7586 lines
292 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2021 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_caam.h"
#include "fsl_clock.h"
#if defined(FSL_FEATURE_HAS_L1CACHE) || defined(__DCACHE_PRESENT)
#include "fsl_cache.h"
#endif
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.caam"
#endif
/*! Compile time sizeof() check */
#define BUILD_ASSURE(condition, msg) extern int msg[1 - 2 * (!(condition))] __attribute__((unused))
/*! AESA XCBC-MAC or CMAC request CLASS 1 (default) or CLASS 2 CHA */
#ifndef CAAM_AES_MAC_CLASS
#define CAAM_AES_MAC_CLASS_1 0x02000000u
#define CAAM_AES_MAC_CLASS_2 0x04000000u
#define CAAM_AES_MAC_CLASS CAAM_AES_MAC_CLASS_1
#endif
/*! IRBAR and ORBAR job ring registers are 64-bit. these macros access least significant address 32-bit word. */
#define IRBAR0 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[0].IRBAR_JR)) + 1)
#define ORBAR0 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[0].ORBAR_JR)) + 1)
#define IRBAR1 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[1].IRBAR_JR)) + 1)
#define ORBAR1 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[1].ORBAR_JR)) + 1)
#define IRBAR2 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[2].IRBAR_JR)) + 1)
#define ORBAR2 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[2].ORBAR_JR)) + 1)
#define IRBAR3 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[3].IRBAR_JR)) + 1)
#define ORBAR3 *(((volatile uint32_t *)(uint32_t) & (base->JOBRING[3].ORBAR_JR)) + 1)
/*! Job Descriptor defines */
#define DESC_SIZE_MASK 0x0000003Fu
#define DESC_KEY_SIZE_MASK 0x3FFu
#define DESC_PAYLOAD_SIZE_MASK 0x0000FFFFu
#define DESC_LC1_MASK 0x00020000u
#define DESC_TAG_SIZE_MASK 0xFFu
#define DESC_HALT 0xA0C00000u
#define DESC_JUMP_2 0xA0000002u
#define DESC_JUMP_4 0xA0000004u
#define DESC_JUMP_6 0xA0000006u
typedef enum _caam_algorithm
{
kCAAM_AlgorithmAES = 0x10u << 16,
kCAAM_AlgorithmDES = 0x20u << 16,
kCAAM_Algorithm3DES = 0x21u << 16,
kCAAM_AlgorithmSHA1 = 0x41u << 16,
kCAAM_AlgorithmSHA224 = 0x42u << 16,
kCAAM_AlgorithmSHA256 = 0x43u << 16,
kCAAM_AlgorithmSHA384 = 0x44u << 16,
kCAAM_AlgorithmSHA512 = 0x45u << 16,
} caam_algorithm_t;
typedef enum _caam_aai_symmetric_alg
{
kCAAM_ModeCTR = 0x00U << 4,
kCAAM_ModeCBC = 0x10U << 4,
kCAAM_ModeECB = 0x20U << 4,
kCAAM_ModeCFB = 0x30U << 4,
kCAAM_ModeOFB = 0x40U << 4,
kCAAM_ModeCMAC = 0x60U << 4,
kCAAM_ModeXCBCMAC = 0x70U << 4,
kCAAM_ModeCCM = 0x80U << 4,
kCAAM_ModeGCM = 0x90U << 4,
} caam_aai_symmetric_alg_t;
typedef enum _caam_algorithm_state
{
kCAAM_AlgStateUpdate = 0u,
kCAAM_AlgStateInit = 1u,
kCAAM_AlgStateFinal = 2u,
kCAAM_AlgStateInitFinal = 3u,
} caam_algorithm_state_t;
/*******************************************************************************
* HASH Definitions
******************************************************************************/
enum _caam_sha_digest_len
{
kCAAM_RunLenSha1 = 28u,
kCAAM_OutLenSha1 = 20u,
kCAAM_RunLenSha224 = 40u,
kCAAM_OutLenSha224 = 28u,
kCAAM_RunLenSha256 = 40u,
kCAAM_OutLenSha256 = 32u,
kCAAM_RunLenSha384 = 64u,
kCAAM_OutLenSha384 = 48u,
kCAAM_RunLenSha512 = 64u,
kCAAM_OutLenSha512 = 64u,
};
/*! Internal states of the HASH creation process */
typedef enum _caam_hash_algo_state
{
kCAAM_HashInit = 1u, /*!< Key in the HASH context is the input key. */
kCAAM_HashUpdate, /*!< HASH context has algorithm specific context: MAC, K2 and K3 (XCBC-MAC), MAC and L (CMAC),
running digest (MDHA). Key in the HASH context is the derived key. */
} caam_hash_algo_state_t;
/*! 64-byte block represented as byte array or 16 32-bit words */
typedef union _caam_hash_block
{
uint32_t w[CAAM_HASH_BLOCK_SIZE / 4]; /*!< array of 32-bit words */
uint8_t b[CAAM_HASH_BLOCK_SIZE]; /*!< byte array */
} caam_hash_block_t;
/*! Definitions of indexes into hash context array */
typedef enum _caam_hash_ctx_indexes
{
kCAAM_HashCtxKeyStartIdx = 12, /*!< context word array index where key is stored */
kCAAM_HashCtxKeySize = 20, /*!< context word array index where key size is stored */
kCAAM_HashCtxNumWords = 21, /*!< number of context array 32-bit words */
} caam_hash_ctx_indexes;
typedef struct _caam_hash_ctx_internal
{
caam_hash_block_t blk; /*!< memory buffer. only full 64-byte blocks are written to CAAM during hash updates */
uint32_t word[kCAAM_HashCtxNumWords]; /*!< CAAM module context that needs to be saved/restored between CAAM jobs */
uint32_t blksz; /*!< number of valid bytes in memory buffer */
CAAM_Type *base; /*!< CAAM peripheral base address */
caam_handle_t *handle; /*!< CAAM handle (specifies jobRing and optional callback function) */
caam_hash_algo_t algo; /*!< selected algorithm from the set of supported algorithms in caam_hash_algo_t */
caam_hash_algo_state_t state; /*!< finite machine state of the hash software process */
} caam_hash_ctx_internal_t;
/*! Definitions of indexes into hash job descriptor */
enum _caam_hash_sgt_index
{
kCAAM_HashDescriptorSgtIdx = 14u, /*!< Index of the hash job descriptor[] where the two entry SGT starts. */
};
/*! One entry in the SGT */
typedef struct _caam_sgt_entry
{
/* 64-bit address. */
uint32_t address_h;
uint32_t address_l;
uint32_t length;
uint32_t offset;
} caam_sgt_entry_t;
/*! Definitions SGT entry type */
typedef enum _caam_hash_sgt_entry_type
{
kCAAM_HashSgtEntryNotLast = 0u, /*!< Do not set the Final Bit in SGT entries */
kCAAM_HashSgtEntryLast = 1u, /*!< Sets Final Bit in the last SGT entry */
} caam_hash_sgt_entry_type_t;
/*! Two entry SGT, embedded in the hash job descriptor */
typedef caam_sgt_entry_t caam_hash_internal_sgt_t[2];
/*! Definitions of SGT type */
typedef enum _caam_hash_sgt_type
{
kCAAM_HashSgtInternal = 0u, /*!< Two entry SGT is copied into the hash job descriptor. */
kCAAM_HashSgtExternal = 1u, /*!< Use external SGT. */
} caam_hash_sgt_type_t;
enum _caam_hash_non_blocking_sgt_entries
{
kCAAM_HashSgtMaxCtxEntries =
(sizeof(caam_hash_block_t) + sizeof(uint32_t) * kCAAM_HashCtxKeyStartIdx) / sizeof(caam_sgt_entry_t),
};
/*******************************************************************************
* Variables
******************************************************************************/
static caam_job_ring_interface_t *s_jr0 = NULL; /*!< Pointer to job ring interface 0. */
static uint32_t s_jrIndex0 = 0; /*!< Current index in the input job ring 0. */
static caam_job_ring_interface_t *s_jr1 = NULL; /*!< Pointer to job ring interface 1. */
static uint32_t s_jrIndex1 = 0; /*!< Current index in the input job ring 1. */
static caam_job_ring_interface_t *s_jr2 = NULL; /*!< Pointer to job ring interface 2. */
static uint32_t s_jrIndex2 = 0; /*!< Current index in the input job ring 2. */
static caam_job_ring_interface_t *s_jr3 = NULL; /*!< Pointer to job ring interface 3. */
static uint32_t s_jrIndex3 = 0; /*!< Current index in the input job ring 3. */
/*******************************************************************************
* Code
******************************************************************************/
/*******************************************************************************
* CAAM Common code static
******************************************************************************/
/* Macros and functions computing data offset for descriptors */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET)
#include "fsl_memory.h"
#ifndef FSL_MEM_M4_TCM_OFFSET
#define CAAM_OFFSET 0U
#else
#define CAAM_OFFSET FSL_MEM_M4_TCM_OFFSET
#endif
uint32_t ADD_OFFSET(uint32_t addr)
{
if (addr > FSL_MEM_M4_TCM_END)
{
return addr;
}
else if (addr < FSL_MEM_M4_TCM_BEGIN)
{
return addr;
}
return addr + CAAM_OFFSET;
}
uint32_t ADD_OFFSET_SIZE(uint32_t addr, uint32_t size)
{
if ((addr + size) > FSL_MEM_M4_TCM_END)
{
return addr;
}
else if (addr < FSL_MEM_M4_TCM_BEGIN)
{
return addr;
}
return addr + CAAM_OFFSET;
}
#else /* !defined(FLS_FEATURE_CAAM_OFFSET) */
uint32_t ADD_OFFSET(uint32_t addr);
uint32_t ADD_OFFSET(uint32_t addr)
{
return addr;
}
uint32_t ADD_OFFSET_SIZE(uint32_t addr);
uint32_t ADD_OFFSET_SIZE(uint32_t addr)
{
return addr;
}
#endif /* FLS_FEATURE_CAAM_OFFSET */
#if 0
/* for build without string.h memcpy() */
static void caam_memcpy(void *dst, const void *src, size_t size)
{
register uint8_t *to = (uint8_t *)(uintptr_t)dst;
register const uint8_t *from = (const uint8_t *)(uintptr_t)src;
/* if it is possible to move data with 32-bit aligned access, do it so */
if ((size >= sizeof(uint32_t)) && (0u == ((uintptr_t)dst & 0x3u)) && (0u == ((uintptr_t)src & 0x3u)))
{
register uint32_t *to32 = (uint32_t *)(uintptr_t)dst;
register const uint32_t *from32 = (const uint32_t *)(uintptr_t)src;
while (size >= sizeof(uint32_t))
{
*to32 = *from32;
size -= sizeof(uint32_t);
to32++;
from32++;
}
to = (uint8_t *)(uintptr_t)to32;
from = (const uint8_t *)(uintptr_t)from32;
}
while (size)
{
*to = *from;
size--;
to++;
from++;
}
}
#else
#include <string.h>
#define caam_memcpy memcpy
#endif
static void caam_job_ring_set_base_address_and_size(CAAM_Type *base,
caam_job_ring_t jr,
uint32_t *inputRingBase,
size_t inputRingSize,
uint32_t *outputRingBase,
uint32_t outputRingSize)
{
if (kCAAM_JobRing0 == jr)
{
IRBAR0 = ADD_OFFSET((uint32_t)inputRingBase);
base->JOBRING[0].IRSR_JR = inputRingSize;
ORBAR0 = ADD_OFFSET((uint32_t)outputRingBase);
base->JOBRING[0].ORSR_JR = outputRingSize;
}
if (kCAAM_JobRing1 == jr)
{
IRBAR1 = (uintptr_t)ADD_OFFSET((uint32_t)inputRingBase);
base->JOBRING[1].IRSR_JR = inputRingSize;
ORBAR1 = (uintptr_t)ADD_OFFSET((uint32_t)outputRingBase);
base->JOBRING[1].ORSR_JR = outputRingSize;
}
if (kCAAM_JobRing2 == jr)
{
IRBAR2 = (uintptr_t)ADD_OFFSET((uint32_t)inputRingBase);
base->JOBRING[2].IRSR_JR = inputRingSize;
ORBAR2 = (uintptr_t)ADD_OFFSET((uint32_t)outputRingBase);
base->JOBRING[2].ORSR_JR = outputRingSize;
}
if (kCAAM_JobRing3 == jr)
{
IRBAR3 = (uintptr_t)ADD_OFFSET((uint32_t)inputRingBase);
base->JOBRING[3].IRSR_JR = inputRingSize;
ORBAR3 = (uintptr_t)ADD_OFFSET((uint32_t)outputRingBase);
base->JOBRING[3].ORSR_JR = outputRingSize;
}
}
static inline void caam_input_ring_set_jobs_added(CAAM_Type *base, caam_job_ring_t jr, uint32_t numJobsAdded)
{
/* Data and Instruction Synchronization Barrier to make sure */
/* that the descriptor will be loaded into CAAM in time*/
__ISB();
__DSB();
if (kCAAM_JobRing0 == jr)
{
base->JOBRING[0].IRJAR_JR = numJobsAdded;
}
if (kCAAM_JobRing1 == jr)
{
base->JOBRING[1].IRJAR_JR = numJobsAdded;
}
if (kCAAM_JobRing2 == jr)
{
base->JOBRING[2].IRJAR_JR = numJobsAdded;
}
if (kCAAM_JobRing3 == jr)
{
base->JOBRING[3].IRJAR_JR = numJobsAdded;
}
}
static inline void caam_output_ring_set_jobs_removed(CAAM_Type *base, caam_job_ring_t jr, uint32_t numJobsRemoved)
{
if (kCAAM_JobRing0 == jr)
{
base->JOBRING[0].ORJRR_JR = numJobsRemoved;
}
if (kCAAM_JobRing1 == jr)
{
base->JOBRING[1].ORJRR_JR = numJobsRemoved;
}
if (kCAAM_JobRing2 == jr)
{
base->JOBRING[2].ORJRR_JR = numJobsRemoved;
}
if (kCAAM_JobRing3 == jr)
{
base->JOBRING[3].ORJRR_JR = numJobsRemoved;
}
}
static uint32_t caam_output_ring_get_slots_full(CAAM_Type *base, caam_job_ring_t jr)
{
uint32_t retVal = 0;
if (kCAAM_JobRing0 == jr)
{
retVal = base->JOBRING[0].ORSFR_JR;
}
if (kCAAM_JobRing1 == jr)
{
retVal = base->JOBRING[1].ORSFR_JR;
}
if (kCAAM_JobRing2 == jr)
{
retVal = base->JOBRING[2].ORSFR_JR;
}
if (kCAAM_JobRing3 == jr)
{
retVal = base->JOBRING[3].ORSFR_JR;
}
return retVal;
}
/*!
* @brief Tests the correct key size.
*
* This function tests the correct key size.
* @param keySize Input key length in bytes.
* @return True if the key length is supported, false if not.
*/
bool caam_check_key_size(const uint32_t keySize);
bool caam_check_key_size(const uint32_t keySize)
{
return ((keySize == 16u) || ((keySize == 24u)) || ((keySize == 32u)));
}
static status_t caam_in_job_ring_add(CAAM_Type *base, caam_job_ring_t jobRing, uint32_t *descaddr)
{
/* adding new job to the s_inJobRing[] must be atomic
* as this is global variable
*/
uint32_t currPriMask = DisableGlobalIRQ();
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
bool DCacheEnableFlag = false;
/* Disable D cache. */
if (SCB_CCR_DC_Msk == (SCB_CCR_DC_Msk & SCB->CCR))
{
SCB_DisableDCache();
DCacheEnableFlag = true;
}
#endif /* __DCACHE_PRESENT */
#if defined(FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE) && (FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE > 0U)
#if defined(FSL_FEATURE_HAS_L1CACHE) && (FSL_FEATURE_HAS_L1CACHE > 0U)
L1CACHE_DisableSystemCache();
#endif /* FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE */
#endif /* FSL_FEATURE_HAS_L1CACHE */
if (kCAAM_JobRing0 == jobRing)
{
s_jr0->inputJobRing[s_jrIndex0] = (ADD_OFFSET((uint32_t)descaddr));
s_jrIndex0++;
if (s_jrIndex0 >= ARRAY_SIZE(s_jr0->inputJobRing))
{
s_jrIndex0 = 0;
}
}
else if (kCAAM_JobRing1 == jobRing)
{
s_jr1->inputJobRing[s_jrIndex1] = ADD_OFFSET((uint32_t)descaddr);
s_jrIndex1++;
if (s_jrIndex1 >= ARRAY_SIZE(s_jr1->inputJobRing))
{
s_jrIndex1 = 0;
}
}
else if (kCAAM_JobRing2 == jobRing)
{
s_jr2->inputJobRing[s_jrIndex2] = ADD_OFFSET((uint32_t)descaddr);
s_jrIndex2++;
if (s_jrIndex2 >= ARRAY_SIZE(s_jr2->inputJobRing))
{
s_jrIndex2 = 0;
}
}
else if (kCAAM_JobRing3 == jobRing)
{
s_jr3->inputJobRing[s_jrIndex3] = ADD_OFFSET((uint32_t)descaddr);
s_jrIndex3++;
if (s_jrIndex3 >= ARRAY_SIZE(s_jr3->inputJobRing))
{
s_jrIndex3 = 0;
}
}
else
{
EnableGlobalIRQ(currPriMask);
return kStatus_InvalidArgument;
}
caam_input_ring_set_jobs_added(base, jobRing, 1);
#if defined(__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if (DCacheEnableFlag)
{
/* Enable D cache. */
SCB_EnableDCache();
}
#endif /* __DCACHE_PRESENT */
#if defined(FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE) && (FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE > 0U)
#if defined(FSL_FEATURE_HAS_L1CACHE) && (FSL_FEATURE_HAS_L1CACHE > 0U)
L1CACHE_EnableSystemCache();
#endif /* FSL_FEATURE_LMEM_HAS_SYSTEMBUS_CACHE */
#endif /* FSL_FEATURE_HAS_L1CACHE */
/* Enable IRQ */
EnableGlobalIRQ(currPriMask);
return kStatus_Success;
}
/* this function shall be only called inside CAAM driver critical section
* because it accesses global variables.
*/
static status_t caam_out_job_ring_remove(CAAM_Type *base, caam_job_ring_t jobRing, int outIndex)
{
if (kCAAM_JobRing0 == jobRing)
{
s_jr0->outputJobRing[outIndex++] = 0; /* clear descriptor address */
s_jr0->outputJobRing[outIndex] = 0; /* clear status */
}
else if (kCAAM_JobRing1 == jobRing)
{
s_jr1->outputJobRing[outIndex++] = 0; /* clear descriptor address */
s_jr1->outputJobRing[outIndex] = 0; /* clear status */
}
else if (kCAAM_JobRing2 == jobRing)
{
s_jr2->outputJobRing[outIndex++] = 0; /* clear descriptor address */
s_jr2->outputJobRing[outIndex] = 0; /* clear status */
}
else if (kCAAM_JobRing3 == jobRing)
{
s_jr3->outputJobRing[outIndex++] = 0; /* clear descriptor address */
s_jr3->outputJobRing[outIndex] = 0; /* clear status */
}
else
{
/* Intentional empty */
}
caam_output_ring_set_jobs_removed(base, jobRing, 1);
return 0;
}
static status_t caam_out_job_ring_test_and_remove(
CAAM_Type *base, caam_job_ring_t jobRing, uint32_t *descriptor, bool *wait, bool *found)
{
uint32_t currPriMask = DisableGlobalIRQ();
uint32_t i;
status_t status;
*found = false;
*wait = true;
status = kStatus_Success;
uint32_t *jr;
uint32_t jrEntries;
if (jobRing == kCAAM_JobRing0)
{
jr = s_jr0->outputJobRing;
jrEntries = ARRAY_SIZE(s_jr0->outputJobRing);
}
else if (jobRing == kCAAM_JobRing1)
{
jr = s_jr1->outputJobRing;
jrEntries = ARRAY_SIZE(s_jr1->outputJobRing);
}
else if (jobRing == kCAAM_JobRing2)
{
jr = s_jr2->outputJobRing;
jrEntries = ARRAY_SIZE(s_jr2->outputJobRing);
}
else if (jobRing == kCAAM_JobRing3)
{
jr = s_jr3->outputJobRing;
jrEntries = ARRAY_SIZE(s_jr3->outputJobRing);
}
else
{
return kStatus_InvalidArgument;
}
/* check if an interrupt or other thread consumed the result that we just saw */
if ((caam_output_ring_get_slots_full(base, jobRing)) != 0U)
{
/* check if our descriptor is in the output job ring
* look from the beginning of the out job ring
*/
i = 0;
while ((!*found) && (i < jrEntries))
{
if (jr[i] == (uint32_t)descriptor)
{
*found = true;
*wait = false;
/* check for error in status word */
if ((jr[i + 1U]) != 0U)
{
/* printf("Error 0x%lx\r\n", jr[i + 1]); */
/* for JMP/HALT commands with User specified status, return the user status, just to allow the
* software to test for user status termination status words */
/* This is used by PKHA PrimalityTest to report a candidate is believed not being prime */
if (0x30000000u == (jr[i + 1U] & 0xff000000u))
{
status = (int32_t)jr[i + 1U];
}
else
{
status = kStatus_Fail;
}
}
(void)caam_out_job_ring_remove(base, jobRing, (int)i);
}
else
{
/* try next result */
i += 2u;
}
}
}
EnableGlobalIRQ(currPriMask);
return status;
}
typedef union _caam_xcm_block_t
{
uint32_t w[4]; /*!< CAAM context register is 16 bytes written as four 32-bit words */
uint8_t b[16]; /*!< 16 octets block for CCM B0 and CTR0 and for GCM */
} caam_xcm_block_t;
static uint32_t swap_bytes(uint32_t in)
{
return (((in & 0x000000ffu) << 24) | ((in & 0x0000ff00u) << 8) | ((in & 0x00ff0000u) >> 8) |
((in & 0xff000000u) >> 24));
}
/*!
* @brief AES GCM check validity of input arguments.
*
* This function checks the validity of input arguments.
*
* @param base LTC peripheral base address.
* @param src Source address (plaintext or ciphertext).
* @param iv Initialization vector address.
* @param aad Additional authenticated data address.
* @param dst Destination address (plaintext or ciphertext).
* @param inputSize Size of input (same size as output) data in bytes.
* @param ivSize Size of Initialization vector in bytes.
* @param aadSize Size of additional data in bytes.
* @param tagSize Size of the GCM tag in bytes.
*/
static status_t caam_aes_gcm_check_input_args(CAAM_Type *base,
const uint8_t *src,
const uint8_t *iv,
const uint8_t *aad,
uint8_t *dst,
size_t inputSize,
size_t ivSize,
size_t aadSize,
size_t tagSize)
{
if (base == NULL)
{
return kStatus_InvalidArgument;
}
/* tag can be NULL to skip tag processing */
if (((ivSize != 0U) && (iv == NULL)) || ((aadSize != 0U) && (aad == NULL)) ||
((inputSize != 0U) && ((src == NULL) || (dst == NULL))))
{
return kStatus_InvalidArgument;
}
/* octet length of tag (tagSize) must be element of 4,8,12,13,14,15,16 */
if (((tagSize > 16u) || (tagSize < 12u)) && (tagSize != 4u) && (tagSize != 8u))
{
return kStatus_InvalidArgument;
}
/* no IV AAD DATA makes no sense */
if (0U == (inputSize + ivSize + aadSize))
{
return kStatus_InvalidArgument;
}
/* check length of input strings. This is more strict than the GCM specificaiton due to 32-bit architecture.
* The API interface would work on 64-bit architecture as well, but as it has not been tested, let it limit to
* 32-bits.
*/
if (!((ivSize >= 1u) && (sizeof(size_t) <= 4u)))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
static const uint32_t templateAesGcm[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x82100908u, /* OPERATION: AES GCM Decrypt Finalize */
/* 04 */ 0x12830004u, /* LOAD Class 1 ICV Size Register by IMM data */
/* 05 */ 0x00000000u, /* place: received ICV size */
/* 06 */ 0x22210000u, /* FIFO LOAD IV (flush) */
/* 07 */ 0x00000000u, /* place: IV address */
/* 08 */ 0x22310000u, /* FIFO LOAD AAD (flush) */
/* 09 */ 0x00000000u, /* place: AAD address */
/* 10 */ 0x22530000u, /* FIFO LOAD message */
/* 11 */ 0x00000000u, /* place: message address */
/* 12 */ 0x00000000u, /* place: message size */
/* 13 */ 0x60700000u, /* FIFO STORE Message */
/* 14 */ 0x00000000u, /* place: destination address */
/* 15 */ 0x00000000u, /* place: destination size */
/* 16 */ 0xA3001201u, /* JMP always to next command. Load/store checkpoint. Class 1 done checkpoint. */
/* For encryption, write the computed and encrypted MAC to user buffer */
/* For decryption, compare the computed tag with the received tag, CICV-only job. */
/* 17 */ 0x10880004u, /* LOAD Immediate to Clear Written Register. */
/* 18 */ 0x08000004u, /* value for Clear Written Register: C1D and C1DS bits are set */
/* 19 */ 0x12820004u, /* LOAD Immediate to C1DS Register. */
/* 20 */ 0x00000000u, /* zero data size */
/* 21 */ 0x12830004u, /* LOAD Class 1 ICV Size Register by IMM data */
/* 22 */ 0x00000000u, /* place: received ICV size */
/* 23 */ 0x82100902u, /* OPERATION: AES GCM Decrypt Update ICV_TEST */
/* 24 */ 0x223B0000u, /* FIFO LOAD ICV */
/* 25 */ 0x00000000u, /* place: received ICV address */
};
status_t caam_aes_gcm_non_blocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor,
const uint8_t *input,
uint8_t *output,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint32_t tag,
size_t tagSize,
int encrypt);
status_t caam_aes_gcm_non_blocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor,
const uint8_t *input,
uint8_t *output,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint32_t tag,
size_t tagSize,
int encrypt)
{
BUILD_ASSURE(sizeof(templateAesGcm) <= sizeof(caam_desc_aes_gcm_t), caam_desc_aes_gcm_t_size);
status_t status;
status = caam_aes_gcm_check_input_args(base, input, iv, aad, output, size, ivSize, aadSize, tagSize);
if (status != kStatus_Success)
{
return status;
}
/* get template descriptor and it's size */
uint32_t descriptorSize = ARRAY_SIZE(templateAesGcm);
(void)caam_memcpy(descriptor, templateAesGcm, sizeof(templateAesGcm));
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* key address and key size */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET((uint32_t)key);
/* Encrypt decrypt */
if (0 != encrypt)
{
descriptor[3] |= 1u; /* ENC */
}
/* ICV Size */
descriptor[5] = tagSize;
bool ivLast = (aadSize == 0U) && (size == 0U);
bool aadLast = (size == 0U);
/* IV address and size */
descriptor[6] |= (ivSize & DESC_PAYLOAD_SIZE_MASK);
descriptor[7] = ADD_OFFSET((uint32_t)iv);
if (ivLast)
{
descriptor[6] |= DESC_LC1_MASK; /* LC1 */
}
/* AAD address and size */
descriptor[8] |= (aadSize & DESC_PAYLOAD_SIZE_MASK);
descriptor[9] = ADD_OFFSET((uint32_t)aad);
if ((!ivLast) && aadLast)
{
descriptor[8] |= DESC_LC1_MASK; /* LC1 */
}
/* Message source address and size */
descriptor[11] = ADD_OFFSET((uint32_t)input);
descriptor[12] = size;
/* Message destination address and size */
descriptor[14] = ADD_OFFSET((uint32_t)output);
descriptor[15] = size;
if (tag != 0U)
{
if (encrypt == 0)
{
descriptor[22] = tagSize;
descriptor[24] |= (tagSize & DESC_TAG_SIZE_MASK);
descriptor[25] = ADD_OFFSET((uint32_t)tag);
}
else
{
/* For encryption change the command to FIFO STORE, as tag data needs to be put into tag output */
descriptor[16] = 0x52200000u | (tagSize & DESC_TAG_SIZE_MASK); /* STORE from Class 1 context to tag */
descriptor[17] = ADD_OFFSET((uint32_t)tag); /* place: tag address */
;
descriptor[18] = DESC_HALT; /* always halt with status 0x0 (normal) */
}
}
else
{
/* tag is NULL, skip tag processing */
descriptor[16] = DESC_HALT; /* always halt with status 0x0 (normal) */
}
/* add operation specified by descriptor to CAAM Job Ring */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
static status_t caam_aes_ccm_check_input_args(CAAM_Type *base,
const uint8_t *src,
const uint8_t *iv,
const uint8_t *key,
uint8_t *dst,
size_t ivSize,
size_t aadSize,
size_t keySize,
size_t tagSize)
{
if (base == NULL)
{
return kStatus_InvalidArgument;
}
/* tag can be NULL to skip tag processing */
if ((src == NULL) || (iv == NULL) || (key == NULL) || (dst == NULL))
{
return kStatus_InvalidArgument;
}
/* size of Nonce (ivSize) must be element of 7,8,9,10,11,12,13 */
if ((ivSize < 7u) || (ivSize > 13u))
{
return kStatus_InvalidArgument;
}
/* octet length of MAC (tagSize) must be element of 4,6,8,10,12,14,16 for tag processing or zero to skip tag
* processing */
if (((tagSize > 0U) && (tagSize < 4u)) || (tagSize > 16u) || ((tagSize & 1u) != 0U))
{
return kStatus_InvalidArgument;
}
/* check if keySize is supported */
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* AESA does not support more AAD than this */
if (aadSize >= 65280u)
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
static void caam_aes_ccm_context_init(
uint32_t inputSize, const uint8_t *iv, uint32_t ivSize, uint32_t aadSize, uint32_t tagSize, void *b0, void *ctr0)
{
caam_xcm_block_t blk;
caam_xcm_block_t blkZero = {{0x0u, 0x0u, 0x0u, 0x0u}};
uint8_t q; /* octet length of binary representation of the octet length of the payload. computed as (15 - n), where
n is length of nonce(=ivSize) */
uint8_t flags; /* flags field in B0 and CTR0 */
/* compute B0 */
(void)caam_memcpy(&blk, &blkZero, sizeof(blk));
/* tagSize - size of output MAC */
q = 15U - (uint8_t)ivSize;
flags = (uint8_t)(8U * ((tagSize - 2U) / 2U) + q - 1U); /* 8*M' + L' */
if (aadSize != 0U)
{
flags |= 0x40U; /* Adata */
}
blk.b[0] = flags; /* flags field */
blk.w[3] = swap_bytes(inputSize); /* message size, most significant byte first */
(void)caam_memcpy(&blk.b[1], iv, ivSize); /* nonce field */
/* Write B0 data to the context register.
*/
(void)caam_memcpy(b0, (void *)&blk.b[0], 16);
/* Write CTR0 to the context register.
*/
(void)caam_memcpy(&blk, &blkZero, sizeof(blk)); /* ctr(0) field = zero */
blk.b[0] = q - 1U; /* flags field */
(void)caam_memcpy(&blk.b[1], iv, ivSize); /* nonce field */
(void)caam_memcpy(ctr0, (void *)&blk.b[0], 16);
}
static const uint32_t templateAesCcm[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x12A00010u, /* LOAD 16 immediate bytes of B0 to Class 1 Context Register. Offset 0 bytes. */
/* 04 */ 0x00000000u, /* place: B0[0-3] */
/* 05 */ 0x00000000u, /* place: B0[4-7] */
/* 06 */ 0x00000000u, /* place: B0[8-11] */
/* 07 */ 0x00000000u, /* place: B0[12-15] */
/* 08 */ 0x12A01010u, /* LOAD 16 immediate bytes of CTR0 to Class 1 Context Register. Offset 16 bytes. */
/* 09 */ 0x00000000u, /* place: CTR0[0-3] */
/* 10 */ 0x00000000u, /* place: CTR0[4-7] */
/* 11 */ 0x00000000u, /* place: CTR0[8-11] */
/* 12 */ 0x00000000u, /* place: CTR0[12-15] */
/* 13 */ 0x8210080Cu, /* OPERATION: AES CCM Decrypt Initialize/Finalize */
/* 14 */ 0x22B00004u, /* FIFO LOAD additional authentication data. Immediate 32-bit word with aadSize encoded */
/* 15 */ 0x00000000u, /* place: encoded aadSize followed by first byte(s) of authentication data */
/* 16 */ 0x22310000u, /* FIFO LOAD additional authentication data. Flush as this is last data of AAD type. */
/* 17 */ 0x00000000u, /* place: AAD address */
/* 18 */ 0x22530000u, /* FIFO LOAD message */
/* 19 */ 0x00000000u, /* place: message address */
/* 20 */ 0x00000000u, /* place: message size */
/* 21 */ 0x60700000u, /* FIFO STORE Message */
/* 22 */ 0x00000000u, /* place: destination address */
/* 23 */ 0x00000000u, /* place: destination size */
/* For encryption, write the computed and encrypted MAC to user buffer */
/* 24 */ 0x52202000u, /* STORE from Class 1 context to tag */
/* 25 */ 0x00000000u, /* place: tag address */
/* For decryption, compare the computed tag with the received tag */
};
status_t caam_aes_ccm_non_blocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor,
const uint8_t *input,
uint8_t *output,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint32_t tag,
size_t tagSize,
int encrypt);
status_t caam_aes_ccm_non_blocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor,
const uint8_t *input,
uint8_t *output,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint32_t tag,
size_t tagSize,
int encrypt)
{
BUILD_ASSURE(sizeof(templateAesCcm) <= sizeof(caam_desc_aes_ccm_t), caam_desc_aes_ccm_t_size);
status_t status;
/* get template descriptor and it's size */
uint32_t descriptorSize = ARRAY_SIZE(templateAesCcm);
(void)caam_memcpy(descriptor, templateAesCcm, sizeof(templateAesCcm));
status = caam_aes_ccm_check_input_args(base, input, iv, key, output, ivSize, aadSize, keySize, tagSize);
if (status != kStatus_Success)
{
return status;
}
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* key address and key size */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET((uint32_t)key);
/* B0 and CTR0 */
caam_aes_ccm_context_init(size, iv, ivSize, aadSize, tagSize, &descriptor[4], &descriptor[9]);
/* Encrypt decrypt */
if (encrypt != 0)
{
descriptor[13] |= 1u; /* ENC */
}
else if (tag != 0U)
{
descriptor[13] |= 2u; /* ICV_TEST */
}
else
{
/* decrypt with tag NULL (skip tag processing). nothing needs to be changed in descriptor[13] for this case */
}
/* AAD address and size */
/* encoding is two octets, msbyte first */
if (aadSize != 0U)
{
uint32_t swapped = swap_bytes(aadSize);
uint32_t sz;
(void)caam_memcpy(&descriptor[15], (uint32_t *)(uintptr_t)(((uint8_t *)&swapped) + sizeof(uint16_t)),
sizeof(uint16_t));
sz = aadSize > 2u ? 2u : aadSize; /* limit aad to the end of 16 bytes blk */
(void)caam_memcpy(((uint8_t *)&descriptor[15]) + 2, aad, sz); /* fill B1 with aad */
/* track consumed AAD. sz bytes have been moved to fifo. */
aadSize -= sz;
aad += sz;
if (aadSize == 0U)
{
/* in case aadSize is 1 or 2, we add Flush bit to the command and skip FIFO LOAD AAD */
descriptor[14] |= 0x00010000U; /* Flush (last AAD data) */
descriptor[16] = DESC_JUMP_2; /* jump to current index + 2 (=18) */
}
else
{
descriptor[16] |= (aadSize & DESC_PAYLOAD_SIZE_MASK);
descriptor[17] = ADD_OFFSET((uint32_t)aad);
}
}
else
{
/* no AAD, jump directly to message */
descriptor[14] = DESC_JUMP_4; /* jump to current index + 4 (=18) */
}
/* Message source address and size */
descriptor[19] = ADD_OFFSET((uint32_t)input);
descriptor[20] = size;
/* Message destination address and size */
descriptor[22] = ADD_OFFSET((uint32_t)output);
descriptor[23] = size;
if (tag != 0U)
{
/* For decryption change the command to FIFO LOAD, as tag data needs to be put into input FIFO */
if (encrypt == 0)
{
/* FIFO LOAD ICV */
descriptor[24] = 0x223B0000u;
}
descriptor[24] |= (tagSize & DESC_TAG_SIZE_MASK);
descriptor[25] = ADD_OFFSET((uint32_t)tag);
}
else
{
/* tag is NULL, skip tag processing */
descriptor[24] = DESC_HALT; /* always halt with status 0x0 (normal) */
}
/* add operation specified by descriptor to CAAM Job Ring */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts AES and tags using CCM block mode.
*
* Puts AES CCM encrypt and tag descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text.
* param size Size of input and output data in bytes. Zero means authentication only.
* param iv Nonce
* param ivSize Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* param aad Input additional authentication data. Can be NULL if aadSize is zero.
* param aadSize Input size in bytes of AAD. Zero means data mode only (authentication skipped).
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] tag Generated output tag. Set to NULL to skip tag processing.
* param tagSize Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.
* return Status from job descriptor push
*/
status_t CAAM_AES_EncryptTagCcmNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint8_t *tag,
size_t tagSize)
{
return caam_aes_ccm_non_blocking(base, handle, descriptor, plaintext, ciphertext, size, iv, ivSize, aad, aadSize,
key, keySize, (uint32_t)tag, tagSize, 1);
}
/*!
* brief Decrypts AES and authenticates using CCM block mode.
*
* Puts AES CCM decrypt and check tag descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text.
* param size Size of input and output data in bytes. Zero means authentication data only.
* param iv Nonce
* param ivSize Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* param aad Input additional authentication data. Can be NULL if aadSize is zero.
* param aadSize Input size in bytes of AAD. Zero means data mode only (authentication data skipped).
* param key Input key to use for decryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param tag Received tag. Set to NULL to skip tag processing.
* param tagSize Input size of the received tag to compare with the computed tag, in bytes. Must be 4, 6, 8, 10, 12,
* 14, or 16.
* return Status from job descriptor push
*/
status_t CAAM_AES_DecryptTagCcmNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ccm_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
const uint8_t *tag,
size_t tagSize)
{
return caam_aes_ccm_non_blocking(base, handle, descriptor, ciphertext, plaintext, size, iv, ivSize, aad, aadSize,
key, keySize, (uint32_t)tag, tagSize, 0);
}
static const uint32_t templateAesCtr[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x12201010u, /* LOAD 16 bytes of CTR0 to Class 1 Context Register. Offset 16 bytes. */
/* 04 */ 0x00000000u, /* place: CTR0 address */
/* 05 */ 0x82100000u, /* OPERATION: AES CTR (de)crypt in Update mode */
/* 06 */ 0x22530000u, /* FIFO LOAD Message */
/* 07 */ 0x00000000u, /* place: source address */
/* 08 */ 0x00000000u, /* place: source size */
/* 09 */ 0x60700000u, /* FIFO STORE Message */
/* 10 */ 0x00000000u, /* place: destination address */
/* 11 */ 0x00000000u, /* place: destination size */
/* 12 */ 0xA2000001u, /* JMP always to next command. Done checkpoint (wait for Class 1 Done) */
/* 13 */ 0x10880004u, /* LOAD Immediate to Clear Written Register. */
/* 14 */ 0x08000004u, /* value for Clear Written Register: C1D and C1DS bits are set */
/* 15 */ 0x22930010u, /* FIFO LOAD Message Immediate 16 bytes */
/* 16 */ 0x00000000u, /* all zeroes 0-3 */
/* 17 */ 0x00000000u, /* all zeroes 4-7 */
/* 18 */ 0x00000000u, /* all zeroes 8-11 */
/* 19 */ 0x00000000u, /* all zeroes 12-15 */
/* 20 */ 0x60300010u, /* FIFO STORE Message 16 bytes */
/* 21 */ 0x00000000u, /* place: counterlast[] block address */
/* 22 */ 0x82100000u, /* OPERATION: AES CTR (de)crypt in Update mode */
/* 23 */ 0x52201010u, /* STORE 16 bytes of CTRi from Class 1 Context Register offset 16 bytes. */
/* 24 */ 0x00000000u, /* place: CTRi address */
};
/*!
* brief Encrypts or decrypts AES using CTR block mode.
*
* Encrypts or decrypts AES using CTR block mode.
* AES CTR mode uses only forward AES cipher and same algorithm for encryption and decryption.
* The only difference between encryption and decryption is that, for encryption, the input argument
* is plain text and the output argument is cipher text. For decryption, the input argument is cipher text
* and the output argument is plain text.
*
* Puts AES CTR crypt descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param input Input data for CTR block mode
* param[out] output Output data for CTR block mode
* param size Size of input and output data in bytes
* param[in,out] counter Input counter (updates on return)
* param key Input key to use for forward AES cipher
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] counterlast Output cipher of last counter, for chained CTR calls. NULL can be passed if chained calls are
* not used.
* param[out] szLeft Output number of bytes in left unused in counterlast block. NULL can be passed if chained calls
* are not used.
* return Status from job descriptor push
*/
status_t CAAM_AES_CryptCtrNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ctr_t descriptor,
const uint8_t *input,
uint8_t *output,
size_t size,
uint8_t *counter,
const uint8_t *key,
size_t keySize,
uint8_t *counterlast,
size_t *szLeft)
{
BUILD_ASSURE(sizeof(templateAesCtr) <= sizeof(caam_desc_aes_ctr_t), caam_desc_aes_ctr_t_size);
uint32_t descriptorSize;
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* get template descriptor and it's size */
descriptorSize = ARRAY_SIZE(templateAesCtr);
(void)caam_memcpy(descriptor, templateAesCtr, sizeof(templateAesCtr));
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* key address and key size */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET((uint32_t)key);
/* descriptor[3] configures 16 bytes length for CTR0 in templateAesCtr */
descriptor[4] = ADD_OFFSET((uint32_t)counter);
/* source address and size */
descriptor[7] = ADD_OFFSET((uint32_t)input);
descriptor[8] = size;
/* destination address and size */
descriptor[10] = ADD_OFFSET((uint32_t)output);
descriptor[11] = size;
/* AES CTR Crypt OPERATION in descriptor[5]
* Algorithm State (AS) in template is Update (0h)
* Only in case we are chaining the AES CTR calls (counterlast[] != NULL),
* we have to change the algorithm state to Finalize (2h)
* and so the CTRi for the last message block is not written to Class 1 Context.
* This allows us to repeat AES CTR of the last CTRi, with destination to counterlast[],
* and with using all zeroes in message data, the counterlast[] gets ECB of the last CTRi.
*/
/* if counterlast or szLeft is NULL, the caller is not interested in AES of last counter
* Thus, we can skip the counterlast processing
* and only read the last CTRi from context.
* So, we replace descriptor[11] with a jump command to STORE
*/
if ((counterlast == NULL) || (szLeft == NULL))
{
/* To create an unconditional jump, use TEST TYPE = 00 (all specified conditions true) and
clear all TEST CONDITION bits because the tested condition is considered to be true if
no test condition bits are set. */
descriptor[12] = 0xA000000Bu; /* jump to current index + 11 (=23) */
}
else
{
uint32_t lastSize;
descriptor[5] |= 0x08u; /* finalize */
descriptor[21] = ADD_OFFSET((uint32_t)counterlast);
lastSize = size % 16u;
if (lastSize != 0U)
{
*szLeft = 16u - lastSize;
}
else
{
*szLeft = 0;
/* descriptor[12] = 0xA000000Bu; */ /* jump to current index + 11 (=23) */
}
}
/* read last CTRi from AES back to caller */
descriptor[24] = ADD_OFFSET((uint32_t)counter);
/* add operation specified by descriptor to CAAM Job Ring */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
static const uint32_t templateAesEcb[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x22530000u, /* FIFO LOAD Message with EXT size */
/* 04 */ 0x00000000u, /* place: source address */
/* 05 */ 0x00000000u, /* place: source size */
/* 06 */ 0x60700000u, /* FIFO STORE Message with EXT size */
/* 07 */ 0x00000000u, /* place: destination address */
/* 08 */ 0x00000000u, /* place: destination size */
/* 09 */ 0x82100200u, /* OPERATION: AES ECB Decrypt */
};
/*!
* brief Encrypts AES using the ECB block mode.
*
* Puts AES ECB encrypt descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param plaintext Input plain text to encrypt
* param[out] descriptor Memory for the CAAM descriptor.
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from job descriptor push
*/
status_t CAAM_AES_EncryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ecb_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *key,
size_t keySize)
{
BUILD_ASSURE(sizeof(templateAesEcb) <= sizeof(caam_desc_aes_ecb_t), caam_desc_aes_ecb_t_size);
uint32_t descriptorSize;
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* ECB mode, size must be non-zero 16-byte multiple */
if (0U != (size % 16u))
{
return kStatus_InvalidArgument;
}
descriptorSize = ARRAY_SIZE(templateAesEcb);
(void)caam_memcpy(descriptor, templateAesEcb, sizeof(templateAesEcb));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = (uint32_t)ADD_OFFSET((uint32_t)key);
/* descriptor[3] FIFO LOAD copied from template */
descriptor[4] = (uint32_t)ADD_OFFSET((uint32_t)plaintext);
descriptor[5] = size; /* FIFO LOAD EXT size */
/* descriptor[6] FIFO STORE copied from template */
descriptor[7] = (uint32_t)ADD_OFFSET((uint32_t)ciphertext);
descriptor[8] = size; /* FIFO STORE EXT size */
descriptor[9] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts AES using ECB block mode.
*
* Puts AES ECB decrypt descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param key Input key.
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from job descriptor push
*/
status_t CAAM_AES_DecryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_ecb_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *key,
size_t keySize)
{
uint32_t descriptorSize;
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* ECB mode, size must be non-zero 16-byte multiple */
if (0U != (size % 16u))
{
return kStatus_InvalidArgument;
}
descriptorSize = ARRAY_SIZE(templateAesEcb);
(void)caam_memcpy(descriptor, templateAesEcb, sizeof(templateAesEcb));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = (uint32_t)ADD_OFFSET((uint32_t)key);
/* descriptor[3] FIFO LOAD copied from template */
descriptor[4] = (uint32_t)ADD_OFFSET((uint32_t)ciphertext);
descriptor[5] = size;
/* descriptor[6] FIFO STORE copied from template */
descriptor[7] = (uint32_t)ADD_OFFSET((uint32_t)plaintext);
descriptor[8] = size; /* FIFO STORE EXT size */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
static const uint32_t templateAesCbc[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x12200010u, /* LOAD 16 bytes of iv to Class 1 Context Register */
/* 04 */ 0x00000000u, /* place: iv address */
/* 05 */ 0x22530000u, /* FIFO LOAD Message */
/* 06 */ 0x00000000u, /* place: source address */
/* 07 */ 0x00000000u, /* place: source size */
/* 08 */ 0x60700000u, /* FIFO STORE Message */
/* 09 */ 0x00000000u, /* place: destination address */
/* 10 */ 0x00000000u, /* place: destination size */
/* 11 */ 0x82100100u, /* OPERATION: AES CBC Decrypt */
};
/*!
* brief Encrypts AES using CBC block mode.
*
* Puts AES CBC encrypt descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from job descriptor push
*/
status_t CAAM_AES_EncryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_cbc_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv,
const uint8_t *key,
size_t keySize)
{
BUILD_ASSURE(sizeof(templateAesCbc) <= sizeof(caam_desc_aes_cbc_t), caam_desc_aes_cbc_t_size);
uint32_t descriptorSize;
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* CBC mode, size must be non-zero 16-byte multiple */
if (0U != (size % 16u))
{
return kStatus_InvalidArgument;
}
/* get template descriptor and it's size */
descriptorSize = ARRAY_SIZE(templateAesCbc);
(void)caam_memcpy(descriptor, templateAesCbc, sizeof(templateAesCbc));
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* key address and key size */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = (uint32_t)ADD_OFFSET((uint32_t)key);
/* descriptor[3] configures 16 bytes length for IV in templateAesCbc */
descriptor[4] = (uint32_t)ADD_OFFSET((uint32_t)iv);
/* source address and size */
descriptor[6] = (uint32_t)ADD_OFFSET((uint32_t)plaintext);
descriptor[7] = size;
/* destination address and size */
descriptor[9] = (uint32_t)ADD_OFFSET((uint32_t)ciphertext);
descriptor[10] = size;
/* AES CBC */
descriptor[11] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
/* add operation specified by descriptor to CAAM Job Ring */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts AES using CBC block mode.
*
* Puts AES CBC decrypt descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* param key Input key to use for decryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from job descriptor push
*/
status_t CAAM_AES_DecryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_cbc_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv,
const uint8_t *key,
size_t keySize)
{
uint32_t descriptorSize;
if (!caam_check_key_size(keySize))
{
return kStatus_InvalidArgument;
}
/* CBC mode, size must be non-zero 16-byte multiple */
if (0U != (size % 16u))
{
return kStatus_InvalidArgument;
}
/* get template descriptor and it's size */
descriptorSize = ARRAY_SIZE(templateAesCbc);
(void)caam_memcpy(descriptor, templateAesCbc, sizeof(templateAesCbc));
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* key address and key size */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET((uint32_t)key);
/* descriptor[3] configures 16 bytes length for IV in templateAesCbc */
descriptor[4] = ADD_OFFSET((uint32_t)iv);
/* source address and size */
descriptor[6] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[7] = size;
/* destination address and size */
descriptor[9] = ADD_OFFSET((uint32_t)plaintext);
descriptor[10] = size;
/* AES CBC Decrypt OPERATION in descriptor[11] */
/* add operation specified by descriptor to CAAM Job Ring */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts AES and tags using GCM block mode.
*
* Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the GHASH is calculated and output
* in the 'tag' field.
* Puts AES GCM encrypt and tag descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text.
* param size Size of input and output data in bytes
* param iv Input initial vector
* param ivSize Size of the IV
* param aad Input additional authentication data
* param aadSize Input size in bytes of AAD
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] tag Output hash tag. Set to NULL to skip tag processing.
* param tagSize Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15 or 16.
* return Status from job descriptor push
*/
status_t CAAM_AES_EncryptTagGcmNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint8_t *tag,
size_t tagSize)
{
return caam_aes_gcm_non_blocking(base, handle, descriptor, plaintext, ciphertext, size, iv, ivSize, aad, aadSize,
key, keySize, (uint32_t)tag, tagSize, 1);
}
/*!
* brief Decrypts AES and authenticates using GCM block mode.
*
* Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL, only the GHASH is calculated
* and compared with the received GHASH in 'tag' field.
* Puts AES GCM decrypt and check tag descriptor to CAAM input job ring.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor Memory for the CAAM descriptor.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text.
* param size Size of input and output data in bytes
* param iv Input initial vector
* param ivSize Size of the IV
* param aad Input additional authentication data
* param aadSize Input size in bytes of AAD
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param tag Input hash tag to compare. Set to NULL to skip tag processing.
* param tagSize Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.
* return Status from job descriptor push
*/
status_t CAAM_AES_DecryptTagGcmNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_aes_gcm_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
const uint8_t *tag,
size_t tagSize)
{
return caam_aes_gcm_non_blocking(base, handle, descriptor, ciphertext, plaintext, size, iv, ivSize, aad, aadSize,
key, keySize, (uint32_t)tag, tagSize, 0);
}
/*!
* brief Gets the default configuration structure.
*
* This function initializes the CAAM configuration structure to a default value. The default
* values are as follows.
* caamConfig->rngSampleMode = kCAAM_RNG_SampleModeVonNeumann;
* caamConfig->rngRingOscDiv = kCAAM_RNG_RingOscDiv4;
*
* param[out] config Pointer to configuration structure.
*/
void CAAM_GetDefaultConfig(caam_config_t *config)
{
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
caam_config_t userConfig = {
{NULL, NULL, NULL, NULL}, kCAAM_RNG_SampleModeVonNeumann, kCAAM_RNG_RingOscDiv4, true, true, true, true,
kCAAM_NormalOperationBlobs,
};
*config = userConfig;
}
/*!
* brief Initializes the CAAM driver.
*
* This function initializes the CAAM driver, including CAAM's internal RNG.
* param base CAAM peripheral base address
* param config Pointer to configuration structure.
* return kStatus_Success the CAAM Init has completed with zero termination status word
* return kStatus_Fail the CAAM Init has completed with non-zero termination status word
*/
status_t CAAM_Init(CAAM_Type *base, const caam_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_EnableClock(kCLOCK_Caam);
#endif
status_t status = kStatus_Fail;
base->MCFGR = 0x80000000u; /* reset */
base->MCFGR = 0x90000000u; /* reset DMA */
base->MCFGR = 0x00082300u; /* (reset value) */
/* job ring interface 0 is mandatory */
assert(config->jobRingInterface[0]);
if (NULL == config->jobRingInterface[0])
{
return kStatus_Fail; /* return if user wishes to use the job ring but does not configure it. */
}
/* Job Rings Configuration
* number of entries in both input and output ring is equal.
* Note the size of an entry is different. an entry in the input ring is a 32-bit word.
* an entry in the output ring is two 32-bit words. (descriptor pointer followed by termination status word)
*/
s_jr0 = config->jobRingInterface[0];
(void)memset(s_jr0, 0, sizeof(*s_jr0));
s_jrIndex0 = 0;
caam_job_ring_set_base_address_and_size(base, kCAAM_JobRing0, s_jr0->inputJobRing, ARRAY_SIZE(s_jr0->inputJobRing),
s_jr0->outputJobRing, ARRAY_SIZE(s_jr0->outputJobRing) / 2U);
if (config->jobRingInterface[1] != NULL)
{
s_jr1 = config->jobRingInterface[1];
(void)memset(s_jr1, 0, sizeof(*s_jr1));
s_jrIndex1 = 0;
caam_job_ring_set_base_address_and_size(base, kCAAM_JobRing1, s_jr1->inputJobRing,
ARRAY_SIZE(s_jr1->inputJobRing), s_jr1->outputJobRing,
ARRAY_SIZE(s_jr1->outputJobRing) / 2U);
}
if (config->jobRingInterface[2] != NULL)
{
s_jr2 = config->jobRingInterface[2];
(void)memset(s_jr2, 0, sizeof(*s_jr2));
s_jrIndex2 = 0;
caam_job_ring_set_base_address_and_size(base, kCAAM_JobRing2, s_jr2->inputJobRing,
ARRAY_SIZE(s_jr2->inputJobRing), s_jr2->outputJobRing,
ARRAY_SIZE(s_jr2->outputJobRing) / 2U);
}
if (config->jobRingInterface[3] != NULL)
{
s_jr3 = config->jobRingInterface[3];
(void)memset(s_jr3, 0, sizeof(*s_jr3));
s_jrIndex3 = 0;
caam_job_ring_set_base_address_and_size(base, kCAAM_JobRing3, s_jr3->inputJobRing,
ARRAY_SIZE(s_jr3->inputJobRing), s_jr3->outputJobRing,
ARRAY_SIZE(s_jr3->outputJobRing) / 2U);
}
/*
* Instantiate RNG in normal (non-deterministic) mode and load the JDKEK, TDKEK and TDSK registers
* this step is required for example
* for FIFO STORE command to be able to store Key register as Black key
* for example during AES XCBC-MAC context switch (need to store derived key K1 to memory)
*/
caam_rng_config_t rngConfig;
(void)CAAM_RNG_GetDefaultConfig(&rngConfig);
/* reset RNG */
base->RTMCTL = CAAM_RTMCTL_PRGM_MASK | CAAM_RTMCTL_ERR_MASK | CAAM_RTMCTL_RST_DEF_MASK |
CAAM_RTMCTL_SAMP_MODE(kCAAM_RNG_SampleModeRaw);
base->RTMCTL = CAAM_RTMCTL_ERR_MASK | CAAM_RTMCTL_SAMP_MODE(config->rngSampleMode) |
CAAM_RTMCTL_OSC_DIV(config->rngRingOscDiv);
caam_handle_t handle;
handle.jobRing = kCAAM_JobRing0;
/* Check if Instantiated State Handle 0 or 1 has been instantiated */
if ((base->RDSTA & (CAAM_RDSTA_IF0_MASK | CAAM_RDSTA_IF1_MASK)) == 0U)
{
status = CAAM_RNG_Init(base, &handle, kCAAM_RngStateHandle0, &rngConfig);
if (status != kStatus_Success)
{
return status;
}
}
else
{
status = kStatus_Success;
}
/* Check if JDKEK, TDKEK and TDSK are already generated, generate if not */
/* Note: second secure keys generate per one PoR will generate Secure Key error */
if ((base->JDKEKR[0U] == 0U) && (base->TDKEKR[0U] == 0U) && (base->TDSKR[0U] == 0U))
{
/* Note: Secure key is cleared only during POR reset */
status = CAAM_RNG_GenerateSecureKey(base, &handle, NULL);
if (status != kStatus_Success)
{
return status;
}
}
else
{
status = kStatus_Success;
}
/* set RANDDPAR bit for the AESA to reseed its DPA mask using data from kCAAM_RngStateHandle0 */
/* also set other bits to 1 for security */
base->SCFGR =
#if defined(FSL_FEATURE_CAAM_HAS_RANDDPAR) && (FSL_FEATURE_CAAM_HAS_RANDDPAR > 0)
CAAM_SCFGR_RANDDPAR(config->scfgrRandomDpaResistance) |
#endif /* FSL_FEATURE_CAAM_HAS_RANDDPAR */
#if defined(FSL_FEATURE_CAAM_HAS_RDB) && (FSL_FEATURE_CAAM_HAS_RDB > 0)
CAAM_SCFGR_RDB(config->scfgrEnableRandomDataBuffer) |
#endif /* FSL_FEATURE_CAAM_HAS_RDB */
CAAM_SCFGR_LCK_TRNG(config->scfgrLockTrngProgramMode) | CAAM_SCFGR_RNGSH0(config->scfgrRandomRngStateHandle0) |
CAAM_SCFGR_PRIBLOB(config->scfgrPriblob);
return status;
}
/*!
* brief Wait for a CAAM job to complete.
*
* This function polls CAAM output ring for a specific job.
*
* The CAAM job ring is specified by the jobRing field in the caam_handle_t structure.
* The job to be waited is specified by it's descriptor address.
*
* This function has two modes, determined by the mode argument.
* In blocking mode, the function polls the specified jobRing until the descriptor
* is available in the CAAM output job ring.
* In non-blocking mode, it polls the output ring once and returns status
* immediately.
*
* The function can be called from multiple threads or interrupt service routines,
* as internally it uses global critical section (global interrupt disable enable)
* to protect it's operation against concurrent accesses.
* The global interrupt is disabled only when the descriptor is found
* in the output ring, for a very short time, to remove the descriptor from the output ring
* safely.
*
* param base CAAM peripheral base address
* param handle Data structure with CAAM jobRing used for this request
* param descriptor
* param mode Blocking and non-blocking mode. Zero is blocking. Non-zero is non-blocking.
* return kStatus_Success the CAAM job has completed with zero job termination status word
* return kStatus_Fail the CAAM job has completed with non-zero job termination status word
* return kStatus_Again In non-blocking mode, the job is not ready in the CAAM Output Ring
*/
status_t CAAM_Wait(CAAM_Type *base, caam_handle_t *handle, uint32_t *descriptor, caam_wait_mode_t mode)
{
/* poll output ring for the specified job descriptor */
status_t status;
bool wait;
bool found;
wait = true;
status = kStatus_Success;
found = false;
while (wait)
{
/* any result available on this job ring? */
if ((caam_output_ring_get_slots_full(base, handle->jobRing)) != 0U)
{
status = caam_out_job_ring_test_and_remove(base, handle->jobRing,
(uint32_t *)ADD_OFFSET((uint32_t)descriptor), &wait, &found);
}
/* non-blocking mode polls output ring once */
if (mode == kCAAM_Nonblocking)
{
wait = false; /* exit the while() */
if (!found)
{
status = kStatus_CAAM_Again; /* job not in the tested ring */
}
}
}
return status;
}
/*!
* brief Deinitializes the CAAM driver.
* This function deinitializes the CAAM driver.
* param base CAAM peripheral base address
* return kStatus_Success the CAAM Deinit has completed with zero termination status word
* return kStatus_Fail the CAAM Deinit has completed with non-zero termination status word
*/
status_t CAAM_Deinit(CAAM_Type *base)
{
caam_handle_t handle;
handle.jobRing = kCAAM_JobRing0;
status_t status = kStatus_Fail;
status = CAAM_RNG_Deinit(base, &handle, kCAAM_RngStateHandle0);
if (status != kStatus_Success)
{
return status;
}
base->JOBRING[0].JRCR_JR = CAAM_JRCR_JR_RESET_MASK;
base->JOBRING[0].JRCR_JR = CAAM_JRCR_JR_RESET_MASK;
base->JOBRING[1].JRCR_JR = CAAM_JRCR_JR_RESET_MASK;
base->JOBRING[1].JRCR_JR = CAAM_JRCR_JR_RESET_MASK;
base->DRR = CAAM_DRR_RST0_MASK;
base->MCFGR = CAAM_MCFGR_SWRST_MASK; /* reset */
base->MCFGR = CAAM_MCFGR_SWRST_MASK | CAAM_MCFGR_DMA_RST_MASK; /* reset DMA */
base->MCFGR = 0x00082300u; /* (reset value) */
while (0U == (base->RTMCTL & CAAM_RTMCTL_TSTOP_OK_MASK))
{
}
/* reset RNG */
base->RTMCTL = CAAM_RTMCTL_PRGM_MASK | CAAM_RTMCTL_ERR_MASK | CAAM_RTMCTL_RST_DEF_MASK |
CAAM_RTMCTL_SAMP_MODE(kCAAM_RNG_SampleModeRaw);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(kCLOCK_Caam);
#endif
return status;
}
/*!
* brief External Key Transfer.
*
* This function loads the given key source to an CAAM external destination via a private interface,
* such as Inline Encryption Engine IEE Private Key bus.
*
* The CAAM job ring is specified by the jobRing field in the caam_handle_t structure.
*
* This function is blocking.
*
* param base CAAM peripheral base address
* param handle Data structure with CAAM jobRing used for this request.
* param keySource The source from which the key will be obtained.
* param keySize Size of the key in bytes.
* return kStatus_Success the CAAM job has completed with zero job termination status word
* return kStatus_Fail the CAAM job has completed with non-zero job termination status word
*/
status_t CAAM_ExternalKeyTransfer(CAAM_Type *base,
caam_handle_t *handle,
caam_ext_key_xfr_source_t keySource,
size_t keySize)
{
caam_desc_aes_ecb_t descBuf = {0};
status_t status;
descBuf[0] = 0xB0800002u; /* HEADER */
descBuf[1] = 0x40000000u; /* EXT KEY XFR command. */
switch (keySource)
{
case kCAAM_ExtKeyXfr_KeyRegisterClass1:
case kCAAM_ExtKeyXfr_KeyRegisterClass2:
case kCAAM_ExtKeyXfr_PkhaRamE:
descBuf[1] |= ((uint32_t)keySource << 16) | keySize;
status = kStatus_Success;
break;
default:
status = kStatus_InvalidArgument;
break;
}
if (status != kStatus_Success)
{
return status;
}
/* schedule the job and block wait for result */
do
{
status = caam_in_job_ring_add(base, handle->jobRing, &descBuf[0]);
} while (status != kStatus_Success);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts AES using the ECB block mode.
*
* Encrypts AES using the ECB block mode.
*
* param base CAAM peripheral base address
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from encrypt operation
*/
status_t CAAM_AES_EncryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *key,
size_t keySize)
{
caam_desc_aes_ecb_t descBuf;
status_t status;
do
{
status = CAAM_AES_EncryptEcbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, key, keySize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts AES using ECB block mode.
*
* Decrypts AES using ECB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param key Input key.
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from decrypt operation
*/
status_t CAAM_AES_DecryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *key,
size_t keySize)
{
caam_desc_aes_ecb_t descBuf;
status_t status;
do
{
status = CAAM_AES_DecryptEcbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, key, keySize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts AES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from encrypt operation
*/
status_t CAAM_AES_EncryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[16],
const uint8_t *key,
size_t keySize)
{
caam_desc_aes_cbc_t descBuf;
status_t status;
do
{
status = CAAM_AES_EncryptCbcNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key, keySize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts AES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text
* param size Size of input and output data in bytes. Must be multiple of 16 bytes.
* param iv Input initial vector to combine with the first input block.
* param key Input key to use for decryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* return Status from decrypt operation
*/
status_t CAAM_AES_DecryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[16],
const uint8_t *key,
size_t keySize)
{
caam_desc_aes_cbc_t descBuf;
status_t status;
do
{
status = CAAM_AES_DecryptCbcNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key, keySize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts or decrypts AES using CTR block mode.
*
* Encrypts or decrypts AES using CTR block mode.
* AES CTR mode uses only forward AES cipher and same algorithm for encryption and decryption.
* The only difference between encryption and decryption is that, for encryption, the input argument
* is plain text and the output argument is cipher text. For decryption, the input argument is cipher text
* and the output argument is plain text.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param input Input data for CTR block mode
* param[out] output Output data for CTR block mode
* param size Size of input and output data in bytes
* param[in,out] counter Input counter (updates on return)
* param key Input key to use for forward AES cipher
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] counterlast Output cipher of last counter, for chained CTR calls. NULL can be passed if chained calls are
* not used.
* param[out] szLeft Output number of bytes in left unused in counterlast block. NULL can be passed if chained calls
* are not used.
* return Status from encrypt operation
*/
status_t CAAM_AES_CryptCtr(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *input,
uint8_t *output,
size_t size,
uint8_t counter[16],
const uint8_t *key,
size_t keySize,
uint8_t counterlast[16],
size_t *szLeft)
{
caam_desc_aes_ctr_t descBuf;
status_t status;
do
{
status = CAAM_AES_CryptCtrNonBlocking(base, handle, descBuf, input, output, size, counter, key, keySize,
counterlast, szLeft);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts AES and tags using CCM block mode.
*
* Encrypts AES and optionally tags using CCM block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text.
* param size Size of input and output data in bytes. Zero means authentication only.
* param iv Nonce
* param ivSize Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* param aad Input additional authentication data. Can be NULL if aadSize is zero.
* param aadSize Input size in bytes of AAD. Zero means data mode only (authentication skipped).
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] tag Generated output tag. Set to NULL to skip tag processing.
* param tagSize Input size of the tag to generate, in bytes. Must be 4, 6, 8, 10, 12, 14, or 16.
* return Status from encrypt operation
*/
status_t CAAM_AES_EncryptTagCcm(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint8_t *tag,
size_t tagSize)
{
caam_desc_aes_ccm_t descBuf;
status_t status;
do
{
status = CAAM_AES_EncryptTagCcmNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, ivSize, aad,
aadSize, key, keySize, tag, tagSize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts AES and authenticates using CCM block mode.
*
* Decrypts AES and optionally authenticates using CCM block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text.
* param size Size of input and output data in bytes. Zero means authentication data only.
* param iv Nonce
* param ivSize Length of the Nonce in bytes. Must be 7, 8, 9, 10, 11, 12, or 13.
* param aad Input additional authentication data. Can be NULL if aadSize is zero.
* param aadSize Input size in bytes of AAD. Zero means data mode only (authentication data skipped).
* param key Input key to use for decryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param tag Received tag. Set to NULL to skip tag processing.
* param tagSize Input size of the received tag to compare with the computed tag, in bytes. Must be 4, 6, 8, 10, 12,
* 14, or 16.
* return Status from decrypt operation
*/
status_t CAAM_AES_DecryptTagCcm(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
const uint8_t *tag,
size_t tagSize)
{
caam_desc_aes_ccm_t descBuf;
status_t status;
do
{
status = CAAM_AES_DecryptTagCcmNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, ivSize, aad,
aadSize, key, keySize, tag, tagSize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts AES and tags using GCM block mode.
*
* Encrypts AES and optionally tags using GCM block mode. If plaintext is NULL, only the GHASH is calculated and output
* in the 'tag' field.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plain text to encrypt
* param[out] ciphertext Output cipher text.
* param size Size of input and output data in bytes
* param iv Input initial vector
* param ivSize Size of the IV
* param aad Input additional authentication data
* param aadSize Input size in bytes of AAD
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param[out] tag Output hash tag. Set to NULL to skip tag processing.
* param tagSize Input size of the tag to generate, in bytes. Must be 4,8,12,13,14,15 or 16.
* return Status from encrypt operation
*/
status_t CAAM_AES_EncryptTagGcm(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
uint8_t *tag,
size_t tagSize)
{
caam_desc_aes_gcm_t descBuf;
status_t status;
do
{
status = CAAM_AES_EncryptTagGcmNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, ivSize, aad,
aadSize, key, keySize, tag, tagSize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts AES and authenticates using GCM block mode.
*
* Decrypts AES and optionally authenticates using GCM block mode. If ciphertext is NULL, only the GHASH is calculated
* and compared with the received GHASH in 'tag' field.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input cipher text to decrypt
* param[out] plaintext Output plain text.
* param size Size of input and output data in bytes
* param iv Input initial vector
* param ivSize Size of the IV
* param aad Input additional authentication data
* param aadSize Input size in bytes of AAD
* param key Input key to use for encryption
* param keySize Size of the input key, in bytes. Must be 16, 24, or 32.
* param tag Input hash tag to compare. Set to NULL to skip tag processing.
* param tagSize Input size of the tag, in bytes. Must be 4, 8, 12, 13, 14, 15, or 16.
* return Status from decrypt operation
*/
status_t CAAM_AES_DecryptTagGcm(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv,
size_t ivSize,
const uint8_t *aad,
size_t aadSize,
const uint8_t *key,
size_t keySize,
const uint8_t *tag,
size_t tagSize)
{
caam_desc_aes_gcm_t descBuf;
status_t status;
do
{
status = CAAM_AES_DecryptTagGcmNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, ivSize, aad,
aadSize, key, keySize, tag, tagSize);
} while (status == kStatus_CAAM_Again);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*******************************************************************************
* HASH Code static
******************************************************************************/
static status_t caam_hash_check_input_alg(caam_hash_algo_t algo)
{
if ((algo != kCAAM_XcbcMac) && (algo != kCAAM_Cmac) && (algo != kCAAM_Sha1) && (algo != kCAAM_Sha224) &&
(algo != kCAAM_Sha256) && (algo != kCAAM_Sha384) && (algo != kCAAM_Sha512))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
static inline bool caam_hash_alg_is_cmac(caam_hash_algo_t algo)
{
return ((algo == kCAAM_XcbcMac) || (algo == kCAAM_Cmac));
}
static inline bool caam_hash_alg_is_sha(caam_hash_algo_t algo)
{
return ((algo == kCAAM_Sha1) || (algo == kCAAM_Sha224) || (algo == kCAAM_Sha256) || (algo == kCAAM_Sha384) ||
(algo == kCAAM_Sha512));
}
static status_t caam_hash_check_input_args(
CAAM_Type *base, caam_hash_ctx_t *ctx, caam_hash_algo_t algo, const uint8_t *key, uint32_t keySize)
{
/* Check validity of input algorithm */
if (kStatus_Success != caam_hash_check_input_alg(algo))
{
return kStatus_InvalidArgument;
}
if ((NULL == ctx) || (NULL == base))
{
return kStatus_InvalidArgument;
}
if (caam_hash_alg_is_cmac(algo))
{
if ((NULL == key) || (!caam_check_key_size(keySize)))
{
return kStatus_InvalidArgument;
}
}
return kStatus_Success;
}
static status_t caam_hash_check_context(caam_hash_ctx_internal_t *ctxInternal, const uint8_t *data)
{
if ((NULL == data) || (NULL == ctxInternal) || (NULL == ctxInternal->base) ||
(kStatus_Success != caam_hash_check_input_alg(ctxInternal->algo)))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
static uint32_t caam_hash_algo2mode(caam_hash_algo_t algo, uint32_t algState, uint32_t *algOutSize)
{
uint32_t modeReg = 0u;
uint32_t outSize = 0u;
/* Set CAAM algorithm */
switch (algo)
{
case kCAAM_XcbcMac:
modeReg = (uint32_t)kCAAM_AlgorithmAES | (uint32_t)kCAAM_ModeXCBCMAC;
outSize = 16u;
break;
case kCAAM_Cmac:
modeReg = (uint32_t)kCAAM_AlgorithmAES | (uint32_t)kCAAM_ModeCMAC;
outSize = 16u;
break;
case kCAAM_Sha1:
modeReg = (uint32_t)kCAAM_AlgorithmSHA1;
outSize = (uint32_t)kCAAM_OutLenSha1;
break;
case kCAAM_Sha224:
modeReg = (uint32_t)kCAAM_AlgorithmSHA224;
outSize = (uint32_t)kCAAM_OutLenSha224;
break;
case kCAAM_Sha256:
modeReg = (uint32_t)kCAAM_AlgorithmSHA256;
outSize = (uint32_t)kCAAM_OutLenSha256;
break;
case kCAAM_Sha384:
modeReg = (uint32_t)kCAAM_AlgorithmSHA384;
outSize = (uint32_t)kCAAM_OutLenSha384;
break;
case kCAAM_Sha512:
modeReg = (uint32_t)kCAAM_AlgorithmSHA512;
outSize = (uint32_t)kCAAM_OutLenSha512;
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
modeReg |= algState;
if (algOutSize != NULL)
{
*algOutSize = outSize;
}
return modeReg;
}
static uint32_t caam_hash_algo2ctx_size(caam_hash_algo_t algo, uint32_t how)
{
uint32_t ctxSize = 0u;
/* Size of context in bytes for context switching */
switch (algo)
{
case kCAAM_XcbcMac:
if (how == 0U)
{
ctxSize = 48u; /* add K3 and K2 */
}
else
{
ctxSize = 16u; /* only running or final MAC during UPDATE or FINALIZE or INITIALIZE/FINALIZE */
}
break;
case kCAAM_Cmac:
if (how == 0U)
{
ctxSize = 32u; /* add L */
}
else
{
ctxSize = 16u; /* only running or final MAC during UPDATE or FINALIZE or INITIALIZE/FINALIZE */
}
break;
/* MDHA use of the Context Register
The Context Register stores the current digest and running message length. The running
message length will be 8 bytes immediately following the active digest. The digest size is
defined as follows:
MD5: 16 bytes
SHA-1: 20 bytes
SHA-224: 28 bytes final digest; 32 bytes running digest
SHA-256: 32 bytes
SHA-384: 48 bytes final digest; 64 bytes running digest
SHA-512: 64 bytes */
case kCAAM_Sha1:
ctxSize = 28u; /* 8 + 20 */
break;
case kCAAM_Sha224:
case kCAAM_Sha256:
ctxSize = 40u; /* 8 + 32 */
break;
case kCAAM_Sha384:
case kCAAM_Sha512:
ctxSize = 72u; /* 8 + 64 */
break;
default:
/* All the cases have been listed above, the default clause should not be reached. */
break;
}
return ctxSize;
}
static const uint32_t templateHash[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x00000000u, /* KEY */
/* 02 */ 0x00000000u, /* place: key address */
/* 03 */ 0x10200000u, /* LOAD bytes to Class Context Register. Offset 0 bytes. */
/* 04 */ 0x00000000u, /* place: context address */
/* 05 */ 0x80000000u, /* OPERATION (place either AES MAC or MDHA SHA) */
/* 06 */ 0x21570000u, /* FIFO LOAD Class Message via SGT and EXT length */
/* 07 */ 0x00000000u, /* place: SGT address */
/* 08 */ 0x00000000u, /* place: FIFO LOAD EXT Length size */
/* 09 */ 0x50200000u, /* STORE bytes from Class Context Register offset 0 bytes. */
/* 10 */ 0x00000000u, /* place: context address */
/* 11 */ 0x60240000u, /* FIFO STORE from KEY to memory. */
/* 12 */ 0x00000000u, /* place: derived key address ECB encrypted */
/* 13 */ 0xA0C00000u, /* halt always with status 0 */
/* 14 */ 0x00000000u, /* SGT entry 0 word 0 */
/* 15 */ 0x00000000u, /* SGT entry 0 word 1 */
/* 16 */ 0x00000000u, /* SGT entry 0 word 2 */
/* 17 */ 0x00000000u, /* SGT entry 0 word 3 */
/* 18 */ 0x00000000u, /* SGT entry 1 word 0 */
/* 19 */ 0x00000000u, /* SGT entry 1 word 1 */
/* 20 */ 0x00000000u, /* SGT entry 1 word 2 */
/* 21 */ 0x00000000u, /* SGT entry 1 word 3 */
};
/*!
* @brief Add data chunk to SGT table. Append after uncomplete block in ctxInternal if there is any.
*
* @param ctxInternal uncomplete block in the hash context - to be inserted before new data chunk
* @param input new data chunk to insert
* @param inputSize size in bytes of new data chunk to insert
* @param numRemain number of bytes that remain in the last uncomplete block
* @param algState in FINALIZE or INITIALIZE/FINALIZE we add also last uncomplete block bytes
* @param sgt address of the SGT
* @param last last call to this function adds Final Bit
*/
static uint32_t caam_hash_sgt_insert(caam_hash_ctx_internal_t *ctxInternal,
const uint8_t *input,
size_t inputSize,
size_t *numRemain,
caam_algorithm_state_t algState,
caam_sgt_entry_t *sgt,
caam_hash_sgt_entry_type_t last)
{
/* configure SGT
* *64 bytes multiple in kCAAM_HashInit or kCAAM_HashUpdate
* *arbitrary amount of data in kCAAM_HashInitFinal or kCAAM_HashFinal
* min 1 and max 2 SGT entries
* 1) if there is any data in the context buffer, use it as one entry
* 2) input as one entry
*/
uint32_t numBlocks;
uint32_t remain;
uint32_t num;
uint32_t currSgtEntry;
uint32_t ctxBlksz = (ctxInternal != NULL) ? ctxInternal->blksz : 0U;
uint32_t ctxBlkAddr = (ctxInternal != NULL) ? (uint32_t)&ctxInternal->blk.b[0] : 0U;
currSgtEntry = 0;
numBlocks = (inputSize + ctxBlksz) / CAAM_HASH_BLOCK_SIZE;
remain = (inputSize + ctxBlksz) % CAAM_HASH_BLOCK_SIZE;
/* number of bytes for processing
* only full block multiple in INITIALIZE or UPDATE
* any size in INITIALIZE/FINALIZE or FINALIZE
*/
num = (CAAM_HASH_BLOCK_SIZE * numBlocks);
if ((algState == kCAAM_AlgStateInitFinal) || (algState == kCAAM_AlgStateFinal))
{
num += remain; /* add also uncomplete bytes from last block in one of FINALIZE states */
remain = 0;
}
if (numRemain != NULL)
{
*numRemain = remain;
}
if ((ctxBlksz != 0U) || (0U == ctxBlksz + inputSize))
{
sgt[currSgtEntry].address_l = ADD_OFFSET(ctxBlkAddr);
sgt[currSgtEntry].length = ctxBlksz;
if ((kCAAM_HashSgtEntryLast == last) && (0U == inputSize))
{
sgt[currSgtEntry].length |= 0x40000000u; /* Final SG entry */
}
currSgtEntry++;
}
if (inputSize != 0U)
{
/* number of bytes for processing
* only full block multiple in INITIALIZE or UPDATE
* any size in INITIALIZE/FINALIZE or FINALIZE
*/
sgt[currSgtEntry].address_l = ADD_OFFSET((uint32_t)input);
sgt[currSgtEntry].length = inputSize - remain;
if (kCAAM_HashSgtEntryLast == last)
{
sgt[currSgtEntry].length |= 0x40000000u; /* Final SG entry */
sgt[currSgtEntry].offset = 0x80000000u;
}
}
return num; /* no of bytes processed in total by these 1 or 2 SGT entries */
}
/*!
* @brief Create job descriptor for the HASH request and schedule at CAAM job ring
*
*
*/
static status_t caam_hash_schedule_input_data(CAAM_Type *base,
caam_handle_t *handle,
caam_hash_algo_t algo,
caam_sgt_entry_t *sgt,
uint32_t dataSize,
caam_hash_sgt_type_t sgtType,
caam_algorithm_state_t algState,
caam_desc_hash_t descriptor,
size_t *outputSize,
void *output,
void *context,
uint32_t keyAddr,
uint32_t keySize)
{
BUILD_ASSURE(sizeof(templateHash) <= sizeof(caam_desc_hash_t), caam_desc_hash_t_size);
uint32_t descriptorSize = ARRAY_SIZE(templateHash);
uint32_t algOutSize = 0;
bool isSha = caam_hash_alg_is_sha(algo); /* MDHA engine */
/* how many bytes to read from context register
* we need caam_hash_algo2ctx_size() to return
* full context size (to be used for context restore in descriptor[3])
*/
uint32_t caamCtxSz = caam_hash_algo2ctx_size(algo, 0 /* full context */);
(void)caam_memcpy(descriptor, templateHash, sizeof(templateHash));
/* MDHA is always Class 2 CHA, AESA configured at build time as Class 1 CHA */
uint32_t hashClass = isSha ? 0x04000000u : CAAM_AES_MAC_CLASS;
/* add class to all commands that need it */
descriptor[1] |= hashClass;
descriptor[3] |= hashClass;
descriptor[5] |= hashClass;
descriptor[6] |= hashClass;
descriptor[9] |= hashClass;
descriptor[11] |= hashClass;
/* add descriptor size */
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* kCAAM_AlgStateInit or kCAAM_AlgStateInitFinal needs to skip context load as there is no context */
if ((algState == kCAAM_AlgStateInit) || (algState == kCAAM_AlgStateInitFinal))
{
if (isSha)
{
/* HEADER can jump directly to MDHA operation */
descriptor[0] |= 0x00050000U; /* JUMP to descriptor[5] */
}
else
{
/* load KEY, then directly to AESA MAC operation */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET(keyAddr);
descriptor[3] = DESC_JUMP_2; /* JUMP to descriptor[5] */
}
}
else
{
if (isSha)
{
/* MDHA SHA in Update state skips loading the KEY, as MDHA SHA has no configurable key
* HEADER can jump directly to context restore
*/
descriptor[0] |= 0x00030000U; /* JUMP to descriptor[3] */
/* descriptor[1] = 0xA0000002u; */ /* JUMP to descriptor[3] */
}
else
{
/* load KEY */
descriptor[1] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[2] = ADD_OFFSET(keyAddr);
/* XCBC-MAC K1 derived key has been ECB encrypted (black key)
* so it needs decrypt
*/
if (kCAAM_XcbcMac == algo)
{
descriptor[1] |= (uint32_t)1u << 22; /* ENC */
}
}
/* context restore */
descriptor[3] |= caamCtxSz;
descriptor[4] = ADD_OFFSET((uint32_t)(uint32_t *)context);
}
/* OPERATION:
* alg MDHA or AESA
* mode INITIALIZE or UPDATE or FINALIZE or INITIALIZE/FINALIZE in algState argument
*/
/* ALGORITHM OPERATION | CLASS | alg | aai | algState */
descriptor[5] |= caam_hash_algo2mode(algo, (uint32_t)algState << 2, &algOutSize);
/* configure SGT */
descriptor[8] = dataSize;
if (kCAAM_HashSgtInternal == sgtType)
{
descriptor[7] = ADD_OFFSET(
(uint32_t)&descriptor[(uint32_t)kCAAM_HashDescriptorSgtIdx]); /* use SGT embedded in the job descriptor */
(void)caam_memcpy(&descriptor[(uint32_t)kCAAM_HashDescriptorSgtIdx], (const uint32_t *)(uintptr_t)sgt,
sizeof(caam_hash_internal_sgt_t));
}
else
{
descriptor[7] = ADD_OFFSET((uint32_t)sgt);
}
/* save context: context switch init or running or result */
if ((kCAAM_AlgStateFinal == algState) || (kCAAM_AlgStateInitFinal == algState))
{
if (outputSize != NULL)
{
if (algOutSize < *outputSize)
{
*outputSize = algOutSize;
}
else
{
algOutSize = *outputSize;
}
}
caamCtxSz = algOutSize;
}
else
{
uint32_t how = (algState == kCAAM_AlgStateInit) ? 0U : 1U; /* context switch needs full, then running */
caamCtxSz = caam_hash_algo2ctx_size(algo, how);
}
descriptor[9] |= caamCtxSz;
if ((kCAAM_AlgStateFinal == algState) || (kCAAM_AlgStateInitFinal == algState))
{
/* final result write to output */
descriptor[10] = ADD_OFFSET((uint32_t)(uint32_t *)output);
}
else
{
/* context switch write to ctxInternal */
descriptor[10] = ADD_OFFSET((uint32_t)(uint32_t *)context);
}
/* save the derived key K1 in XCBC-MAC. only if context switch. */
if ((kCAAM_AlgStateInit == algState) && (kCAAM_XcbcMac == algo))
{
descriptor[11] |= (keySize & DESC_KEY_SIZE_MASK);
descriptor[12] = ADD_OFFSET((uint32_t)&keyAddr);
}
else
{
descriptor[11] = ADD_OFFSET(descriptor[13]); /* always halt with status 0x0 (normal) */
}
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* @brief Add uncomplete block (ctxInternal), then append new data (to current hash).
*
*
*/
static status_t caam_hash_append_data(caam_hash_ctx_internal_t *ctxInternal,
const uint8_t *input,
size_t inputSize,
caam_algorithm_state_t algState,
caam_desc_hash_t descriptor,
size_t *numRemain,
void *output,
size_t *outputSize)
{
caam_hash_internal_sgt_t sgt;
(void)memset(&sgt, 0, sizeof(sgt));
size_t num = caam_hash_sgt_insert(ctxInternal, input, inputSize, numRemain, algState, sgt, kCAAM_HashSgtEntryLast);
return caam_hash_schedule_input_data(ctxInternal->base, ctxInternal->handle, ctxInternal->algo, sgt, num,
kCAAM_HashSgtInternal, algState, descriptor, outputSize, output,
&ctxInternal->word[0], (uint32_t)&ctxInternal->word[kCAAM_HashCtxKeyStartIdx],
ctxInternal->word[kCAAM_HashCtxKeySize]);
}
/*!
* brief Initialize HASH context
*
* This function initializes the HASH.
* Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC.
* Key shall be NULL if the underlaying algoritm is SHA.
*
* For XCBC-MAC, the key length must be 16. For CMAC, the key length can be
* the AES key lengths supported by AES engine. For MDHA the key length argument
* is ignored.
*
* This functions is used to initialize the context for both blocking and non-blocking
* CAAM_HASH API.
* For blocking CAAM HASH API, the HASH context contains all information required for context switch,
* such as running hash or MAC. For non-blocking CAAM HASH API, the HASH context is used
* to hold SGT. Therefore, the HASH context cannot be shared between blocking and non-blocking HASH API.
* With one HASH context, either use only blocking HASH API or only non-blocking HASH API.
*
*
* param base CAAM peripheral base address
* param handle Handle used for this request.
* param[out] ctx Output hash context
* param algo Underlaying algorithm to use for hash computation.
* param key Input key (NULL if underlaying algorithm is SHA)
* param keySize Size of input key in bytes
* return Status of initialization
*/
status_t CAAM_HASH_Init(CAAM_Type *base,
caam_handle_t *handle,
caam_hash_ctx_t *ctx,
caam_hash_algo_t algo,
const uint8_t *key,
size_t keySize)
{
status_t ret;
caam_hash_ctx_internal_t *ctxInternal;
uint32_t i;
ret = caam_hash_check_input_args(base, ctx, algo, key, keySize);
if (ret != kStatus_Success)
{
return ret;
}
/* set algorithm in context struct for later use */
ctxInternal = (caam_hash_ctx_internal_t *)(uint32_t)ctx;
ctxInternal->algo = algo;
for (i = 0U; i < (uint32_t)kCAAM_HashCtxNumWords; i++)
{
ctxInternal->word[i] = 0u;
}
/* Steps required only using AES engine */
if (caam_hash_alg_is_cmac(algo))
{
/* store input key and key length in context struct for later use */
ctxInternal->word[kCAAM_HashCtxKeySize] = keySize;
(void)caam_memcpy(&ctxInternal->word[kCAAM_HashCtxKeyStartIdx], (const uint32_t *)(uintptr_t)key, keySize);
}
ctxInternal->blksz = 0u;
for (i = 0; i < ARRAY_SIZE(ctxInternal->blk.w); i++)
{
ctxInternal->blk.w[i] = 0u;
}
ctxInternal->state = kCAAM_HashInit;
ctxInternal->base = base;
ctxInternal->handle = handle;
return kStatus_Success;
}
/*!
* brief Add data to current HASH
*
* Add data to current HASH. This can be called repeatedly with an arbitrary amount of data to be
* hashed. The functions blocks. If it returns kStatus_Success, the running hash or mac
* has been updated (CAAM has processed the input data), so the memory at input pointer
* can be released back to system. The context is updated with the running hash or mac
* and with all necessary information to support possible context switch.
*
* param[in,out] ctx HASH context
* param input Input data
* param inputSize Size of input data in bytes
* return Status of the hash update operation
*/
status_t CAAM_HASH_Update(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
{
caam_desc_hash_t descBuf;
status_t status;
caam_hash_ctx_internal_t *ctxInternal;
bool isUpdateState;
size_t numRemain = 0;
/* compile time check for the correct structure size */
BUILD_ASSURE(sizeof(caam_hash_ctx_internal_t) <= sizeof(caam_hash_ctx_t), caam_hash_ctx_internal_t_size);
if (0U == inputSize)
{
return kStatus_Success;
}
/* we do caam_memcpy() input stream, up to buffer size
* of 64 bytes. then if I have more I have to
* 1) load Class 2 context
* 2) schedule CAAM job with INITIALIZE or UPDATE mode (simple if only 64 bytes block is processed. SG table for 2
* and more)
* 3) in step 2 process all full 64 bytes blocks
* 4) copy last not-full buffer size data to buffer.
* 5) save Class 2 context
*/
ctxInternal = (caam_hash_ctx_internal_t *)(uint32_t)ctx;
status = caam_hash_check_context(ctxInternal, input);
if (kStatus_Success != status)
{
return status;
}
/* if we are still less than 64 bytes, keep only in context */
if ((ctxInternal->blksz + inputSize) <= CAAM_HASH_BLOCK_SIZE)
{
(void)caam_memcpy((&ctxInternal->blk.b[0]) + ctxInternal->blksz, input, inputSize);
ctxInternal->blksz += inputSize;
return status;
}
else
{
isUpdateState = ctxInternal->state == kCAAM_HashUpdate;
if (!isUpdateState)
{
/* Step 2: schedule CAAM job in INITIALIZE mode.
*/
ctxInternal->state = kCAAM_HashUpdate;
/* skip load context as there is no running context yet. */
status = caam_hash_append_data(ctxInternal, input, inputSize, kCAAM_AlgStateInit, descBuf, &numRemain, NULL,
NULL);
}
}
if (kStatus_Success != status)
{
return status;
}
if (isUpdateState)
{
/* Step 2: schedule CAAM job in UPDATE mode.
*/
/* process input data and save CAAM context to context structure */
status =
caam_hash_append_data(ctxInternal, input, inputSize, kCAAM_AlgStateUpdate, descBuf, &numRemain, NULL, NULL);
if (status != kStatus_Success)
{
return status;
}
}
/* blocking wait */
status = CAAM_Wait(ctxInternal->base, ctxInternal->handle, descBuf, kCAAM_Blocking);
if (status != kStatus_Success)
{
return status;
}
/* after job is complete, copy numRemain bytes at the end of the input[] to the context */
(void)caam_memcpy((&ctxInternal->blk.b[0]), input + inputSize - numRemain, numRemain);
ctxInternal->blksz = numRemain;
return status;
}
/*!
* brief Add input address and size to input data table
*
* Add data input pointer to a table maintained internally in the context.
* Each call of this function creates one entry in the table.
* The entry consists of the input pointer and inputSize.
* All entries created by one or multiple calls of this function can be processed
* in one call to CAAM_HASH_FinishNonBlocking() function.
* Individual entries can point to non-continuous data in the memory.
* The processing will occur in the order in which the CAAM_HASH_UpdateNonBlocking()
* have been called.
*
* Memory pointers will be later accessed by CAAM (at time of CAAM_HASH_FinishNonBlocking()),
* so the memory must stay valid
* until CAAM_HASH_FinishNonBlocking() has been called and CAAM completes the processing.
*
* param[in,out] ctx HASH context
* param input Input data
* param inputSize Size of input data in bytes
* return Status of the hash update operation
*/
status_t CAAM_HASH_UpdateNonBlocking(caam_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
{
status_t status;
caam_hash_ctx_internal_t *ctxInternal;
if (0U == inputSize)
{
return kStatus_Success;
}
/* runtime input validity check */
ctxInternal = (caam_hash_ctx_internal_t *)(uint32_t)ctx;
status = caam_hash_check_context(ctxInternal, input);
if (kStatus_Success != status)
{
return status;
}
/* Add input data chunk to SGT */
uint32_t currSgtEntry = ctxInternal->blksz;
if (currSgtEntry >= (uint32_t)kCAAM_HashSgtMaxCtxEntries)
{
return kStatus_InvalidArgument;
}
caam_sgt_entry_t *sgt = &((caam_sgt_entry_t *)(uint32_t)ctxInternal)[currSgtEntry];
(void)caam_hash_sgt_insert(NULL, input, inputSize, NULL, kCAAM_AlgStateInitFinal, sgt,
kCAAM_HashSgtEntryNotLast /* not last. we don't know if this is the last chunk */);
if (inputSize != 0U)
{
ctxInternal->blksz++;
}
return status;
}
/*!
* brief Finalize hashing
*
* Outputs the final hash (computed by CAAM_HASH_Update()) and erases the context.
*
* param[in,out] ctx Input hash context
* param[out] output Output hash data
* param[out] outputSize Output parameter storing the size of the output hash in bytes
* return Status of the hash finish operation
*/
status_t CAAM_HASH_Finish(caam_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
{
status_t status;
caam_hash_ctx_internal_t *ctxInternal;
caam_desc_hash_t descBuf;
caam_algorithm_state_t algState;
/* runtime input validity check */
ctxInternal = (caam_hash_ctx_internal_t *)(uint32_t)ctx;
status = caam_hash_check_context(ctxInternal, output);
if (kStatus_Success != status)
{
return status;
}
/* determine algorithm state to configure
* based on prior processing.
* If at least one full block has been processed during HASH_Update() then the state in ctxInternal
* will be set to kCAAM_HashUpdate and so we will configure FINALIZE algorithm state.
* Otherwise there is data only in the ctxInternal that we can process in INITIALIZE/FINALIZE.
*/
if (ctxInternal->state == kCAAM_HashInit)
{
algState = kCAAM_AlgStateInitFinal;
}
else
{
algState = kCAAM_AlgStateFinal;
}
status = caam_hash_append_data(
ctxInternal, NULL, 0, /* we process only blksz bytes in ctxInternal, so giving NULL and zero size here */
algState, descBuf, NULL, output, outputSize);
if (kStatus_Success != status)
{
return status;
}
/* blocking wait */
status = CAAM_Wait(ctxInternal->base, ctxInternal->handle, descBuf, kCAAM_Blocking);
(void)memset(ctx, 0, sizeof(caam_hash_ctx_t));
return status;
}
/*!
* brief Finalize hashing
*
* The actual algorithm is computed with all input data, the memory pointers
* are accessed by CAAM after the function returns.
* The input data chunks have been specified by prior calls to CAAM_HASH_UpdateNonBlocking().
* The function schedules the request at CAAM, then returns.
* After a while, when the CAAM completes processing of the input data chunks,
* the result is written to the output[] array, outputSize is written and the context
* is cleared.
*
* param[in,out] ctx Input hash context
* param[out] descriptor Memory for the CAAM descriptor.
* param[out] output Output hash data
* param[out] outputSize Output parameter storing the size of the output hash in bytes
* return Status of the hash finish operation
*/
status_t CAAM_HASH_FinishNonBlocking(caam_hash_ctx_t *ctx,
caam_desc_hash_t descriptor,
uint8_t *output,
size_t *outputSize)
{
status_t status;
caam_hash_ctx_internal_t *ctxInternal;
/* runtime input validity check */
ctxInternal = (caam_hash_ctx_internal_t *)(uint32_t)ctx;
status = caam_hash_check_context(ctxInternal, output);
if (kStatus_Success != status)
{
return status;
}
uint32_t currSgtEntry = ctxInternal->blksz;
if (currSgtEntry > (uint32_t)kCAAM_HashSgtMaxCtxEntries)
{
return kStatus_InvalidArgument;
}
caam_sgt_entry_t *sgt = &((caam_sgt_entry_t *)(uint32_t)ctxInternal)[0];
/* mark currSgtEntry with Final Bit */
uint32_t i;
uint32_t totalLength = 0;
for (i = 0; i < currSgtEntry; i++)
{
totalLength += sgt[i].length;
}
sgt[currSgtEntry].length |= 0x40000000u; /* Final SG entry */
status = caam_hash_schedule_input_data(ctxInternal->base, ctxInternal->handle, ctxInternal->algo, sgt, totalLength,
kCAAM_HashSgtExternal, kCAAM_AlgStateInitFinal, descriptor, outputSize,
output, NULL, (uint32_t)&ctxInternal->word[kCAAM_HashCtxKeyStartIdx],
ctxInternal->word[kCAAM_HashCtxKeySize]);
return status;
}
/*!
* brief Create HASH on given data
*
* Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.
*
* Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC.
* Key shall be NULL if the underlaying algoritm is SHA.
*
* For XCBC-MAC, the key length must be 16. For CMAC, the key length can be
* the AES key lengths supported by AES engine. For MDHA the key length argument
* is ignored.
*
* The function is blocking.
*
* param base CAAM peripheral base address
* param handle Handle used for this request.
* param algo Underlaying algorithm to use for hash computation.
* param input Input data
* param inputSize Size of input data in bytes
* param key Input key (NULL if underlaying algorithm is SHA)
* param keySize Size of input key in bytes
* param[out] output Output hash data
* param[out] outputSize Output parameter storing the size of the output hash in bytes
* return Status of the one call hash operation.
*/
status_t CAAM_HASH(CAAM_Type *base,
caam_handle_t *handle,
caam_hash_algo_t algo,
const uint8_t *input,
size_t inputSize,
const uint8_t *key,
size_t keySize,
uint8_t *output,
size_t *outputSize)
{
status_t status;
caam_desc_hash_t descBuf;
status = CAAM_HASH_NonBlocking(base, handle, descBuf, algo, input, inputSize, key, keySize, output, outputSize);
if (kStatus_Success != status)
{
return status;
}
status = CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
return status;
}
/*!
* brief Create HASH on given data
*
* Perform the full keyed XCBC-MAC/CMAC or SHA in one function call.
*
* Key shall be supplied if the underlaying algoritm is AES XCBC-MAC or CMAC.
* Key shall be NULL if the underlaying algoritm is SHA.
*
* For XCBC-MAC, the key length must be 16. For CMAC, the key length can be
* the AES key lengths supported by AES engine. For MDHA the key length argument
* is ignored.
*
* The function is non-blocking. The request is scheduled at CAAM.
*
* param base CAAM peripheral base address
* param handle Handle used for this request.
* param[out] descriptor Memory for the CAAM descriptor.
* param algo Underlaying algorithm to use for hash computation.
* param input Input data
* param inputSize Size of input data in bytes
* param key Input key (NULL if underlaying algorithm is SHA)
* param keySize Size of input key in bytes
* param[out] output Output hash data
* param[out] outputSize Output parameter storing the size of the output hash in bytes
* return Status of the one call hash operation.
*/
status_t CAAM_HASH_NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_hash_t descriptor,
caam_hash_algo_t algo,
const uint8_t *input,
size_t inputSize,
const uint8_t *key,
size_t keySize,
uint8_t *output,
size_t *outputSize)
{
status_t status;
caam_algorithm_state_t algState;
caam_hash_internal_sgt_t sgt;
(void)memset(&sgt, 0, sizeof(sgt));
algState = kCAAM_AlgStateInitFinal;
uint32_t num = caam_hash_sgt_insert(NULL, /* no ctxInternal data to pre-pend before input data chunk */
input, inputSize, /* data and size in bytes */
NULL, /* all data is processed during kCAAM_AlgStateInitFinal, nothing remain */
algState, sgt, kCAAM_HashSgtEntryLast); /* sgt table, entry 0 word 0 */
/* schedule the request at CAAM */
status = caam_hash_schedule_input_data(base, handle, algo, sgt, num, kCAAM_HashSgtInternal, algState, descriptor,
outputSize, output, NULL, (uint32_t)key, keySize);
return status;
}
/*******************************************************************************
* RNG Code public
******************************************************************************/
/*!
* brief Initializes user configuration structure to default.
*
* This function initializes the configure structure to default value. the default
* value are:
* code
* config->autoReseedInterval = 0;
* config->personalString = NULL;
* endcode
*
* param config User configuration structure.
* return status of the request
*/
status_t CAAM_RNG_GetDefaultConfig(caam_rng_config_t *config)
{
status_t status;
if (config != NULL)
{
config->autoReseedInterval = 0; /* zero means hardware default of 10.000.000 will be used */
config->personalString = NULL;
status = kStatus_Success;
}
else
{
status = kStatus_InvalidArgument;
}
return status;
}
/*!
* brief Instantiate the CAAM RNG state handle
*
* This function instantiates CAAM RNG state handle.
* The function is blocking and returns after CAAM has processed the request.
*
* param base CAAM peripheral base address
* param handle CAAM jobRing used for this request
* param stateHandle RNG state handle to instantiate
* param config Pointer to configuration structure.
* return Status of the request
*/
status_t CAAM_RNG_Init(CAAM_Type *base,
caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
const caam_rng_config_t *config)
{
status_t status;
/* create job descriptor */
caam_desc_rng_t rngInstantiate = {0};
rngInstantiate[0] = 0xB0800006u;
rngInstantiate[1] = 0x12200020u; /* LOAD 32 bytes of to Class 1 Context Register. Offset 0 bytes. */
rngInstantiate[2] = (uint32_t)ADD_OFFSET((uint32_t)config->personalString);
rngInstantiate[3] = 0x12820004u; /* LOAD Immediate 4 bytes to Class 1 Data Size Register. */
rngInstantiate[4] = config->autoReseedInterval; /* value for the Class 1 Data Size Register */
rngInstantiate[5] = 0x82500006u; /* RNG instantiate state handle:
* TST=0 for normal non-deterministic mode
* PR=1 for prediction resistance
*/
if (kCAAM_RngStateHandle1 == stateHandle)
{
rngInstantiate[5] |= 1u << 4;
}
/* default auto reseed interval */
if (config->autoReseedInterval == 0U)
{
rngInstantiate[3] = DESC_JUMP_2; /* jump to current index + 2 (=5) */
}
/* optional personalization string present */
if ((config->personalString) != NULL)
{
rngInstantiate[5] |= (uint32_t)1u << 10; /* set PS bit in ALG OPERATION (AS=01 Instantiate) */
}
else
{
rngInstantiate[1] = DESC_JUMP_2; /* jump to current index + 2 (=3) */
}
/* schedule the job and block wait for result */
do
{
status = caam_in_job_ring_add(base, handle->jobRing, &rngInstantiate[0]);
} while (status != kStatus_Success);
status = CAAM_Wait(base, handle, &rngInstantiate[0], kCAAM_Blocking);
return status;
}
/*!
* brief Uninstantiate the CAAM RNG state handle
*
* This function uninstantiates CAAM RNG state handle.
* The function is blocking and returns after CAAM has processed the request.
*
* param base CAAM peripheral base address
* param handle jobRing used for this request.
* param stateHandle RNG state handle to uninstantiate
* return Status of the request
*/
status_t CAAM_RNG_Deinit(CAAM_Type *base, caam_handle_t *handle, caam_rng_state_handle_t stateHandle)
{
status_t status;
/* create job descriptor */
caam_desc_rng_t rngUninstantiate = {0};
rngUninstantiate[0] = 0xB0800002u; /* HEADER */
rngUninstantiate[1] = 0x8250000Cu; /* ALG OPERATION: RNG uninstantiate state handle (AS=11 Uninstantiate) */
if (kCAAM_RngStateHandle1 == stateHandle)
{
rngUninstantiate[1] |= 1u << 4;
}
/* schedule the job and block wait for result */
do
{
status = caam_in_job_ring_add(base, handle->jobRing, &rngUninstantiate[0]);
} while (status != kStatus_Success);
status = CAAM_Wait(base, handle, &rngUninstantiate[0], kCAAM_Blocking);
return status;
}
/*!
* brief Generate Secure Key
*
* This function generates random data writes it to Secure Key registers.
* The function is blocking and returns after CAAM has processed the request.
* RNG state handle 0 is always used.
*
* param base CAAM peripheral base address
* param handle jobRing used for this request
* param additionalEntropy NULL or Pointer to optional 256-bit additional entropy.
* return Status of the request
*/
status_t CAAM_RNG_GenerateSecureKey(CAAM_Type *base, caam_handle_t *handle, caam_rng_generic256_t additionalEntropy)
{
status_t status;
/* create job descriptor */
caam_desc_rng_t rngGenSeckey = {0};
rngGenSeckey[0] = 0xB0800004u; /* HEADER */
rngGenSeckey[1] = 0x12200020u; /* LOAD 32 bytes of to Class 1 Context Register. Offset 0 bytes. */
rngGenSeckey[2] = ADD_OFFSET((uint32_t)additionalEntropy);
rngGenSeckey[3] = 0x82501000u; /* set SK bit in ALG OPERATION (AS=00 Generate) */
/* optional additional input included */
if ((additionalEntropy) != NULL)
{
rngGenSeckey[3] |= (uint32_t)1u << 11; /* set AI bit in ALG OPERATION */
}
else
{
rngGenSeckey[1] = DESC_JUMP_2; /* jump to current index + 2 (=3) */
}
/* schedule the job and block wait for result */
do
{
status = caam_in_job_ring_add(base, handle->jobRing, &rngGenSeckey[0]);
} while (status != kStatus_Success);
status = CAAM_Wait(base, handle, &rngGenSeckey[0], kCAAM_Blocking);
return status;
}
/*!
* brief Reseed the CAAM RNG state handle
*
* This function reseeds the CAAM RNG state handle.
* For a state handle in nondeterministic mode, the DRNG is seeded with 384 bits of
* entropy from the TRNG and an optional 256-bit additional input from the descriptor
* via the Class 1 Context Register.
*
* The function is blocking and returns after CAAM has processed the request.
*
* param base CAAM peripheral base address
* param handle jobRing used for this request
* param stateHandle RNG state handle to reseed
* param additionalEntropy NULL or Pointer to optional 256-bit additional entropy.
* return Status of the request
*/
status_t CAAM_RNG_Reseed(CAAM_Type *base,
caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
caam_rng_generic256_t additionalEntropy)
{
status_t status;
/* create job descriptor */
caam_desc_rng_t rngReseed = {0};
rngReseed[0] = 0xB0800004u; /* HEADER */
rngReseed[1] = 0x12200020u; /* LOAD 32 bytes of to Class 1 Context Register. Offset 0 bytes. */
rngReseed[2] = ADD_OFFSET((uint32_t)additionalEntropy);
rngReseed[3] = 0x8250000Au; /* ALG OPERATION: RNG reseed state handle (AS=10 Reseed) */
/* optional additional input included */
if ((additionalEntropy) != NULL)
{
rngReseed[3] |= (uint32_t)1u << 11; /* set AI bit in ALG OPERATION */
}
else
{
rngReseed[1] = DESC_JUMP_2; /* jump to current index + 2 (=3) */
}
/* select state handle */
if (kCAAM_RngStateHandle1 == stateHandle)
{
rngReseed[3] |= 1u << 4;
}
/* schedule the job and block wait for result */
do
{
status = caam_in_job_ring_add(base, handle->jobRing, &rngReseed[0]);
} while (status != kStatus_Success);
status = CAAM_Wait(base, handle, &rngReseed[0], kCAAM_Blocking);
return status;
}
/*!
* brief Get random data
*
* This function gets random data from CAAM RNG.
*
* The function is blocking and returns after CAAM has generated the requested data or an error occurred.
*
* param base CAAM peripheral base address
* param handle jobRing used for this request
* param stateHandle RNG state handle used to generate random data
* param[out] data Pointer address used to store random data
* param dataSize Size of the buffer pointed by the data parameter
* param dataType Type of random data to be generated
* param additionalEntropy NULL or Pointer to optional 256-bit additional entropy.
* return Status of the request
*/
status_t CAAM_RNG_GetRandomData(CAAM_Type *base,
caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
void *data,
size_t dataSize,
caam_rng_random_type_t dataType,
caam_rng_generic256_t additionalEntropy)
{
status_t status;
caam_desc_rng_t descBuf;
do
{
status = CAAM_RNG_GetRandomDataNonBlocking(base, handle, stateHandle, descBuf, data, dataSize, dataType,
additionalEntropy);
} while (status == kStatus_CAAM_Again);
if (kStatus_Success != status)
{
return status;
}
status = CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
return status;
}
static const uint32_t templateRng[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x12200020u, /* LOAD 32 bytes of to Class 1 Context Register. Offset 0 bytes. */
/* 02 */ 0x00000000u, /* place: additional input address */
/* 03 */ 0x12820004u, /* LOAD Class 1 Data Size Register by IMM data */
/* 04 */ 0x00000000u, /* place: data size to generate */
/* 05 */ 0x82500002u, /* RNG generate */
/* 06 */ 0x60700000u, /* FIFO STORE message */
/* 07 */ 0x00000000u, /* place: destination address */
/* 08 */ 0x00000000u, /* place: destination size */
};
/*!
* brief Request random data
*
* This function schedules the request for random data from CAAM RNG.
* Memory at memory pointers will be accessed by CAAM shortly after this function
* returns, according to actual CAAM schedule.
*
* param base CAAM peripheral base address
* param handle RNG handle used for this request
* param stateHandle RNG state handle used to generate random data
* param[out] descriptor memory for CAAM commands
* param[out] data Pointer address used to store random data
* param dataSize Size of the buffer pointed by the data parameter, in bytes.
* param dataType Type of random data to be generated.
* param additionalEntropy NULL or Pointer to optional 256-bit additional entropy.
* return status of the request
*/
status_t CAAM_RNG_GetRandomDataNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_rng_state_handle_t stateHandle,
caam_desc_rng_t descriptor,
void *data,
size_t dataSize,
caam_rng_random_type_t dataType,
caam_rng_generic256_t additionalEntropy)
{
/* create job descriptor */
BUILD_ASSURE(sizeof(templateRng) <= sizeof(caam_desc_rng_t), caam_desc_rng_t_size);
uint32_t descriptorSize = ARRAY_SIZE(templateRng);
(void)caam_memcpy(descriptor, templateRng, sizeof(templateRng));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
/* optional additional input included */
if (additionalEntropy != NULL)
{
descriptor[2] = ADD_OFFSET((uint32_t)additionalEntropy);
descriptor[5] |= (uint32_t)1U << 11; /* set AI bit in ALG OPERATION */
}
else
{
descriptor[0] |= (uint32_t)3u << 16; /* start at index 3 */
}
descriptor[4] = dataSize; /* Generate OPERATION */
descriptor[7] = ADD_OFFSET((uint32_t)(uint32_t *)data);
descriptor[8] = dataSize; /* FIFO STORE */
/* select state handle */
if (kCAAM_RngStateHandle1 == stateHandle)
{
descriptor[5] |= 1u << 4;
}
/* configure type of data */
if (dataType == kCAAM_RngDataNonZero)
{
descriptor[5] |= (uint32_t)1u << 8; /* set NZB bit in ALG OPERATION */
}
if (dataType == kCAAM_RngDataOddParity)
{
descriptor[5] |= (uint32_t)1u << 9; /* set OBP bit in ALG OPERATION */
}
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
static const uint32_t templateCipherDes[] = {
/* 00 */ 0xB0800000u, /* HEADER */
/* 01 */ 0x02800000u, /* KEY Class 1 IMM */
/* 02 */ 0x00000000u, /* IMM key1 0-3 */
/* 03 */ 0x00000000u, /* IMM key1 4-8 */
/* 04 */ 0x00000000u, /* IMM key2 0-3 */
/* 05 */ 0x00000000u, /* IMM key2 4-8 */
/* 06 */ 0x00000000u, /* IMM key3 0-3 */
/* 07 */ 0x00000000u, /* IMM key3 4-8 */
/* 08 */ 0x12200008u, /* LOAD 8 bytes of iv to Class 1 Context Register */
/* 09 */ 0x00000000u, /* place: iv address */
/* 10 */ 0x22130000u, /* FIFO LOAD Message */
/* 11 */ 0x00000000u, /* place: source address */
/* 12 */ 0x60300000u, /* FIFO STORE Message */
/* 13 */ 0x00000000u, /* place: destination address */
/* 14 */ 0x82200000u, /* OPERATION: DES Decrypt, AS = zeroes, AAI = zeroes (CTR) */
};
/*******************************************************************************
* DES Code public
******************************************************************************/
/*!
* brief Encrypts DES using ECB block mode.
*
* Encrypts DES using ECB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key Input key to use for encryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_EncryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES_EncryptEcbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, key);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts DES using ECB block mode.
*
* Encrypts DES using ECB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key Input key to use for encryption
* return Status from descriptor push
*/
status_t CAAM_DES_EncryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key[CAAM_DES_KEY_SIZE])
{
BUILD_ASSURE(sizeof(caam_desc_cipher_des_t) >= sizeof(templateCipherDes), caam_desc_cipher_des_t_size);
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_6; /* ECB has no context, jump to currIdx+6 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= 0x201u; /* add ENC bit to specify Encrypt OPERATION, AAI = 20h */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts DES using ECB block mode.
*
* Decrypts DES using ECB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key Input key to use for decryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_DecryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES_DecryptEcbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, key);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts DES using ECB block mode.
*
* Decrypts DES using ECB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key Input key to use for decryption
* return Status from descriptor push
*/
status_t CAAM_DES_DecryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_6; /* ECB has no context, jump to currIdx+6 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeECB; /* AAI = 20h */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts DES using CBC block mode.
*
* Encrypts DES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Ouput ciphertext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key Input key to use for encryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_EncryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_EncryptCbcNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts DES using CBC block mode.
*
* Encrypts DES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Ouput ciphertext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key Input key to use for encryption
* return Status from descriptor push
*/
status_t CAAM_DES_EncryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts DES using CBC block mode.
*
* Decrypts DES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key Input key to use for decryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_DecryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_DecryptCbcNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts DES using CBC block mode.
*
* Decrypts DES using CBC block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key Input key to use for decryption
* return Status from descriptor push
*/
status_t CAAM_DES_DecryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts DES using CFB block mode.
*
* Encrypts DES using CFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param size Size of input data in bytes
* param iv Input initial block.
* param key Input key to use for encryption
* param[out] ciphertext Output ciphertext
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_EncryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_EncryptCfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts DES using CFB block mode.
*
* Encrypts DES using CFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param size Size of input data in bytes
* param iv Input initial block.
* param key Input key to use for encryption
* param[out] ciphertext Output ciphertext
* return Status from descriptor push
*/
status_t CAAM_DES_EncryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts DES using CFB block mode.
*
* Decrypts DES using CFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key Input key to use for decryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_DecryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_DecryptCfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts DES using CFB block mode.
*
* Decrypts DES using CFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key Input key to use for decryption
* return Status from descriptor push
*/
status_t CAAM_DES_DecryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts DES using OFB block mode.
*
* Encrypts DES using OFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key Input key to use for encryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_EncryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_EncryptOfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts DES using OFB block mode.
*
* Encrypts DES using OFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key Input key to use for encryption
* return Status from descriptor push
*/
status_t CAAM_DES_EncryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts DES using OFB block mode.
*
* Decrypts DES using OFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key Input key to use for decryption
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES_DecryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES_DecryptOfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts DES using OFB block mode.
*
* Decrypts DES using OFB block mode.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key Input key to use for decryption
* return Status from descriptor push
*/
status_t CAAM_DES_DecryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key, CAAM_DES_KEY_SIZE);
descriptor[4] = DESC_JUMP_4; /* context, jump to currIdx+4 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using ECB block mode with two keys.
*
* Encrypts triple DES using ECB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_EncryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES2_EncryptEcbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, key1, key2);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using ECB block mode with two keys.
*
* Encrypts triple DES using ECB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_EncryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_4; /* ECB has no context, jump to currIdx+4 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= 0x201u; /* add ENC bit to specify Encrypt OPERATION, AAI = 20h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using ECB block mode with two keys.
*
* Decrypts triple DES using ECB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_DecryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES2_DecryptEcbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, key1, key2);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using ECB block mode with two keys.
*
* Decrypts triple DES using ECB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_DecryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_4; /* ECB has no context, jump to currIdx+4 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeECB; /* AAI = 20h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using CBC block mode with two keys.
*
* Encrypts triple DES using CBC block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_EncryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_EncryptCbcNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using CBC block mode with two keys.
*
* Encrypts triple DES using CBC block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_EncryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using CBC block mode with two keys.
*
* Decrypts triple DES using CBC block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_DecryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_DecryptCbcNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using CBC block mode with two keys.
*
* Decrypts triple DES using CBC block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_DecryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using CFB block mode with two keys.
*
* Encrypts triple DES using CFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_EncryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_EncryptCfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using CFB block mode with two keys.
*
* Encrypts triple DES using CFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_EncryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using CFB block mode with two keys.
*
* Decrypts triple DES using CFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_DecryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_DecryptCfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using CFB block mode with two keys.
*
* Decrypts triple DES using CFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_DecryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using OFB block mode with two keys.
*
* Encrypts triple DES using OFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_EncryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_EncryptOfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using OFB block mode with two keys.
*
* Encrypts triple DES using OFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_EncryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using OFB block mode with two keys.
*
* Decrypts triple DES using OFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES2_DecryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status = CAAM_DES2_DecryptOfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using OFB block mode with two keys.
*
* Decrypts triple DES using OFB block mode with two keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES2_DecryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 2U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
descriptor[6] = DESC_JUMP_2; /* context, jump to currIdx+2 = 8 (LOAD) */
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using ECB block mode with three keys.
*
* Encrypts triple DES using ECB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_EncryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES3_EncryptEcbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, key1, key2, key3);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using ECB block mode with three keys.
*
* Encrypts triple DES using ECB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_EncryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[8] = DESC_JUMP_2; /* ECB has no context, jump to currIdx+2 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= 0x201u; /* add ENC bit to specify Encrypt OPERATION, AAI = 20h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using ECB block mode with three keys.
*
* Decrypts triple DES using ECB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_DecryptEcb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
caam_desc_cipher_des_t descBuf;
status_t status;
status = CAAM_DES3_DecryptEcbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, key1, key2, key3);
if (status != 0)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using ECB block mode with three keys.
*
* Decrypts triple DES using ECB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes. Must be multiple of 8 bytes.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_DecryptEcbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[8] = DESC_JUMP_2; /* ECB has no context, jump to currIdx+2 = 10 (FIFO LOAD) */
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeECB; /* AAI = 20h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using CBC block mode with three keys.
*
* Encrypts triple DES using CBC block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_EncryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_EncryptCbcNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using CBC block mode with three keys.
*
* Encrypts triple DES using CBC block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_EncryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using CBC block mode with three keys.
*
* Decrypts triple DES using CBC block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_DecryptCbc(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_DecryptCbcNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using CBC block mode with three keys.
*
* Decrypts triple DES using CBC block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input initial vector to combine with the first plaintext block.
* The iv does not need to be secret, but it must be unpredictable.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_DecryptCbcNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCBC; /* AAI = 10h */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using CFB block mode with three keys.
*
* Encrypts triple DES using CFB block mode with three keys.
*
* param base CAAM peripheral base address
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and ouput data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_EncryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_EncryptCfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using CFB block mode with three keys.
*
* Encrypts triple DES using CFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and ouput data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_EncryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using CFB block mode with three keys.
*
* Decrypts triple DES using CFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_DecryptCfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_DecryptCfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using CFB block mode with three keys.
*
* Decrypts triple DES using CFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input data in bytes
* param iv Input initial block.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_DecryptCfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeCFB; /* AAI = 30h = CFB */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Encrypts triple DES using OFB block mode with three keys.
*
* Encrypts triple DES using OFB block mode with three keys.
*
* param base CAAM peripheral base address
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_EncryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_EncryptOfbNonBlocking(base, handle, descBuf, plaintext, ciphertext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Encrypts triple DES using OFB block mode with three keys.
*
* Encrypts triple DES using OFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param plaintext Input plaintext to encrypt
* param[out] ciphertext Output ciphertext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_EncryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)plaintext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
descriptor[14] |= 1u; /* add ENC bit to specify Encrypt OPERATION */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* brief Decrypts triple DES using OFB block mode with three keys.
*
* Decrypts triple DES using OFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from encrypt/decrypt operation
*/
status_t CAAM_DES3_DecryptOfb(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
status_t status;
caam_desc_cipher_des_t descBuf;
do
{
status =
CAAM_DES3_DecryptOfbNonBlocking(base, handle, descBuf, ciphertext, plaintext, size, iv, key1, key2, key3);
} while (status == kStatus_CAAM_Again);
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Decrypts triple DES using OFB block mode with three keys.
*
* Decrypts triple DES using OFB block mode with three keys.
*
* param base CAAM peripheral base address
* param handle Handle used for this request. Specifies jobRing.
* param[out] descriptor memory for CAAM commands
* param ciphertext Input ciphertext to decrypt
* param[out] plaintext Output plaintext
* param size Size of input and output data in bytes
* param iv Input unique input vector. The OFB mode requires that the IV be unique
* for each execution of the mode under the given key.
* param key1 First input key for key bundle
* param key2 Second input key for key bundle
* param key3 Third input key for key bundle
* return Status from descriptor push
*/
status_t CAAM_DES3_DecryptOfbNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_cipher_des_t descriptor,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[CAAM_DES_IV_SIZE],
const uint8_t key1[CAAM_DES_KEY_SIZE],
const uint8_t key2[CAAM_DES_KEY_SIZE],
const uint8_t key3[CAAM_DES_KEY_SIZE])
{
uint32_t descriptorSize = ARRAY_SIZE(templateCipherDes);
/* DES do not support EXTENDED lenght in FIFO LOAD/STORE command.
* Data lenght limit is 2^16 bytes = 65 536 bytes.
* Note: You can still call several times instead
*/
if (size > 0xFFFFUL)
{
return kStatus_CAAM_DataOverflow;
}
(void)caam_memcpy(descriptor, templateCipherDes, sizeof(templateCipherDes));
descriptor[0] |= (descriptorSize & DESC_SIZE_MASK);
descriptor[1] |= 3U * CAAM_DES_KEY_SIZE;
(void)caam_memcpy(&descriptor[2], (const uint32_t *)(uintptr_t)key1, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[4], (const uint32_t *)(uintptr_t)key2, CAAM_DES_KEY_SIZE);
(void)caam_memcpy(&descriptor[6], (const uint32_t *)(uintptr_t)key3, CAAM_DES_KEY_SIZE);
descriptor[9] = ADD_OFFSET((uint32_t)iv);
descriptor[10] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[11] = ADD_OFFSET((uint32_t)ciphertext);
descriptor[12] |= (size & DESC_PAYLOAD_SIZE_MASK);
descriptor[13] = ADD_OFFSET((uint32_t)plaintext);
descriptor[14] |= (uint32_t)kCAAM_ModeOFB; /* AAI = 40h = OFB */
descriptor[14] |= 0x10000U; /* 3DES */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
#define DESC_HEADER 0xB0800000u
#define DESC_HEADER_ADD_DESCLEN(cmdWord, len) ((cmdWord) |= (len))
#define DESC_FLOADA 0x220C0000u
#define DESC_FLOADB 0x220D0000u
#define DESC_FLOADN 0x22080000u
#define DESC_KEY_E_ 0x02010000u
#define DESC_STOREB 0x600D0000u
#define DESC_STORE_ 0x52110004u
#define DESC_ADD_LEN(cmdWord, len) ((cmdWord) |= (len))
#define DESC_SET_ADDR(cmdWord, addr) ((cmdWord) = ADD_OFFSET((uint32_t)(addr)))
#define DESC_FLOADA0 0x22000000u
#define DESC_FLOADA1 0x22010000u
#define DESC_FLOADA3 0x22030000u
#define DESC_FLOADB0 0x22040000u
#define DESC_FLOADB1 0x22050000u
#define DESC_FLOADB2 0x22060000u
#define DESC_FLOADB3 0x22070000u
#define DESC_STOREB1 0x60050000u
#define DESC_STOREB2 0x60060000u
static const uint32_t templateArithmeticPKHA[] = {
/* 00 */ DESC_HEADER, /* HEADER */
/* 01 */ 0x81800001u, /* OPERATION: PKHA OPERATION: clear memory function. */
/* 02 */ 0xA2000001u, /* JMP always to next command. Done checkpoint (wait for Class 1 Done) */
/* 03 */ DESC_FLOADN, /* FIFO LOAD PKHA N */
/* 04 */ 0x00000000u, /* place: N address */
/* 05 */ DESC_FLOADA, /* FIFO LOAD PKHA A */
/* 06 */ 0x00000000u, /* place: A address */
/* 07 */ DESC_FLOADB, /* FIFO LOAD PKHA B */
/* 08 */ 0x00000000u, /* place: B address */
/* 09 */ DESC_KEY_E_, /* KEY PKHA E */
/* 10 */ 0x00000000u, /* place: E address */
/* 11 */ 0x81800000u, /* OPERATION: PKHA OPERATION: Arithmetic Functions. */
/* 12 */ DESC_STOREB, /* FIFO STORE PKHA B */
/* 13 */ 0x00000000u, /* place: result address */
};
/*! @brief PKHA functions - arithmetic, copy/clear memory. */
typedef enum _caam_pkha_func_t
{
kCAAM_PKHA_ClearMem = 1U,
kCAAM_PKHA_ArithModAdd = 2U, /*!< (A + B) mod N */
kCAAM_PKHA_ArithModSub1 = 3U, /*!< (A - B) mod N */
kCAAM_PKHA_ArithModSub2 = 4U, /*!< (B - A) mod N */
kCAAM_PKHA_ArithModMul = 5U, /*!< (A x B) mod N */
kCAAM_PKHA_ArithModExp = 6U, /*!< (A^E) mod N */
kCAAM_PKHA_ArithModRed = 7U, /*!< (A) mod N */
kCAAM_PKHA_ArithModInv = 8U, /*!< (A^-1) mod N */
kCAAM_PKHA_ArithEccAdd = 9U, /*!< (P1 + P2) */
kCAAM_PKHA_ArithEccDouble = 10U, /*!< (P2 + P2) */
kCAAM_PKHA_ArithEccMul = 11U, /*!< (E x P1) */
kCAAM_PKHA_ArithModR2 = 12U, /*!< (R^2 mod N) */
kCAAM_PKHA_ArithGcd = 14U, /*!< GCD (A, N) */
kCAAM_PKHA_ArithPrimalityTest = 15U, /*!< Miller-Rabin */
kCAAM_PKHA_CopyMemSizeN = 16U,
kCAAM_PKHA_CopyMemSizeSrc = 17U,
} caam_pkha_func_t;
/*! @brief Register areas for PKHA clear memory operations. */
typedef enum _caam_pkha_reg_area
{
kCAAM_PKHA_RegA = 8U,
kCAAM_PKHA_RegB = 4U,
kCAAM_PKHA_RegE = 2U,
kCAAM_PKHA_RegN = 1U,
kCAAM_PKHA_RegAll = kCAAM_PKHA_RegA | kCAAM_PKHA_RegB | kCAAM_PKHA_RegE | kCAAM_PKHA_RegN,
} caam_pkha_reg_area_t;
/*! @brief Quadrant areas for 4096-bit registers for PKHA copy memory
* operations. */
typedef enum _caam_pkha_quad_area_t
{
kCAAM_PKHA_Quad0 = 0U,
kCAAM_PKHA_Quad1 = 1U,
kCAAM_PKHA_Quad2 = 2U,
kCAAM_PKHA_Quad3 = 3U,
} caam_pkha_quad_area_t;
/*! @brief User-supplied (R^2 mod N) input or CAAM should calculate. */
typedef enum _caam_pkha_r2_t
{
kCAAM_PKHA_CalcR2 = 0U, /*!< Calculate (R^2 mod N) */
kCAAM_PKHA_InputR2 = 1U /*!< (R^2 mod N) supplied as input */
} caam_pkha_r2_t;
/*! @brief CAAM PKHA parameters */
typedef struct _caam_pkha_mode_params_t
{
caam_pkha_func_t func;
caam_pkha_f2m_t arithType;
caam_pkha_montgomery_form_t montFormIn;
caam_pkha_montgomery_form_t montFormOut;
caam_pkha_reg_area_t srcReg;
caam_pkha_quad_area_t srcQuad;
caam_pkha_reg_area_t dstReg;
caam_pkha_quad_area_t dstQuad;
caam_pkha_timing_t equalTime;
caam_pkha_r2_t r2modn;
} caam_pkha_mode_params_t;
static void caam_pkha_default_parms(caam_pkha_mode_params_t *params)
{
params->func = (caam_pkha_func_t)0;
params->arithType = kCAAM_PKHA_IntegerArith;
params->montFormIn = kCAAM_PKHA_NormalValue;
params->montFormOut = kCAAM_PKHA_NormalValue;
params->srcReg = kCAAM_PKHA_RegAll;
params->srcQuad = kCAAM_PKHA_Quad0;
params->dstReg = kCAAM_PKHA_RegAll;
params->dstQuad = kCAAM_PKHA_Quad0;
params->equalTime = kCAAM_PKHA_NoTimingEqualized;
params->r2modn = kCAAM_PKHA_CalcR2;
}
static void caam_pkha_mode_set_src_reg_copy(uint32_t *outMode, caam_pkha_reg_area_t reg)
{
int i = 0;
do
{
reg = (caam_pkha_reg_area_t)(uint32_t)(((uint32_t)reg) >> 1u);
i++;
} while (0U != (uint32_t)reg);
i = 4 - i;
/* Source register must not be E. */
if (i != 2)
{
*outMode |= ((uint32_t)i << 17u);
}
}
static void caam_pkha_mode_set_dst_reg_copy(uint32_t *outMode, caam_pkha_reg_area_t reg)
{
int i = 0;
do
{
reg = (caam_pkha_reg_area_t)(uint32_t)(((uint32_t)reg) >> 1u);
i++;
} while (0U != (uint32_t)reg);
i = 4 - i;
*outMode |= ((uint32_t)i << 10u);
}
static void caam_pkha_mode_set_src_seg_copy(uint32_t *outMode, const caam_pkha_quad_area_t quad)
{
*outMode |= ((uint32_t)quad << 8u);
}
static void caam_pkha_mode_set_dst_seg_copy(uint32_t *outMode, const caam_pkha_quad_area_t quad)
{
*outMode |= ((uint32_t)quad << 6u);
}
static uint32_t caam_pkha_get_mode(const caam_pkha_mode_params_t *params)
{
uint32_t modeReg;
/* Set the PKHA algorithm and the appropriate function. */
modeReg = (uint32_t)params->func;
if ((params->func == kCAAM_PKHA_CopyMemSizeN) || (params->func == kCAAM_PKHA_CopyMemSizeSrc))
{
/* Set source and destination registers and quads. */
caam_pkha_mode_set_src_reg_copy(&modeReg, params->srcReg);
caam_pkha_mode_set_dst_reg_copy(&modeReg, params->dstReg);
caam_pkha_mode_set_src_seg_copy(&modeReg, params->srcQuad);
caam_pkha_mode_set_dst_seg_copy(&modeReg, params->dstQuad);
}
else
{
/* Set the arithmetic type - integer or binary polynomial (F2m). */
modeReg |= ((uint32_t)params->arithType << 17u);
/* Set to use Montgomery form of inputs and/or outputs. */
modeReg |= ((uint32_t)params->montFormIn << 19u);
modeReg |= ((uint32_t)params->montFormOut << 18u);
/* Set to use pre-computed R2modN */
modeReg |= ((uint32_t)params->r2modn << 16u);
}
modeReg |= ((uint32_t)params->equalTime << 10u);
return modeReg;
}
enum _caam_user_specified_status
{
/* the value below is used as LOCAL_OFFSET field for the JMP/HALT command, in which we test the PRM flag */
kCAAM_UserSpecifiedStatus_NotPrime = 0x55u,
/* the value below is returned in Job termination status word in case PrimalityTest result is NotPrime.
*/
kCAAM_StatusNotPrime = 0x30000000u | kCAAM_UserSpecifiedStatus_NotPrime,
};
static status_t caam_pkha_algorithm_operation_command(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
const uint8_t *E,
size_t sizeE,
caam_pkha_mode_params_t *params,
uint8_t *result,
size_t *resultSize)
{
uint32_t clearMask = 0;
uint32_t descriptorSize = ARRAY_SIZE(templateArithmeticPKHA);
BUILD_ASSURE(sizeof(caam_desc_pkha_t) >= sizeof(templateArithmeticPKHA), caam_desc_pkha_t_size_too_low);
/* initialize descriptor from template */
(void)caam_memcpy(descriptor, templateArithmeticPKHA, sizeof(templateArithmeticPKHA));
/* add descriptor lenght in bytes to HEADER descriptor command */
DESC_HEADER_ADD_DESCLEN(descriptor[0], descriptorSize);
/* input data */
if ((N != NULL) && (sizeN != 0U))
{
clearMask |= (uint32_t)1u << 16; /* add Nram bit to PKHA_MODE_MS */
DESC_ADD_LEN(descriptor[3], sizeN);
DESC_SET_ADDR(descriptor[4], N);
}
else
{
/* jump to descriptor[4] */
descriptor[3] = DESC_JUMP_2; /* jump to current index + 2 (=4) */
}
if ((A != NULL) && (sizeA != 0U))
{
clearMask |= (uint32_t)1u << 19; /* add Aram bit to PKHA_MODE_MS */
DESC_ADD_LEN(descriptor[5], sizeA);
DESC_SET_ADDR(descriptor[6], A);
}
else
{
/* jump to descriptor[6] */
descriptor[5] = DESC_JUMP_2; /* jump to current index + 2 (=6) */
}
if ((B != NULL) && (sizeB != 0U))
{
clearMask |= (uint32_t)1u << 18; /* add Bram bit to PKHA_MODE_MS */
DESC_ADD_LEN(descriptor[7], sizeB);
DESC_SET_ADDR(descriptor[8], B);
}
else
{
/* jump to descriptor[8] */
descriptor[7] = DESC_JUMP_2; /* jump to current index + 2 (=8) */
}
if ((E != NULL) && (sizeE != 0U))
{
clearMask |= (uint32_t)1u << 17; /* add Eram bit to PKHA_MODE_MS */
DESC_ADD_LEN(descriptor[9], sizeE);
DESC_SET_ADDR(descriptor[10], E);
}
else
{
/* jump to descriptor[11] */
descriptor[9] = DESC_JUMP_2; /* jump to current index + 2 (=11) */
}
/* add registers to clear into the pkha clear memory function */
descriptor[1] |= clearMask;
/* add functions details for pkha arithmetic functions */
descriptor[11] |= caam_pkha_get_mode(params);
/* RESULTS */
if ((result != NULL) && (resultSize != NULL))
{
/* We don't know the size of result at this point. But, we know it will be <= modulus. */
DESC_ADD_LEN(descriptor[12], sizeN);
DESC_SET_ADDR(descriptor[13], result);
*resultSize = sizeN;
}
else
{
/* special case for Primality Test - instead of reading result, check PRM bit and return user-specified status
* if it is set. */
/* conditional HALT, return user-specificed status if condition evaluated is true. this condition checks if (PRM
* is false). */
descriptor[12] = 0xA0C12000u;
descriptor[12] |= (uint32_t)kCAAM_UserSpecifiedStatus_NotPrime;
descriptor[13] = DESC_HALT; /* always halt with status 0x0 (normal) */
}
/* schedule the job */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
static const uint32_t templateArithmeticECC[] = {
/* 00 */ DESC_HEADER, /* HEADER */
/* 01 */ 0x818F0001u, /* OPERATION: PKHA OPERATION: clear memory function. Clear ABNE. */
/* 02 */ 0xA2000001u, /* JMP always to next command. Done checkpoint (wait for Class 1 Done) */
/* 03 */ DESC_FLOADN, /* FIFO LOAD PKHA N */
/* 04 */ 0x00000000u, /* place: N address */
/* 05 */ DESC_FLOADA0, /* FIFO LOAD A0 */
/* 06 */ 0x00000000u, /* place: A0 address */
/* 07 */ DESC_FLOADA1, /* FIFO LOAD A1 */
/* 08 */ 0x00000000u, /* place: A1 address */
/* 09 */ DESC_FLOADA3, /* FIFO LOAD PKHA A3 */
/* 10 */ 0x00000000u, /* place: A3 address */
/* 11 */ DESC_FLOADB0, /* FIFO LOAD PKHA B0 */
/* 12 */ 0x00000000u, /* place: B0 address */
/* 13 */ DESC_FLOADB1, /* FIFO LOAD PKHA B1 */
/* 14 */ 0x00000000u, /* place: B1 address */
/* 15 */ DESC_FLOADB2, /* FIFO LOAD PKHA B2 */
/* 16 */ 0x00000000u, /* place: B2 address */
/* 17 */ DESC_FLOADB3, /* FIFO LOAD PKHA B3 */
/* 18 */ 0x00000000u, /* place: B3 address */
/* 19 */ DESC_KEY_E_, /* KEY PKHA E */
/* 20 */ 0x00000000u, /* place: E address */
/* 21 */ 0x81800000u, /* OPERATION: PKHA OPERATION: Arithmetic Functions. */
/* 22 */ DESC_STOREB1, /* FIFO STORE PKHA B1 */
/* 23 */ 0x00000000u, /* place: result X address */
/* 24 */ DESC_STOREB2, /* FIFO STORE PKHA B2 */
/* 25 */ 0x00000000u, /* place: result Y address */
};
static status_t caam_pkha_ecc_algorithm_operation_command(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *A,
const caam_pkha_ecc_point_t *B,
const uint8_t *E,
size_t sizeE,
const uint8_t *N,
const uint8_t *R2modN_B1,
const uint8_t *R2modN_B3,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_ecc_point_t *result,
caam_pkha_mode_params_t *params)
{
uint32_t descriptorSize = ARRAY_SIZE(templateArithmeticECC);
BUILD_ASSURE(sizeof(caam_desc_pkha_ecc_t) >= sizeof(templateArithmeticECC), caam_desc_pkha_ecc_t_size_too_low);
/* initialize descriptor from template */
(void)caam_memcpy(descriptor, templateArithmeticECC, sizeof(templateArithmeticECC));
/* add descriptor lenght in bytes to HEADER descriptor command */
DESC_HEADER_ADD_DESCLEN(descriptor[0], descriptorSize);
/* N = modulus */
DESC_ADD_LEN(descriptor[3], size);
DESC_SET_ADDR(descriptor[4], N);
/* [A0, A1] first point in affine coordinates */
if (A != NULL)
{
DESC_ADD_LEN(descriptor[5], size);
DESC_SET_ADDR(descriptor[6], A->X);
DESC_ADD_LEN(descriptor[7], size);
DESC_SET_ADDR(descriptor[8], A->Y);
}
else
{
/* jump to descriptor[9] */
descriptor[5] = DESC_JUMP_4; /* jump to current index + 4 (=9) */
}
/* aCurveParam */
DESC_ADD_LEN(descriptor[9], size);
DESC_SET_ADDR(descriptor[10], aCurveParam);
/* bCurveParam */
DESC_ADD_LEN(descriptor[11], size);
DESC_SET_ADDR(descriptor[12], bCurveParam);
/* [B1, B2] second point in affine coordinates */
if (B != NULL)
{
DESC_ADD_LEN(descriptor[13], size);
DESC_SET_ADDR(descriptor[14], B->X);
DESC_ADD_LEN(descriptor[15], size);
DESC_SET_ADDR(descriptor[16], B->Y);
}
else if (R2modN_B1 != NULL) /* R2modN for ECC_MOD_MUL goes to B1 */
{
DESC_ADD_LEN(descriptor[13], size);
DESC_SET_ADDR(descriptor[14], R2modN_B1);
/* jump to descriptor[17] */
descriptor[15] = DESC_JUMP_2; /* jump to current index + 2 (=17) */
}
else
{
/* jump to descriptor[17] */
descriptor[13] = DESC_JUMP_4; /* jump to current index + 4 (=17) */
}
if (R2modN_B3 != NULL)
{
DESC_ADD_LEN(descriptor[17], size);
DESC_SET_ADDR(descriptor[18], R2modN_B3);
}
else
{
/* jump to descriptor[19] */
descriptor[17] = DESC_JUMP_2; /* jump to current index + 2 (=19) */
}
if ((E != NULL) && (sizeE != 0U))
{
DESC_ADD_LEN(descriptor[19], sizeE);
DESC_SET_ADDR(descriptor[20], E);
}
else
{
/* jump to descriptor[21] */
descriptor[19] = DESC_JUMP_2; /* jump to current index + 2 (=21) */
}
/* add functions details for pkha arithmetic functions */
descriptor[21] |= caam_pkha_get_mode(params);
/* store [B1, B2] result point */
DESC_ADD_LEN(descriptor[22], size);
DESC_SET_ADDR(descriptor[23], result->X);
DESC_ADD_LEN(descriptor[24], size);
DESC_SET_ADDR(descriptor[25], result->Y);
/* schedule the job */
return caam_in_job_ring_add(base, handle->jobRing, &descriptor[0]);
}
/*!
* addtogroup caam_driver_pkha
* {
*/
int CAAM_PKHA_CompareBigNum(const uint8_t *a, size_t sizeA, const uint8_t *b, size_t sizeB)
{
int retval = 0;
/* skip zero msbytes - integer a */
while ((sizeA != 0U) && (0u == a[0]))
{
sizeA--;
a++;
}
/* skip zero msbytes - integer b */
while ((sizeB != 0U) && (0u == b[0]))
{
sizeB--;
b++;
}
if (sizeA > sizeB)
{
retval = 1;
} /* int a has more non-zero bytes, thus it is bigger than b */
else if (sizeA < sizeB)
{
retval = -1;
} /* int b has more non-zero bytes, thus it is bigger than a */
else if (sizeA == 0U)
{
retval = 0;
} /* sizeA = sizeB = 0 */
else
{
int n;
uint32_t equal;
int val;
n = (int)sizeA - 1;
equal = 0;
/* compare all bytes - does not leak (in time domain) how many bytes equal */
/* move from lsbyte to msbyte */
while (n >= 0)
{
uint32_t chXor = ((uint32_t)a[n] ^ (uint32_t)b[n]);
equal |= chXor;
val = (int)chXor * ((int)a[n] - (int)b[n]);
if (val < 0)
{
retval = -1;
}
if (val > 0)
{
retval = 1;
}
if (val == 0)
{
val = 1;
}
if (val != 0)
{
n--;
}
}
if (0U == equal)
{
retval = 0;
}
}
return (retval);
}
status_t CAAM_PKHA_ModAddNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType);
status_t CAAM_PKHA_ModAddNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_pkha_mode_params_t params;
status_t status;
if (arithType == kCAAM_PKHA_IntegerArith)
{
if (CAAM_PKHA_CompareBigNum(A, sizeA, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
if (CAAM_PKHA_CompareBigNum(B, sizeB, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
}
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModAdd;
params.arithType = arithType;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, B, sizeB, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular addition - (A + B) mod N.
*
* This function performs modular addition of (A + B) mod N, with either
* integer or binary polynomial (F2m) inputs. In the F2m form, this function is
* equivalent to a bitwise XOR and it is functionally the same as subtraction.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param B second addend (integer or binary polynomial)
* param sizeB Size of B in bytes
* param N modulus.
* param sizeN Size of N in bytes.
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_ModAdd(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModAddNonBlocking(base, handle, descBuf, A, sizeA, B, sizeB, N, sizeN, result, resultSize,
arithType);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModSub1NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize);
status_t CAAM_PKHA_ModSub1NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize)
{
caam_pkha_mode_params_t params;
status_t status;
if (CAAM_PKHA_CompareBigNum(A, sizeA, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
if (CAAM_PKHA_CompareBigNum(B, sizeB, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModSub1;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, B, sizeB, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular subtraction - (A - B) mod N.
*
* This function performs modular subtraction of (A - B) mod N with
* integer inputs.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param B second addend (integer or binary polynomial)
* param sizeB Size of B in bytes
* param N modulus
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* return Operation status.
*/
status_t CAAM_PKHA_ModSub1(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModSub1NonBlocking(base, handle, descBuf, A, sizeA, B, sizeB, N, sizeN, result, resultSize);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModSub2NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize);
status_t CAAM_PKHA_ModSub2NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModSub2;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, B, sizeB, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular subtraction - (B - A) mod N.
*
* This function performs modular subtraction of (B - A) mod N,
* with integer inputs.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param B second addend (integer or binary polynomial)
* param sizeB Size of B in bytes
* param N modulus
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* return Operation status.
*/
status_t CAAM_PKHA_ModSub2(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModSub2NonBlocking(base, handle, descBuf, A, sizeA, B, sizeB, N, sizeN, result, resultSize);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModMulNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_montgomery_form_t montOut,
caam_pkha_timing_t equalTime);
status_t CAAM_PKHA_ModMulNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_montgomery_form_t montOut,
caam_pkha_timing_t equalTime)
{
caam_pkha_mode_params_t params;
status_t status;
if (arithType == kCAAM_PKHA_IntegerArith)
{
if (CAAM_PKHA_CompareBigNum(A, sizeA, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
if (CAAM_PKHA_CompareBigNum(B, sizeB, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
}
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModMul;
params.arithType = arithType;
params.montFormIn = montIn;
params.montFormOut = montOut;
params.equalTime = equalTime;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, B, sizeB, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular multiplication - (A x B) mod N.
*
* This function performs modular multiplication with either integer or
* binary polynomial (F2m) inputs. It can optionally specify whether inputs
* and/or outputs will be in Montgomery form or not.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param B second addend (integer or binary polynomial)
* param sizeB Size of B in bytes
* param N modulus.
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* param montIn Format of inputs
* param montOut Format of output
* param equalTime Run the function time equalized or no timing equalization. This argument is ignored for F2m modular
* multiplication.
* return Operation status.
*/
status_t CAAM_PKHA_ModMul(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_montgomery_form_t montOut,
caam_pkha_timing_t equalTime)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModMulNonBlocking(base, handle, descBuf, A, sizeA, B, sizeB, N, sizeN, result, resultSize,
arithType, montIn, montOut, equalTime);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModR2NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType);
status_t CAAM_PKHA_ModR2NonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
status_t status;
caam_pkha_mode_params_t params;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModR2;
params.arithType = arithType;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, NULL, 0, NULL, 0, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Computes integer Montgomery factor R^2 mod N.
*
* This function computes a constant to assist in converting operands
* into the Montgomery residue system representation.
*
* param base CAAM peripheral base address
* param N modulus
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_ModR2(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModR2NonBlocking(base, handle, descBuf, N, sizeN, result, resultSize, arithType);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModExpNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
const uint8_t *E,
size_t sizeE,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_timing_t equalTime);
status_t CAAM_PKHA_ModExpNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
const uint8_t *E,
size_t sizeE,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_timing_t equalTime)
{
caam_pkha_mode_params_t params;
status_t status;
if (arithType == kCAAM_PKHA_IntegerArith)
{
if (CAAM_PKHA_CompareBigNum(A, sizeA, N, sizeN) >= 0)
{
return (kStatus_InvalidArgument);
}
}
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModExp;
params.arithType = arithType;
params.montFormIn = montIn;
params.equalTime = equalTime;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, NULL, 0, N, sizeN, E, sizeE,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular exponentiation - (A^E) mod N.
*
* This function performs modular exponentiation with either integer or
* binary polynomial (F2m) inputs.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param N modulus
* param sizeN Size of N in bytes
* param E exponent
* param sizeE Size of E in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param montIn Format of A input (normal or Montgomery)
* param arithType Type of arithmetic to perform (integer or F2m)
* param equalTime Run the function time equalized or no timing equalization.
* return Operation status.
*/
status_t CAAM_PKHA_ModExp(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
const uint8_t *E,
size_t sizeE,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType,
caam_pkha_montgomery_form_t montIn,
caam_pkha_timing_t equalTime)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModExpNonBlocking(base, handle, descBuf, A, sizeA, N, sizeN, E, sizeE, result, resultSize,
arithType, montIn, equalTime);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModRedNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType);
status_t CAAM_PKHA_ModRedNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModRed;
params.arithType = arithType;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, NULL, 0, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular reduction - (A) mod N.
*
* This function performs modular reduction with either integer or
* binary polynomial (F2m) inputs.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param N modulus
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_ModRed(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModRedNonBlocking(base, handle, descBuf, A, sizeA, N, sizeN, result, resultSize, arithType);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModInvNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType);
status_t CAAM_PKHA_ModInvNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithModInv;
params.arithType = arithType;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, NULL, 0, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Performs modular inversion - (A^-1) mod N.
*
* This function performs modular inversion with either integer or
* binary polynomial (F2m) inputs.
*
* param base CAAM peripheral base address
* param A first addend (integer or binary polynomial)
* param sizeA Size of A in bytes
* param N modulus
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_ModInv(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModInvNonBlocking(base, handle, descBuf, A, sizeA, N, sizeN, result, resultSize, arithType);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ModGcdNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType);
status_t CAAM_PKHA_ModGcdNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithGcd;
params.arithType = arithType;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, NULL, 0, N, sizeN, NULL, 0,
&params, result, resultSize);
return status;
}
/*!
* brief Calculates the greatest common divisor - GCD (A, N).
*
* This function calculates the greatest common divisor of two inputs with
* either integer or binary polynomial (F2m) inputs.
*
* param base CAAM peripheral base address
* param A first value (must be smaller than or equal to N)
* param sizeA Size of A in bytes
* param N second value (must be non-zero)
* param sizeN Size of N in bytes
* param[out] result Output array to store result of operation
* param[out] resultSize Output size of operation in bytes
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_ModGcd(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *N,
size_t sizeN,
uint8_t *result,
size_t *resultSize,
caam_pkha_f2m_t arithType)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ModGcdNonBlocking(base, handle, descBuf, A, sizeA, N, sizeN, result, resultSize, arithType);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_PrimalityTestNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN);
status_t CAAM_PKHA_PrimalityTestNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_t descriptor,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithPrimalityTest;
status = caam_pkha_algorithm_operation_command(base, handle, descriptor, A, sizeA, B, sizeB, N, sizeN, NULL, 0,
&params, NULL, NULL);
return status;
}
/*!
* brief Executes Miller-Rabin primality test.
*
* This function calculates whether or not a candidate prime number is likely
* to be a prime.
*
* param base CAAM peripheral base address
* param A initial random seed
* param sizeA Size of A in bytes
* param B number of trial runs
* param sizeB Size of B in bytes
* param N candidate prime integer
* param sizeN Size of N in bytes
* param[out] res True if the value is likely prime or false otherwise
* return Operation status.
*/
status_t CAAM_PKHA_PrimalityTest(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *A,
size_t sizeA,
const uint8_t *B,
size_t sizeB,
const uint8_t *N,
size_t sizeN,
bool *res)
{
caam_desc_pkha_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_PrimalityTestNonBlocking(base, handle, descBuf, A, sizeA, B, sizeB, N, sizeN);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
status = CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
if (status == kStatus_Success)
{
/* this return code means that the candidate is believed to be prime. */
*res = true;
}
/* clear DESC INDEX field in the Job termination status word and check if it is our NotPrime user specified status
*/
else if (((uint32_t)status & 0xffff00ffu) == (uint32_t)kCAAM_StatusNotPrime)
{
/* change status to Ok to upper layer caller. this return code means that the candidate is believed to not being
* prime. */
status = kStatus_Success;
*res = false;
}
else
{
*res = false;
}
return status;
}
status_t CAAM_PKHA_ECC_PointAddNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *A,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result);
status_t CAAM_PKHA_ECC_PointAddNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *A,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithEccAdd;
params.arithType = arithType;
params.r2modn = (R2modN != NULL) ? kCAAM_PKHA_InputR2 : kCAAM_PKHA_CalcR2;
status = caam_pkha_ecc_algorithm_operation_command(base, handle, descriptor, A, B, NULL, 0, N, NULL, R2modN,
aCurveParam, bCurveParam, size, result, &params);
return status;
}
/*!
* brief Adds elliptic curve points - A + B.
*
* This function performs ECC point addition over a prime field (Fp) or binary field (F2m) using
* affine coordinates.
*
* param base CAAM peripheral base address
* param A Left-hand point
* param B Right-hand point
* param N Prime modulus of the field
* param R2modN NULL (the function computes R2modN internally) or pointer to pre-computed R2modN (obtained from
* CAAM_PKHA_ModR2() function).
* param aCurveParam A parameter from curve equation
* param bCurveParam B parameter from curve equation (constant)
* param size Size in bytes of curve points and parameters
* param arithType Type of arithmetic to perform (integer or F2m)
* param[out] result Result point
* return Operation status.
*/
status_t CAAM_PKHA_ECC_PointAdd(CAAM_Type *base,
caam_handle_t *handle,
const caam_pkha_ecc_point_t *A,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_desc_pkha_ecc_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ECC_PointAddNonBlocking(base, handle, descBuf, A, B, N, R2modN, aCurveParam, bCurveParam,
size, arithType, result);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ECC_PointDoubleNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result);
status_t CAAM_PKHA_ECC_PointDoubleNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithEccDouble;
params.arithType = arithType;
status = caam_pkha_ecc_algorithm_operation_command(base, handle, descriptor, NULL, B, NULL, 0, N, NULL, NULL,
aCurveParam, bCurveParam, size, result, &params);
return status;
}
/*!
* brief Doubles elliptic curve points - B + B.
*
* This function performs ECC point doubling over a prime field (Fp) or binary field (F2m) using
* affine coordinates.
*
* param base CAAM peripheral base address
* param B Point to double
* param N Prime modulus of the field
* param aCurveParam A parameter from curve equation
* param bCurveParam B parameter from curve equation (constant)
* param size Size in bytes of curve points and parameters
* param arithType Type of arithmetic to perform (integer or F2m)
* param[out] result Result point
* return Operation status.
*/
status_t CAAM_PKHA_ECC_PointDouble(CAAM_Type *base,
caam_handle_t *handle,
const caam_pkha_ecc_point_t *B,
const uint8_t *N,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_desc_pkha_ecc_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ECC_PointDoubleNonBlocking(base, handle, descBuf, B, N, aCurveParam, bCurveParam, size,
arithType, result);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
status_t CAAM_PKHA_ECC_PointMulNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *A,
const uint8_t *E,
size_t sizeE,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result);
status_t CAAM_PKHA_ECC_PointMulNonBlocking(CAAM_Type *base,
caam_handle_t *handle,
caam_desc_pkha_ecc_t descriptor,
const caam_pkha_ecc_point_t *A,
const uint8_t *E,
size_t sizeE,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_pkha_mode_params_t params;
status_t status;
caam_pkha_default_parms(&params);
params.func = kCAAM_PKHA_ArithEccMul;
params.equalTime = equalTime;
params.arithType = arithType;
params.r2modn = (R2modN != NULL) ? kCAAM_PKHA_InputR2 : kCAAM_PKHA_CalcR2;
status = caam_pkha_ecc_algorithm_operation_command(base, handle, descriptor, A, NULL, E, sizeE, N, R2modN, NULL,
aCurveParam, bCurveParam, size, result, &params);
return status;
}
/*!
* brief Multiplies an elliptic curve point by a scalar - E x (A0, A1).
*
* This function performs ECC point multiplication to multiply an ECC point by
* a scalar integer multiplier over a prime field (Fp) or a binary field (F2m).
*
* param base CAAM peripheral base address
* param A Point as multiplicand
* param E Scalar multiple
* param sizeE The size of E, in bytes
* param N Modulus, a prime number for the Fp field or Irreducible polynomial for F2m field.
* param R2modN NULL (the function computes R2modN internally) or pointer to pre-computed R2modN (obtained from
* CAAM_PKHA_ModR2() function).
* param aCurveParam A parameter from curve equation
* param bCurveParam B parameter from curve equation (C parameter for operation over F2m).
* param size Size in bytes of curve points and parameters
* param equalTime Run the function time equalized or no timing equalization.
* param arithType Type of arithmetic to perform (integer or F2m)
* param[out] result Result point
* return Operation status.
*/
status_t CAAM_PKHA_ECC_PointMul(CAAM_Type *base,
caam_handle_t *handle,
const caam_pkha_ecc_point_t *A,
const uint8_t *E,
size_t sizeE,
const uint8_t *N,
const uint8_t *R2modN,
const uint8_t *aCurveParam,
const uint8_t *bCurveParam,
size_t size,
caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType,
caam_pkha_ecc_point_t *result)
{
caam_desc_pkha_ecc_t descBuf;
status_t status;
do
{
status = CAAM_PKHA_ECC_PointMulNonBlocking(base, handle, descBuf, A, E, sizeE, N, R2modN, aCurveParam,
bCurveParam, size, equalTime, arithType, result);
} while (status == kStatus_CAAM_Again);
if (status != kStatus_Success)
{
return status;
}
return CAAM_Wait(base, handle, descBuf, kCAAM_Blocking);
}
/*!
* brief Converts from integer to Montgomery format.
*
* This function computes R2 mod N and optionally converts A or B into Montgomery format of A or B.
*
* param base CAAM peripheral base address
* param N modulus
* param sizeN size of N in bytes
* param[in,out] A The first input in non-Montgomery format. Output Montgomery format of the first input.
* param[in,out] sizeA pointer to size variable. On input it holds size of input A in bytes. On output it holds size of
* Montgomery format of A in bytes.
* param[in,out] B Second input in non-Montgomery format. Output Montgomery format of the second input.
* param[in,out] sizeB pointer to size variable. On input it holds size of input B in bytes. On output it holds size of
* Montgomery format of B in bytes.
* param[out] R2 Output Montgomery factor R2 mod N.
* param[out] sizeR2 pointer to size variable. On output it holds size of Montgomery factor R2 mod N in bytes.
* param equalTime Run the function time equalized or no timing equalization.
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_NormalToMontgomery(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *N,
size_t sizeN,
uint8_t *A,
size_t *sizeA,
uint8_t *B,
size_t *sizeB,
uint8_t *R2,
size_t *sizeR2,
caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType)
{
status_t status;
/* need to convert our Integer inputs into Montgomery format */
if ((N != NULL) && (sizeN != 0U) && (R2 != NULL) && (sizeR2 != NULL))
{
/* 1. R2 = MOD_R2(N) */
status = CAAM_PKHA_ModR2(base, handle, N, sizeN, R2, sizeR2, arithType);
if (status != kStatus_Success)
{
return status;
}
/* 2. A(Montgomery) = MOD_MUL_IM_OM(A, R2, N) */
if ((A != NULL) && (sizeA != NULL))
{
status = CAAM_PKHA_ModMul(base, handle, A, *sizeA, R2, *sizeR2, N, sizeN, A, sizeA, arithType,
kCAAM_PKHA_MontgomeryFormat, kCAAM_PKHA_MontgomeryFormat, equalTime);
if (status != kStatus_Success)
{
return status;
}
}
/* 2. B(Montgomery) = MOD_MUL_IM_OM(B, R2, N) */
if ((B != NULL) && (sizeB != NULL))
{
status = CAAM_PKHA_ModMul(base, handle, B, *sizeB, R2, *sizeR2, N, sizeN, B, sizeB, arithType,
kCAAM_PKHA_MontgomeryFormat, kCAAM_PKHA_MontgomeryFormat, equalTime);
if (status != kStatus_Success)
{
return status;
}
}
}
else
{
status = kStatus_InvalidArgument;
}
return status;
}
/*!
* brief Converts from Montgomery format to int.
*
* This function converts Montgomery format of A or B into int A or B.
*
* param base CAAM peripheral base address
* param N modulus.
* param sizeN size of N modulus in bytes.
* param[in,out] A Input first number in Montgomery format. Output is non-Montgomery format.
* param[in,out] sizeA pointer to size variable. On input it holds size of the input A in bytes. On output it holds
* size of non-Montgomery A in bytes.
* param[in,out] B Input first number in Montgomery format. Output is non-Montgomery format.
* param[in,out] sizeB pointer to size variable. On input it holds size of the input B in bytes. On output it holds
* size of non-Montgomery B in bytes.
* param equalTime Run the function time equalized or no timing equalization.
* param arithType Type of arithmetic to perform (integer or F2m)
* return Operation status.
*/
status_t CAAM_PKHA_MontgomeryToNormal(CAAM_Type *base,
caam_handle_t *handle,
const uint8_t *N,
size_t sizeN,
uint8_t *A,
size_t *sizeA,
uint8_t *B,
size_t *sizeB,
caam_pkha_timing_t equalTime,
caam_pkha_f2m_t arithType)
{
uint8_t one = 1;
status_t status = kStatus_InvalidArgument;
/* A = MOD_MUL_IM_OM(A(Montgomery), 1, N) */
if ((A != NULL) && (sizeA != NULL))
{
status = CAAM_PKHA_ModMul(base, handle, A, *sizeA, &one, sizeof(one), N, sizeN, A, sizeA, arithType,
kCAAM_PKHA_MontgomeryFormat, kCAAM_PKHA_MontgomeryFormat, equalTime);
if (kStatus_Success != status)
{
return status;
}
}
/* B = MOD_MUL_IM_OM(B(Montgomery), 1, N) */
if ((B != NULL) && (sizeB != NULL))
{
status = CAAM_PKHA_ModMul(base, handle, B, *sizeB, &one, sizeof(one), N, sizeN, B, sizeB, arithType,
kCAAM_PKHA_MontgomeryFormat, kCAAM_PKHA_MontgomeryFormat, equalTime);
if (kStatus_Success != status)
{
return status;
}
}
return status;
}