rt-thread/bsp/at91sam9260/drivers/macb.c

912 lines
23 KiB
C
Raw Normal View History

/*
* File : macb.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Develop Team
*
2013-07-21 20:01:24 +08:00
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2011-03-18 weety first version
*/
#include <rtthread.h>
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include <at91sam926x.h>
#include "macb.h"
#define MMU_NOCACHE_ADDR(a) ((rt_uint32_t)a | (1UL<<31))
extern void mmu_clean_dcache(rt_uint32_t buffer, rt_uint32_t size);
extern void mmu_invalidate_dcache(rt_uint32_t buffer, rt_uint32_t size);
/* Cache macros - Packet buffers would be from pbuf pool which is cached */
#define EMAC_VIRT_NOCACHE(addr) (addr)
#define EMAC_CACHE_INVALIDATE(addr, size) \
mmu_invalidate_dcache((rt_uint32_t)addr, size)
#define EMAC_CACHE_WRITEBACK(addr, size) \
mmu_clean_dcache((rt_uint32_t)addr, size)
#define EMAC_CACHE_WRITEBACK_INVALIDATE(addr, size) \
mmu_clean_invalidated_dcache((rt_uint32_t)addr, size)
/* EMAC has BD's in cached memory - so need cache functions */
#define BD_CACHE_INVALIDATE(addr, size)
#define BD_CACHE_WRITEBACK(addr, size)
#define BD_CACHE_WRITEBACK_INVALIDATE(addr, size)
/* EMAC internal utility function */
rt_inline unsigned long emac_virt_to_phys(unsigned long addr)
{
return addr;
}
#define AT91SAM9260_SRAM0_VIRT_BASE (0x90000000)
#define MACB_TX_SRAM
#if defined(MACB_TX_SRAM)
#define MACB_TX_RING_SIZE 2
#define MACB_TX_BUFFER_SIZE (1536 * MACB_TX_RING_SIZE)
#define TX_RING_BYTES (sizeof(struct macb_dma_desc) * MACB_TX_RING_SIZE)
#else
#define MACB_TX_RING_SIZE 16
#define MACB_TX_BUFFER_SIZE (1536 * MACB_TX_RING_SIZE)
#endif
#define MACB_RX_BUFFER_SIZE (4096*4)
#define MACB_RX_RING_SIZE (MACB_RX_BUFFER_SIZE / 128)
#define DEF_TX_RING_PENDING (MACB_TX_RING_SIZE)
#define TX_RING_GAP(macb) \
(MACB_TX_RING_SIZE - (macb)->tx_pending)
#define TX_BUFFS_AVAIL(macb) \
(((macb)->tx_tail <= (macb)->tx_head) ? \
(macb)->tx_tail + (macb)->tx_pending - (macb)->tx_head : \
(macb)->tx_tail - (macb)->tx_head - TX_RING_GAP(macb))
#define NEXT_TX(n) (((n) + 1) & (MACB_TX_RING_SIZE - 1))
#define NEXT_RX(n) (((n) + 1) & (MACB_RX_RING_SIZE - 1))
/* minimum number of free TX descriptors before waking up TX process */
#define MACB_TX_WAKEUP_THRESH (MACB_TX_RING_SIZE / 4)
#define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \
| MACB_BIT(ISR_ROVR))
#define MACB_TX_TIMEOUT 1000
#define MACB_AUTONEG_TIMEOUT 5000000
#define MACB_LINK_TIMEOUT 500000
#define CONFIG_RMII
struct macb_dma_desc {
rt_uint32_t addr;
rt_uint32_t ctrl;
};
#define RXADDR_USED 0x00000001
#define RXADDR_WRAP 0x00000002
#define RXBUF_FRMLEN_MASK 0x00000fff
#define RXBUF_FRAME_START 0x00004000
#define RXBUF_FRAME_END 0x00008000
#define RXBUF_TYPEID_MATCH 0x00400000
#define RXBUF_ADDR4_MATCH 0x00800000
#define RXBUF_ADDR3_MATCH 0x01000000
#define RXBUF_ADDR2_MATCH 0x02000000
#define RXBUF_ADDR1_MATCH 0x04000000
#define RXBUF_BROADCAST 0x80000000
#define TXBUF_FRMLEN_MASK 0x000007ff
#define TXBUF_FRAME_END 0x00008000
#define TXBUF_NOCRC 0x00010000
#define TXBUF_EXHAUSTED 0x08000000
#define TXBUF_UNDERRUN 0x10000000
#define TXBUF_MAXRETRY 0x20000000
#define TXBUF_WRAP 0x40000000
#define TXBUF_USED 0x80000000
/* Duplex, half or full. */
#define DUPLEX_HALF 0x00
#define DUPLEX_FULL 0x01
#define MAX_ADDR_LEN 6
struct rt_macb_eth
{
/* inherit from ethernet device */
struct eth_device parent;
unsigned int regs;
unsigned int rx_tail;
unsigned int tx_head;
unsigned int tx_tail;
unsigned int rx_pending;
unsigned int tx_pending;
void *rx_buffer;
void *tx_buffer;
struct macb_dma_desc *rx_ring;
struct macb_dma_desc *tx_ring;
unsigned long rx_buffer_dma;
unsigned long tx_buffer_dma;
unsigned long rx_ring_dma;
unsigned long tx_ring_dma;
unsigned int tx_stop;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
unsigned short phy_addr;
struct rt_semaphore mdio_bus_lock;
struct rt_semaphore tx_lock;
struct rt_semaphore rx_lock;
struct rt_semaphore tx_ack;
rt_uint32_t speed;
rt_uint32_t duplex;
rt_uint32_t link;
struct rt_timer timer;
};
static struct rt_macb_eth macb_device;
static void macb_tx(struct rt_macb_eth *macb);
static void udelay(rt_uint32_t us)
{
rt_uint32_t len;
for (;us > 0; us --)
for (len = 0; len < 10; len++ );
}
static void rt_macb_isr(int irq, void *param)
{
struct rt_macb_eth *macb = (struct rt_macb_eth *)param;
rt_device_t dev = &(macb->parent.parent);
rt_uint32_t status, rsr, tsr;
status = macb_readl(macb, ISR);
while (status) {
if (status & MACB_RX_INT_FLAGS)
{
rsr = macb_readl(macb, RSR);
macb_writel(macb, RSR, rsr);
/* a frame has been received */
eth_device_ready(&(macb_device.parent));
}
if (status & (MACB_BIT(TCOMP) | MACB_BIT(ISR_TUND) |
MACB_BIT(ISR_RLE)))
{
macb_tx(macb);
}
/*
* Link change detection isn't possible with RMII, so we'll
* add that if/when we get our hands on a full-blown MII PHY.
*/
if (status & MACB_BIT(HRESP))
{
/*
* TODO: Reset the hardware, and maybe move the printk
* to a lower-priority context as well (work queue?)
*/
rt_kprintf("%s: DMA bus error: HRESP not OK\n",
dev->parent.name);
}
status = macb_readl(macb, ISR);
}
}
static int macb_mdio_write(struct rt_macb_eth *macb, rt_uint8_t reg, rt_uint16_t value)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
rt_sem_take(&macb->mdio_bus_lock, RT_WAITING_FOREVER);
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 1)
| MACB_BF(PHYA, macb->phy_addr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2)
| MACB_BF(DATA, value));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
rt_sem_release(&macb->mdio_bus_lock);
}
static int macb_mdio_read(struct rt_macb_eth *macb, rt_uint8_t reg)
{
unsigned long netctl;
unsigned long netstat;
unsigned long frame;
rt_sem_take(&macb->mdio_bus_lock, RT_WAITING_FOREVER);
netctl = macb_readl(macb, NCR);
netctl |= MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
frame = (MACB_BF(SOF, 1)
| MACB_BF(RW, 2)
| MACB_BF(PHYA, macb->phy_addr)
| MACB_BF(REGA, reg)
| MACB_BF(CODE, 2));
macb_writel(macb, MAN, frame);
do {
netstat = macb_readl(macb, NSR);
} while (!(netstat & MACB_BIT(IDLE)));
frame = macb_readl(macb, MAN);
netctl = macb_readl(macb, NCR);
netctl &= ~MACB_BIT(MPE);
macb_writel(macb, NCR, netctl);
rt_sem_release(&macb->mdio_bus_lock);
return MACB_BFEXT(DATA, frame);
}
static void macb_phy_reset(rt_device_t dev)
{
int i;
rt_uint16_t status, adv;
struct rt_macb_eth *macb = dev->user_data;;
adv = ADVERTISE_CSMA | ADVERTISE_ALL;
macb_mdio_write(macb, MII_ADVERTISE, adv);
rt_kprintf("%s: Starting autonegotiation...\n", dev->parent.name);
macb_mdio_write(macb, MII_BMCR, (BMCR_ANENABLE
| BMCR_ANRESTART));
for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++)
{
status = macb_mdio_read(macb, MII_BMSR);
if (status & BMSR_ANEGCOMPLETE)
break;
udelay(100);
}
if (status & BMSR_ANEGCOMPLETE)
rt_kprintf("%s: Autonegotiation complete\n", dev->parent.name);
else
rt_kprintf("%s: Autonegotiation timed out (status=0x%04x)\n",
dev->parent.name, status);
}
static int macb_phy_init(rt_device_t dev)
{
struct rt_macb_eth *macb = dev->user_data;
rt_uint32_t ncfgr;
rt_uint16_t phy_id, status, adv, lpa;
int media, speed, duplex;
int i;
/* Check if the PHY is up to snuff... */
phy_id = macb_mdio_read(macb, MII_PHYSID1);
if (phy_id == 0xffff)
{
rt_kprintf("%s: No PHY present\n", dev->parent.name);
return 0;
}
status = macb_mdio_read(macb, MII_BMSR);
if (!(status & BMSR_LSTATUS))
{
/* Try to re-negotiate if we don't have link already. */
macb_phy_reset(dev);
for (i = 0; i < MACB_LINK_TIMEOUT / 100; i++)
{
status = macb_mdio_read(macb, MII_BMSR);
if (status & BMSR_LSTATUS)
break;
udelay(100);
}
}
if (!(status & BMSR_LSTATUS))
{
rt_kprintf("%s: link down (status: 0x%04x)\n",
dev->parent.name, status);
return 0;
}
else
{
adv = macb_mdio_read(macb, MII_ADVERTISE);
lpa = macb_mdio_read(macb, MII_LPA);
media = mii_nway_result(lpa & adv);
speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)
? 1 : 0);
duplex = (media & ADVERTISE_FULL) ? 1 : 0;
rt_kprintf("%s: link up, %sMbps %s-duplex (lpa: 0x%04x)\n",
dev->parent.name,
speed ? "100" : "10",
duplex ? "full" : "half",
lpa);
ncfgr = macb_readl(macb, NCFGR);
ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
if (speed)
ncfgr |= MACB_BIT(SPD);
if (duplex)
ncfgr |= MACB_BIT(FD);
macb_writel(macb, NCFGR, ncfgr);
return 1;
}
}
void macb_update_link(void *param)
{
struct rt_macb_eth *macb = (struct rt_macb_eth *)param;
rt_device_t dev = &macb->parent.parent;
int status, status_change = 0;
rt_uint32_t link;
rt_uint32_t media;
rt_uint16_t adv, lpa;
/* Do a fake read */
status = macb_mdio_read(macb, MII_BMSR);
if (status < 0)
return;
/* Read link and autonegotiation status */
status = macb_mdio_read(macb, MII_BMSR);
if (status < 0)
return;
if ((status & BMSR_LSTATUS) == 0)
link = 0;
else
link = 1;
if (link != macb->link)
{
macb->link = link;
status_change = 1;
}
if (status_change)
{
if (macb->link)
{
adv = macb_mdio_read(macb, MII_ADVERTISE);
lpa = macb_mdio_read(macb, MII_LPA);
media = mii_nway_result(lpa & adv);
macb->speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)
? 100 : 10);
macb->duplex = (media & ADVERTISE_FULL) ? 1 : 0;
rt_kprintf("%s: link up (%dMbps/%s-duplex)\n",
dev->parent.name, macb->speed,
DUPLEX_FULL == macb->duplex ? "Full":"Half");
eth_device_linkchange(&macb->parent, RT_TRUE);
}
else
{
rt_kprintf("%s: link down\n", dev->parent.name);
eth_device_linkchange(&macb->parent, RT_FALSE);
}
}
}
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_macb_init(rt_device_t dev)
{
struct rt_macb_eth *macb = dev->user_data;
unsigned long paddr;
rt_uint32_t hwaddr_bottom;
rt_uint16_t hwaddr_top;
int i;
/*
* macb_halt should have been called at some point before now,
* so we'll assume the controller is idle.
*/
/* initialize DMA descriptors */
paddr = macb->rx_buffer_dma;
for (i = 0; i < MACB_RX_RING_SIZE; i++)
{
if (i == (MACB_RX_RING_SIZE - 1))
paddr |= RXADDR_WRAP;
macb->rx_ring[i].addr = paddr;
macb->rx_ring[i].ctrl = 0;
paddr += 128;
}
paddr = macb->tx_buffer_dma;
for (i = 0; i < MACB_TX_RING_SIZE; i++)
{
macb->tx_ring[i].addr = paddr;
if (i == (MACB_TX_RING_SIZE - 1))
macb->tx_ring[i].ctrl = TXBUF_USED | TXBUF_WRAP;
else
macb->tx_ring[i].ctrl = TXBUF_USED;
paddr += 1536;
}
macb->rx_tail = macb->tx_head = macb->tx_tail = 0;
BD_CACHE_WRITEBACK_INVALIDATE(macb->rx_ring, MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc));
BD_CACHE_WRITEBACK_INVALIDATE(macb->tx_ring, MACB_TX_RING_SIZE * sizeof(struct macb_dma_desc));
macb_writel(macb, RBQP, macb->rx_ring_dma);
macb_writel(macb, TBQP, macb->tx_ring_dma);
/* set hardware address */
hwaddr_bottom = (*((rt_uint32_t *)macb->dev_addr));
macb_writel(macb, SA1B, hwaddr_bottom);
hwaddr_top = (*((rt_uint16_t *)(macb->dev_addr + 4)));
macb_writel(macb, SA1T, hwaddr_top);
/* choose RMII or MII mode. This depends on the board */
#ifdef CONFIG_RMII
macb_writel(macb, USRIO, MACB_BIT(RMII) | MACB_BIT(CLKEN));
#else
macb_writel(macb, USRIO, MACB_BIT(CLKEN));
#endif /* CONFIG_RMII */
if (!macb_phy_init(dev))
return -RT_ERROR;
/* Enable TX and RX */
macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE) | MACB_BIT(MPE));
/* Enable interrupts */
macb_writel(macb, IER, (MACB_BIT(RCOMP)
| MACB_BIT(RXUBR)
| MACB_BIT(ISR_TUND)
| MACB_BIT(ISR_RLE)
| MACB_BIT(TXERR)
| MACB_BIT(TCOMP)
| MACB_BIT(ISR_ROVR)
| MACB_BIT(HRESP)));
/* instal interrupt */
rt_hw_interrupt_install(AT91SAM9260_ID_EMAC, rt_macb_isr,
(void *)macb, "emac");
rt_hw_interrupt_umask(AT91SAM9260_ID_EMAC);
rt_timer_init(&macb->timer, "link_timer",
macb_update_link,
(void *)macb,
RT_TICK_PER_SECOND,
RT_TIMER_FLAG_PERIODIC);
rt_timer_start(&macb->timer);
return RT_EOK;
}
static rt_err_t rt_macb_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_macb_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t rt_macb_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_macb_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_macb_control(rt_device_t dev, int cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, macb_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
static void macb_tx(struct rt_macb_eth *macb)
{
unsigned int tail;
unsigned int head;
rt_uint32_t status;
status = macb_readl(macb, TSR);
macb_writel(macb, TSR, status);
/*rt_kprintf("macb_tx status = %02lx\n",
(unsigned long)status);*/
if (status & (MACB_BIT(UND) | MACB_BIT(TSR_RLE)))
{
int i;
rt_kprintf("%s: TX %s, resetting buffers\n",
macb->parent.parent.parent.name, status & MACB_BIT(UND) ?
"underrun" : "retry limit exceeded");
/* Transfer ongoing, disable transmitter, to avoid confusion */
if (status & MACB_BIT(TGO))
macb_writel(macb, NCR, macb_readl(macb, NCR) & ~MACB_BIT(TE));
head = macb->tx_head;
/*Mark all the buffer as used to avoid sending a lost buffer*/
for (i = 0; i < MACB_TX_RING_SIZE; i++)
macb->tx_ring[i].ctrl = MACB_BIT(TX_USED);
/* free transmit buffer in upper layer*/
macb->tx_head = macb->tx_tail = 0;
/* Enable the transmitter again */
if (status & MACB_BIT(TGO))
macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TE));
}
if (!(status & MACB_BIT(COMP)))
/*
* This may happen when a buffer becomes complete
* between reading the ISR and scanning the
* descriptors. Nothing to worry about.
*/
return;
head = macb->tx_head;
for (tail = macb->tx_tail; tail != head; tail = NEXT_TX(tail))
{
rt_uint32_t bufstat;
bufstat = macb->tx_ring[tail].ctrl;
if (!(bufstat & MACB_BIT(TX_USED)))
break;
}
macb->tx_tail = tail;
if ((macb->tx_stop == 1) &&
TX_BUFFS_AVAIL(macb) > MACB_TX_WAKEUP_THRESH)
rt_sem_release(&macb->tx_ack);
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_macb_tx( rt_device_t dev, struct pbuf* p)
{
unsigned long ctrl;
struct pbuf* q;
rt_uint8_t* bufptr;
rt_uint32_t mapping;
struct rt_macb_eth *macb = dev->user_data;
unsigned int tx_head = macb->tx_head;
rt_sem_take(&macb->tx_lock, RT_WAITING_FOREVER);
if (TX_BUFFS_AVAIL(macb) < 1)
{
rt_sem_release(&macb->tx_lock);
rt_kprintf("Tx Ring full!\n");
rt_kprintf("tx_head = %u, tx_tail = %u\n",
macb->tx_head, macb->tx_tail);
return -RT_ERROR;
}
macb->tx_stop = 0;
ctrl = p->tot_len & TXBUF_FRMLEN_MASK;
ctrl |= TXBUF_FRAME_END;
if (tx_head == (MACB_TX_RING_SIZE - 1))
{
ctrl |= TXBUF_WRAP;
}
#if defined(MACB_TX_SRAM)
bufptr = macb->tx_buffer + tx_head * 1536;
#else
mapping = (unsigned long)macb->tx_buffer + tx_head * 1536;
bufptr = (rt_uint8_t *)mapping;
#endif
for (q = p; q != NULL; q = q->next)
{
memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
}
#if !defined(MACB_TX_SRAM)
EMAC_CACHE_WRITEBACK(mapping, p->tot_len);
#endif
macb->tx_ring[tx_head].ctrl = ctrl;
BD_CACHE_WRITEBACK_INVALIDATE(&macb->tx_ring[tx_head], sizeof(struct macb_dma_desc));
tx_head = NEXT_TX(tx_head);
macb->tx_head = tx_head;
macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TSTART));
macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TSTART));
if (TX_BUFFS_AVAIL(macb) < 1)
{
macb->tx_stop = 1;
rt_sem_take(&macb->tx_ack, RT_WAITING_FOREVER);
}
rt_sem_release(&macb->tx_lock);
return RT_EOK;
}
static void reclaim_rx_buffers(struct rt_macb_eth *macb,
unsigned int new_tail)
{
unsigned int i;
i = macb->rx_tail;
while (i > new_tail)
{
macb->rx_ring[i].addr &= ~RXADDR_USED;
i++;
if (i > MACB_RX_RING_SIZE)
i = 0;
}
while (i < new_tail)
{
macb->rx_ring[i].addr &= ~RXADDR_USED;
i++;
}
macb->rx_tail = new_tail;
}
/* reception packet. */
struct pbuf *rt_macb_rx(rt_device_t dev)
{
struct rt_macb_eth *macb = dev->user_data;
struct pbuf* p = RT_NULL;
rt_uint32_t len;
unsigned int rx_tail = macb->rx_tail;
void *buffer;
int wrapped = 0;
rt_uint32_t status;
rt_sem_take(&macb->rx_lock, RT_WAITING_FOREVER);
for (;;)
{
if (!(macb->rx_ring[rx_tail].addr & RXADDR_USED))
break;
status = macb->rx_ring[rx_tail].ctrl;
if (status & RXBUF_FRAME_START)
{
if (rx_tail != macb->rx_tail)
reclaim_rx_buffers(macb, rx_tail);
wrapped = 0;
}
if (status & RXBUF_FRAME_END)
{
buffer = (void *)((unsigned int)macb->rx_buffer + 128 * macb->rx_tail);
len = status & RXBUF_FRMLEN_MASK;
p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
if (!p)
{
rt_kprintf("alloc pbuf failed\n");
break;
}
if (wrapped)
{
unsigned int headlen, taillen;
headlen = 128 * (MACB_RX_RING_SIZE
- macb->rx_tail);
taillen = len - headlen;
EMAC_CACHE_INVALIDATE(buffer, headlen);
EMAC_CACHE_INVALIDATE(macb->rx_buffer, taillen);
memcpy((void *)p->payload, buffer, headlen);
memcpy((void *)((unsigned int)p->payload + headlen),
macb->rx_buffer, taillen);
}
else
{
EMAC_CACHE_INVALIDATE(buffer, len);
memcpy((void *)p->payload, buffer, p->len);
}
if (++rx_tail >= MACB_RX_RING_SIZE)
rx_tail = 0;
reclaim_rx_buffers(macb, rx_tail);
break;
}
else
{
if (++rx_tail >= MACB_RX_RING_SIZE)
{
wrapped = 1;
rx_tail = 0;
}
}
}
rt_sem_release(&macb->rx_lock);
return p;
}
void macb_gpio_init()
{
/* Pins used for MII and RMII */
at91_sys_write(AT91_PIOA + PIO_PDR, (1 << 19)|(1 << 17)|(1 << 14)|(1 << 15)|(1 << 18)|(1 << 16)|(1 << 12)|(1 << 13)|(1 << 21)|(1 << 20));
at91_sys_write(AT91_PIOA + PIO_ASR, (1 << 19)|(1 << 17)|(1 << 14)|(1 << 15)|(1 << 18)|(1 << 16)|(1 << 12)|(1 << 13)|(1 << 21)|(1 << 20));
#ifndef GONFIG_RMII
at91_sys_write(AT91_PIOA + PIO_PDR, (1 << 22)|(1 << 23)|(1 << 24)|(1 << 25)|(1 << 26)|(1 << 27)|(1 << 28)|(1 << 29));
at91_sys_write(AT91_PIOA + PIO_ASR, (1 << 22)|(1 << 23)|(1 << 24)|(1 << 25)|(1 << 26)|(1 << 27)|(1 << 28)|(1 << 29));
#endif
}
rt_err_t macb_initialize()
{
struct rt_macb_eth *macb = &macb_device;
unsigned long macb_hz;
rt_uint32_t ncfgr;
#if defined(MACB_TX_SRAM)
macb->tx_ring_dma = AT91SAM9260_SRAM0_BASE;
macb->tx_ring = (struct macb_dma_desc *)AT91SAM9260_SRAM0_VIRT_BASE;
macb->tx_buffer = (char *) macb->tx_ring + TX_RING_BYTES;
macb->tx_buffer_dma = macb->tx_ring_dma + TX_RING_BYTES;
#else
macb->tx_ring = rt_malloc(MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc));
if (macb->tx_ring == RT_NULL)
goto err1;
EMAC_CACHE_INVALIDATE(macb->tx_ring, MACB_TX_RING_SIZE * sizeof(struct macb_dma_desc));
macb->tx_ring_dma = emac_virt_to_phys((unsigned long)macb->tx_ring);
macb->tx_ring = (struct macb_dma_desc *)MMU_NOCACHE_ADDR((unsigned long)macb->tx_ring);
macb->tx_buffer = rt_malloc(MACB_TX_BUFFER_SIZE);
if (macb->tx_buffer == RT_NULL)
goto err2;
macb->tx_buffer_dma = emac_virt_to_phys((unsigned long)macb->tx_buffer);
#endif
macb->rx_ring = rt_malloc(MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc));
if (macb->rx_ring == RT_NULL)
goto err3;
EMAC_CACHE_INVALIDATE(macb->rx_ring, MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc));
macb->rx_ring_dma = emac_virt_to_phys((unsigned long)macb->rx_ring);
macb->rx_ring = (struct macb_dma_desc *)MMU_NOCACHE_ADDR((unsigned long)macb->rx_ring);
macb->rx_buffer = rt_malloc(MACB_RX_BUFFER_SIZE);
if (macb->rx_buffer == RT_NULL)
goto err4;
macb->rx_buffer_dma = emac_virt_to_phys((unsigned long)macb->rx_buffer);
macb->tx_pending = DEF_TX_RING_PENDING;
macb->regs = AT91SAM9260_BASE_EMAC;
macb->phy_addr = 0x00;
/*
* Do some basic initialization so that we at least can talk
* to the PHY
*/
macb_hz = clk_get_rate(clk_get("mck"));
if (macb_hz < 20000000)
ncfgr = MACB_BF(CLK, MACB_CLK_DIV8);
else if (macb_hz < 40000000)
ncfgr = MACB_BF(CLK, MACB_CLK_DIV16);
else if (macb_hz < 80000000)
ncfgr = MACB_BF(CLK, MACB_CLK_DIV32);
else
ncfgr = MACB_BF(CLK, MACB_CLK_DIV64);
macb_writel(macb, NCFGR, ncfgr);
macb->link = 0;
return RT_EOK;
err4:
rt_free(macb->rx_ring);
macb->rx_ring = RT_NULL;
err3:
#if !defined(MACB_TX_SRAM)
rt_free(macb->tx_buffer);
macb->tx_buffer = RT_NULL;
err2:
rt_free(macb->tx_ring);
macb->tx_ring = RT_NULL;
err1:
#endif
return -RT_ENOMEM;
}
int rt_hw_macb_init(void)
{
rt_err_t ret;
at91_sys_write(AT91_PMC + AT91_PMC_PCER, 1 << AT91SAM9260_ID_EMAC); //enable macb clock
macb_gpio_init();
rt_memset(&macb_device, 0, sizeof(macb_device));
ret = macb_initialize();
if (ret != RT_EOK)
{
rt_kprintf("AT91 EMAC initialized failed\n");
return;
}
rt_sem_init(&macb_device.tx_ack, "tx_ack", 0, RT_IPC_FLAG_FIFO);
rt_sem_init(&macb_device.tx_lock, "tx_lock", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&macb_device.rx_lock, "rx_lock", 1, RT_IPC_FLAG_FIFO);
macb_device.dev_addr[0] = 0x00;
macb_device.dev_addr[1] = 0x60;
macb_device.dev_addr[2] = 0x6E;
macb_device.dev_addr[3] = 0x11;
macb_device.dev_addr[4] = 0x22;
macb_device.dev_addr[5] = 0x33;
macb_device.parent.parent.init = rt_macb_init;
macb_device.parent.parent.open = rt_macb_open;
macb_device.parent.parent.close = rt_macb_close;
macb_device.parent.parent.read = rt_macb_read;
macb_device.parent.parent.write = rt_macb_write;
macb_device.parent.parent.control = rt_macb_control;
macb_device.parent.parent.user_data = &macb_device;
macb_device.parent.eth_rx = rt_macb_rx;
macb_device.parent.eth_tx = rt_macb_tx;
rt_sem_init(&macb_device.mdio_bus_lock, "mdio_bus_lock", 1, RT_IPC_FLAG_FIFO);
eth_device_init(&(macb_device.parent), "e0");
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_macb_init);