*hash_digest[]) = {hash_md5, hash_sha1, hash_sha224, hash_sha256, hash_sha384, hash_sha512};
crypto_hash_req_ctx_t *hash_ctx = NULL;
hash_ctx = (crypto_hash_req_ctx_t *)hal_malloc_align(sizeof(crypto_hash_req_ctx_t), CE_ALIGN_SIZE);
if (hash_ctx == NULL) {
printf (" malloc hash_ctx fail\n");
ret = -1;
goto out;
}
/*malloc dst buf*/
dst_data = (u8 *)hal_malloc_align(data_size, CE_ALIGN_SIZE);
if (dst_data == NULL) {
printf (" malloc dst buffer fail\n");
ret = -1;
goto out;
}
for (i = HASH_METHOD_MD5; i < HASH_METHOD_SHA512 + 1; i++) {
for (j = 0; j < sizeof(hash_src_len)/sizeof(hash_src_len[0]); j++) {
hash_ctx->src_buffer = hash_src[j];
hash_ctx->src_length = hash_src_len[j];
memset(dst_data, 0x0, data_size);
hash_ctx->dst_buffer = dst_data;
hash_ctx->type = i;
hash_ctx->md_size = 0;
switch (i) {
case HASH_METHOD_MD5:
hash_ctx->dst_length = MD5_DIGEST_SIZE;
hash_length = MD5_DIGEST_SIZE;
break;
case HASH_METHOD_SHA1:
hash_ctx->dst_length = SHA1_DIGEST_SIZE;
hash_length = SHA1_DIGEST_SIZE;
break;
case HASH_METHOD_SHA224:
hash_ctx->dst_length = SHA256_DIGEST_SIZE;
hash_length = SHA224_DIGEST_SIZE;
break;
case HASH_METHOD_SHA256:
hash_ctx->dst_length = SHA256_DIGEST_SIZE;
hash_length = SHA256_DIGEST_SIZE;
break;
case HASH_METHOD_SHA384:
hash_ctx->dst_length = SHA512_DIGEST_SIZE;
hash_length = SHA384_DIGEST_SIZE;
break;
case HASH_METHOD_SHA512:
hash_ctx->dst_length = SHA512_DIGEST_SIZE;
hash_length = SHA512_DIGEST_SIZE;
break;
default:
break;
}
printf("############hash type: %d, src len: %d, begin#############\n", i, hash_src_len[j]);
ret = do_hash_crypto(hash_ctx);
if (ret < 0) {
printf ("do_hash_crypto fail\n");
goto out;
}
if (memcmp(hash_ctx->dst_buffer, hash_digest[i - HASH_METHOD_MD5][j], hash_length) == 0) {
printf("############hash type: %d, src len: %d, pass#############\n\n\n", i, hash_src_len[j]);
} else {
ce_dump("want digest: ", hash_digest[i - HASH_METHOD_MD5][j], hash_length, 16);
ce_dump("calc digest: ", hash_ctx->dst_buffer, hash_length, 16);
printf("############hash type: %d, src len: %d, fail#############\n\n\n", i, hash_src_len[j]);
ret = -1;
goto out;
}
}
}
out:
if (hash_ctx != NULL) {
hal_free_align(hash_ctx);
}
if (dst_data != NULL) {
hal_free_align(dst_data);
}
return ret;
}
int rng_test(void)
{
int ret = 0;
int i = 0;
uint8_t *rng_buf = NULL;
uint32_t rng_size[] = {16, 31, 32, 8100};
uint8_t key[24] = {
0xa1, 0xb7, 0x78, 0xf7, 0xbf, 0x2c, 0xfa, 0xad, 0x6a, 0x46, 0x79, 0xc2, 0xd2, 0x9c, 0x45, 0x1f,
0x3f, 0xcb, 0xef, 0xa5, 0x4e, 0x0e, 0xc3, 0x51
};
uint32_t key_len = 24;
crypto_rng_req_ctx_t *rng_ctx = NULL;
rng_ctx = (crypto_rng_req_ctx_t *)hal_malloc(sizeof(crypto_rng_req_ctx_t));
if (rng_ctx == NULL) {
printf (" malloc rng ctx fail\n");
ret = -1;
goto out;
}
/*malloc trng buf*/
rng_buf = (u8 *)hal_malloc(8192);
if (rng_buf == NULL) {
printf ("malloc rng buffer fail\n");
ret = -1;
goto out;
}
/*TRNG test*/
for (i = 0; i < sizeof(rng_size)/sizeof(uint32_t); i++) {
printf("############TRNG, len: %d, begin#############\n", rng_size[i]);
memset(rng_buf, 0, 8192);
rng_ctx->rng_buf = rng_buf;
rng_ctx->rng_len = rng_size[i];
rng_ctx->mode = 0x30; /*CE_METHOD_TRNG*/
rng_ctx->key = NULL;
rng_ctx->key_len = 0;
ret = do_rng_gen(rng_ctx);
if (ret < 0) {
printf("############TRNG, len: %d, fail#############\n\n\n", rng_size[i]);
goto out;
}
#if 0
if (rng_size[i] < 100)
ce_dump("trng:", rng_buf, rng_size[i], 16);
#endif
printf("############TRNG, len: %d, pass#############\n\n\n", rng_size[i]);
}
/*PRNG test*/
for (i = 0; i < sizeof(rng_size)/sizeof(uint32_t); i++) {
printf("############PRNG, len: %d, begin#############\n", rng_size[i]);
memset(rng_buf, 0, 8192);
rng_ctx->rng_buf = rng_buf;
rng_ctx->rng_len = rng_size[i];
rng_ctx->mode = 0x31; /*CE_METHOD_PRNG*/
rng_ctx->key = key;
rng_ctx->key_len = key_len;
ret = do_rng_gen(rng_ctx);
if (ret < 0) {
printf("############PRNG, len: %d, fail#############\n\n\n", rng_size[i]);
goto out;
}
#if 0
if (rng_size[i] < 100)
ce_dump("prng:", rng_buf, rng_size[i], 16);
#endif
printf("############PRNG, len: %d, pass#############\n\n\n", rng_size[i]);
}
out:
if (rng_ctx)
hal_free(rng_ctx);
if (rng_buf)
hal_free(rng_buf);
return ret;
}
int rsa_test(void)
{
int ret = 0;
int i = 0;
uint8_t dst_buffer[256] = {0};
crypto_rsa_req_ctx_t *rsa_ctx = NULL;
rsa_ctx = (crypto_rsa_req_ctx_t *)hal_malloc_align(sizeof(crypto_rsa_req_ctx_t), CE_ALIGN_SIZE);
if (rsa_ctx == NULL) {
printf (" malloc rsa ctx fail\n");
return -1;
}
/*rsa enc and dec*/
for (i = 0; i < sizeof(rsa_bitwidth)/sizeof(rsa_bitwidth[0]); i ++) {
/* enc with public key*/
printf("############RSA ENC/DEC, len: %d, begin#############\n", rsa_bitwidth[i]);
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = rsa_keye[i];
rsa_ctx->e_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_d = 0;
rsa_ctx->d_len = 0;
rsa_ctx->src_buffer = rsa_src[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = rsa_bitwidth[i] / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_enc[i], rsa_bitwidth[i] / 8);
if (ret) {
printf("rsa encrypt failed\n");
ce_dump("want data: ", rsa_enc[i], rsa_bitwidth[i] / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA ENC, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
goto out;
}
/* dec with private key */
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = 0;
rsa_ctx->e_len = 0;
rsa_ctx->key_d = rsa_keyd[i];
rsa_ctx->d_len = rsa_bitwidth[i] / 8;
rsa_ctx->src_buffer = rsa_enc[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = rsa_bitwidth[i] / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_src[i], rsa_bitwidth[i] / 8);
if (ret) {
printf("rsa decrypt failed\n");
ce_dump("want data: ", rsa_src[i], rsa_bitwidth[i] / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA DEC, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
goto out;
}
printf("############RSA ENC/DEC, len: %d, pass#############\n\n\n", rsa_bitwidth[i]);
}
/* rsa sign/verify sha256 value */
for (i = 0; i < sizeof(rsa_bitwidth)/sizeof(rsa_bitwidth[0]); i ++) {
/* sign with private key */
printf("############RSA SIGN/VERIFY SHA256, len: %d, begin#############\n", rsa_bitwidth[i]);
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = 0;
rsa_ctx->e_len = 0;
rsa_ctx->key_d = rsa_keyd[i];
rsa_ctx->d_len = rsa_bitwidth[i] / 8;
rsa_ctx->src_buffer = rsa_sha256_raw[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = rsa_bitwidth[i] / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_sha256_sign[i], rsa_bitwidth[i] / 8);
if (ret) {
printf("rsa encrypt failed\n");
ce_dump("want data: ", rsa_sha256_sign[i], rsa_bitwidth[i] / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA SIGN SHA256, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
//goto out;
}
/* verify with public key */
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = rsa_keye[i];
rsa_ctx->e_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_d = 0;
rsa_ctx->d_len = 0;
rsa_ctx->src_buffer = rsa_sha256_sign[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = 256 / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_sha256[i], 256 / 8);
if (ret) {
printf("rsa decrypt failed\n");
ce_dump("want data: ", rsa_sha256[i], 256 / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA VERIFY SHA256, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
goto out;
}
printf("############RSA SIGN/VERIFY SHA256, len: %d, pass#############\n\n\n", rsa_bitwidth[i]);
}
/* rsa sign/verify */
for (i = 0; i < sizeof(rsa_bitwidth)/sizeof(rsa_bitwidth[0]); i ++) {
/* sign with private key */
printf("############RSA SIGN/VERIFY, len: %d, begin#############\n", rsa_bitwidth[i]);
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = 0;
rsa_ctx->e_len = 0;
rsa_ctx->key_d = rsa_keyd[i];
rsa_ctx->d_len = rsa_bitwidth[i] / 8;
rsa_ctx->src_buffer = rsa_sign_raw[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = rsa_bitwidth[i] / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_signature[i], rsa_bitwidth[i] / 8);
if (ret) {
printf("rsa encrypt failed\n");
ce_dump("want data: ", rsa_signature[i], rsa_bitwidth[i] / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA SIGN, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
//goto out;
}
/* verify with public key */
memset(dst_buffer, 0, 256);
memset(rsa_ctx, 0, sizeof(crypto_rsa_req_ctx_t));
rsa_ctx->key_n = rsa_keyn[i];
rsa_ctx->n_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_e = rsa_keye[i];
rsa_ctx->e_len = rsa_bitwidth[i] / 8;
rsa_ctx->key_d = 0;
rsa_ctx->d_len = 0;
rsa_ctx->src_buffer = rsa_signature[i];
rsa_ctx->src_length = rsa_bitwidth[i] / 8;
rsa_ctx->dst_buffer = dst_buffer;
rsa_ctx->dst_length = 256 / 8;
rsa_ctx->dir = 0;
rsa_ctx->type = 0x20; /*CE_METHOD_RSA*/
rsa_ctx->bitwidth = rsa_bitwidth[i];
ret = do_rsa_crypto(rsa_ctx);
if (ret < 0) {
printf ("do rsa crypto failed: %d\n", ret);
goto out;
}
ret = memcmp(rsa_ctx->dst_buffer, rsa_sha256[i], 256 / 8);
if (ret) {
printf("rsa decrypt failed\n");
ce_dump("want data: ", rsa_sha256[i], 256 / 8, 16);
ce_dump("calc data: ", rsa_ctx->dst_buffer, rsa_ctx->dst_length, 16);
printf("############RSA VERIFY, len: %d, fail#############\n\n\n", rsa_bitwidth[i]);
goto out;
}
printf("############RSA SIGN/VERIFY, len: %d, pass#############\n\n\n", rsa_bitwidth[i]);
}
out:
if (rsa_ctx)
hal_free_align(rsa_ctx);
return ret;
}
int cmd_test_ce(int argc, const char *argv[])
{
int ret = 0;
if (argc != 2) {
printf("Parameter number Error!\n");
printf("Usage: hal_ce <aes|hash|rsa|rng>\n");
return -1;
}
sunxi_ce_init();
if (strcmp(argv[1], "aes") == 0)
ret = aes_test();
else if (strcmp(argv[1], "hash") == 0)
ret = hash_test();
else if (strcmp(argv[1], "rsa") == 0)
ret = rsa_test();
else if (strcmp(argv[1], "rng") == 0)
ret = rng_test();
else {
printf("Parameter Error!\n");
printf("Usage: hal_ce <aes|hash|rsa|rng>\n");
ret = -1;
}
sunxi_ce_uninit();
return ret;
}
FINSH_FUNCTION_EXPORT_CMD(cmd_test_ce, hal_ce, tina rtos ce test demo)