rt-thread/bsp/allwinner/libraries/sunxi-hal/hal/source/gpio/hal_gpio.c

1102 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2019-2025 Allwinner Technology Co., Ltd. ALL rights reserved.
*
* Allwinner is a trademark of Allwinner Technology Co.,Ltd., registered in
* the the People's Republic of China and other countries.
* All Allwinner Technology Co.,Ltd. trademarks are used with permission.
*
* DISCLAIMER
* THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT.
* IF YOU NEED TO INTEGRATE THIRD PARTYS TECHNOLOGY (SONY, DTS, DOLBY, AVS OR MPEGLA, ETC.)
* IN ALLWINNERSSDK OR PRODUCTS, YOU SHALL BE SOLELY RESPONSIBLE TO OBTAIN
* ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES.
* ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS
* COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.
* YOU ARE SOLELY RESPONSIBLE FOR YOUR USAGE OF THIRD PARTYS TECHNOLOGY.
*
*
* THIS SOFTWARE IS PROVIDED BY ALLWINNER"AS IS" AND TO THE MAXIMUM EXTENT
* PERMITTED BY LAW, ALLWINNER EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION REGARDING
* THE TITLE, NON-INFRINGEMENT, ACCURACY, CONDITION, COMPLETENESS, PERFORMANCE
* OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL ALLWINNER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
/* #include <init.h> */
#include <hal_mem.h>
#include <hal_gpio.h>
#include <hal_log.h>
#include "gpio.h"
#include <sunxi_hal_common.h>
#include <interrupt.h>
static const struct gpio_desc **g_gpio_desc = NULL;
/*
* The following inlines stuffs a configuration parameter and data value
* into and out of an unsigned long argument, as used by the generic pin config
* system. We put the parameter in the lower 8 bits and the argument in the
* upper 24 bits.
*/
static inline pin_config_param_t pinconf_to_config_param(unsigned long config)
{
return (pin_config_param_t)(config & 0xffUL);
}
static inline gpio_pin_t pinconf_to_config_argument(unsigned long config)
{
return (uint32_t)((config >> 8) & 0xffffffUL);
}
static inline uint64_t pinconf_to_config_packed(pin_config_param_t param,
unsigned long argument)
{
return GPIO_CFG_PACK(param, argument);
}
/*
* The sunXi PIO registers are organized as is:
* 0x00 - 0x0c Muxing values.
* 8 pins per register, each pin having a 4bits value
* 0x10 Pin values
* 32 bits per register, each pin corresponding to one bit
* 0x14 - 0x18 Drive level
* 16 pins per register, each pin having a 2bits value
* 0x1c - 0x20 Pull-Up values
* 16 pins per register, each pin having a 2bits value
*
* This is for the first bank. Each bank will have the same layout,
* with an offset being a multiple of 0x24.
*
* The following functions calculate from the pin number the register
* and the bit offset that we should access.
*/
static inline uint32_t gpio_mux_reg(gpio_pin_t pin)
{
pin %= BANK_BOUNDARY;
uint32_t bank = pin / PINS_PER_BANK;
uint32_t offset = bank * BANK_MEM_SIZE;
offset += MUX_REGS_OFFSET;
offset += pin % PINS_PER_BANK / MUX_PINS_PER_REG * 0x04;
return round_down(offset, 4);
}
static inline uint32_t gpio_mux_offset(gpio_pin_t pin)
{
gpio_pin_t pin_num = pin % MUX_PINS_PER_REG;
return pin_num * MUX_PINS_BITS;
}
static inline uint32_t gpio_data_reg(gpio_pin_t pin)
{
pin %= BANK_BOUNDARY;
uint32_t bank = pin / PINS_PER_BANK;
uint32_t offset = bank * BANK_MEM_SIZE;
offset += DATA_REGS_OFFSET;
offset += pin % PINS_PER_BANK / DATA_PINS_PER_REG * 0x04;
return round_down(offset, 4);
}
static inline uint32_t gpio_data_offset(gpio_pin_t pin)
{
gpio_pin_t pin_num = pin % DATA_PINS_PER_REG;
return pin_num * DATA_PINS_BITS;
}
static inline uint32_t gpio_dlevel_reg(gpio_pin_t pin)
{
pin %= BANK_BOUNDARY;
uint32_t bank = pin / PINS_PER_BANK;
uint32_t offset = bank * BANK_MEM_SIZE;
offset += DLEVEL_REGS_OFFSET;
offset += pin % PINS_PER_BANK / DLEVEL_PINS_PER_REG * 0x04;
return round_down(offset, 4);
}
static inline uint32_t gpio_dlevel_offset(gpio_pin_t pin)
{
gpio_pin_t pin_num = pin % DLEVEL_PINS_PER_REG;
return pin_num * DLEVEL_PINS_BITS;
}
static inline uint32_t gpio_pull_reg(gpio_pin_t pin)
{
pin %= BANK_BOUNDARY;
uint32_t bank = pin / PINS_PER_BANK;
uint32_t offset = bank * BANK_MEM_SIZE;
offset += PULL_REGS_OFFSET;
offset += pin % PINS_PER_BANK / PULL_PINS_PER_REG * 0x04;
return round_down(offset, 4);
}
static inline uint32_t gpio_pull_offset(gpio_pin_t pin)
{
gpio_pin_t pin_num = pin % PULL_PINS_PER_REG;
return pin_num * PULL_PINS_BITS;
}
static inline uint32_t gpio_irq_ctrl_reg_from_bank(u8 bank, unsigned bank_base)
{
return IRQ_CTRL_REG + (bank_base + bank) * IRQ_MEM_SIZE;
}
static inline uint32_t gpio_irq_ctrl_reg(uint32_t irq, unsigned bank_base)
{
uint32_t bank = irq / IRQ_PER_BANK;
return gpio_irq_ctrl_reg_from_bank(bank, bank_base);
}
static inline uint32_t gpio_irq_ctrl_offset(uint32_t irq)
{
uint32_t offset = irq % IRQ_CTRL_IRQ_PER_REG;
return offset * IRQ_CTRL_IRQ_BITS;
}
static inline uint32_t gpio_get_pin_base_from_bank(u8 bank, unsigned bank_base)
{
return (bank_base + bank) * IRQ_MEM_SIZE;
}
static inline uint32_t gpio_irq_status_reg_from_bank(u8 bank, unsigned bank_base)
{
return IRQ_STATUS_REG + (bank_base + bank) * IRQ_MEM_SIZE;
}
static inline uint32_t gpio_irq_status_reg(uint32_t irq, unsigned bank_base)
{
uint32_t bank = irq / IRQ_PER_BANK;
return gpio_irq_status_reg_from_bank(bank, bank_base);
}
static inline uint32_t gpio_irq_debounce_from_bank(u8 bank, unsigned bank_base)
{
return IRQ_DEBOUNCE_REG + (bank_base + bank) * IRQ_MEM_SIZE;
}
static inline uint32_t gpio_irq_debounce_reg(uint32_t irq, unsigned bank_base)
{
uint32_t bank = irq / IRQ_PER_BANK;
return gpio_irq_debounce_from_bank(bank, bank_base);
}
static inline uint32_t gpio_irq_status_offset(uint32_t irq)
{
uint32_t index = irq % IRQ_STATUS_IRQ_PER_REG;
return index * IRQ_STATUS_IRQ_BITS;
}
static inline uint32_t gpio_irq_cfg_reg(uint32_t irq, unsigned bank_base)
{
uint32_t bank = irq / IRQ_PER_BANK;
uint32_t reg = (irq % IRQ_PER_BANK) / IRQ_CFG_IRQ_PER_REG * 0x04;
return IRQ_CFG_REG + (bank_base + bank) * IRQ_MEM_SIZE + reg;
}
static inline uint32_t gpio_irq_cfg_offset(uint32_t irq)
{
uint32_t index = irq % IRQ_CFG_IRQ_PER_REG;
return index * IRQ_CFG_IRQ_BITS;
}
static int gpio_pconf_reg(gpio_pin_t pin, pin_config_param_t param,
uint32_t *offset, uint32_t *shift, uint32_t *mask)
{
switch (param)
{
case GPIO_TYPE_DRV:
*offset = gpio_dlevel_reg(pin);
*shift = gpio_dlevel_offset(pin);
*mask = DLEVEL_PINS_MASK;
break;
case GPIO_TYPE_PUD:
*offset = gpio_pull_reg(pin);
*shift = gpio_pull_offset(pin);
*mask = PULL_PINS_MASK;
break;
case GPIO_TYPE_DAT:
*offset = gpio_data_reg(pin);
*shift = gpio_data_offset(pin);
*mask = DATA_PINS_MASK;
break;
case GPIO_TYPE_FUNC:
*offset = gpio_mux_reg(pin);
*shift = gpio_mux_offset(pin);
*mask = MUX_PINS_MASK;
break;
default:
GPIO_ERR("Invalid mux type");
return -1;
}
return 0;
}
static uint32_t count_gpio_bank_mask(void)
{
uint32_t max_bank = (uint32_t)GPIO_MAX_BANK;
uint32_t mask = 0;
do
{
mask |= 1 << (max_bank / PINS_PER_BANK);
max_bank -= PINS_PER_BANK;
if (max_bank == 0)
{
mask |= 1;
}
} while (max_bank);
return mask;
}
static struct gpio_desc *pin_to_gpio_desc(gpio_pin_t pin)
{
if (pin < BANK_BOUNDARY) /* CPUX domain */
{
return (struct gpio_desc *)g_gpio_desc[0];
}
else /* CPUS domain */
{
return (struct gpio_desc *)g_gpio_desc[1];
}
return NULL;
}
static struct gpio_desc *irq_to_gpio_desc(uint32_t irq)
{
int i, j;
struct gpio_desc *gpio_desc;
for (i = 0; g_gpio_desc[i] != NULL; i++)
{
gpio_desc = (struct gpio_desc *)g_gpio_desc[i];
for (j = 0; j < gpio_desc->irq_arry_size; j++)
{
if (gpio_desc->irq[j] == irq)
{
return gpio_desc;
}
}
}
GPIO_ERR("gpio to irq error!");
return NULL;
}
static struct gpio_desc *virq_to_gpio_desc(uint32_t irq)
{
int i, j;
struct gpio_desc *gpio_desc;
for (i = 0; g_gpio_desc[i] != NULL; i++)
{
gpio_desc = (struct gpio_desc *)g_gpio_desc[i];
for (j = 0; j < gpio_desc->irq_banks * IRQ_PER_BANK; j++)
{
if (gpio_desc->irq_desc[j].virq == irq)
{
return gpio_desc;
}
}
}
GPIO_ERR("gpio to virq error!");
return NULL;
}
static void gpio_irq_ack(struct gpio_desc *gpio_desc, int i)
{
struct gpio_irq_desc *dirq = &gpio_desc->irq_desc[i];
uint32_t hw_irq = dirq->virq - gpio_desc->virq_offset - GPIO_IRQ_START;
unsigned bank_base = gpio_desc->irq_bank_base[hw_irq / IRQ_PER_BANK];
uint32_t reg = gpio_irq_status_reg(hw_irq, bank_base);
uint32_t status_idx = gpio_irq_status_offset(hw_irq);
/* clear the pending */
hal_writel(1 << status_idx, gpio_desc->membase + reg);
}
static irqreturn_t bad_gpio_irq_handle(int dummy, void *data)
{
GPIO_INFO("No irq registered handler for this calling !!");
return 0;
}
static void gpio_irq_set_type(struct gpio_desc *gpio_desc, int irq_num, unsigned long type)
{
struct gpio_irq_desc *dirq = &gpio_desc->irq_desc[irq_num];
uint32_t hw_irq = dirq->virq - gpio_desc->virq_offset - GPIO_IRQ_START;
unsigned bank_base = gpio_desc->irq_bank_base[hw_irq / IRQ_PER_BANK];
uint32_t reg = gpio_irq_cfg_reg(hw_irq, bank_base);
uint32_t index = gpio_irq_cfg_offset(hw_irq);
uint32_t mode, regval;
switch (type)
{
case IRQ_TYPE_EDGE_RISING:
mode = IRQ_EDGE_RISING;
break;
case IRQ_TYPE_EDGE_FALLING:
mode = IRQ_EDGE_FALLING;
break;
case IRQ_TYPE_EDGE_BOTH:
mode = IRQ_EDGE_BOTH;
break;
case IRQ_TYPE_LEVEL_HIGH:
mode = IRQ_LEVEL_HIGH;
break;
case IRQ_TYPE_LEVEL_LOW:
mode = IRQ_LEVEL_LOW;
break;
default:
mode = IRQ_EDGE_RISING;
}
/*should use spin lock protect here*/
regval = hal_readl(gpio_desc->membase + reg);
regval &= ~(IRQ_CFG_IRQ_MASK << index);
hal_writel(regval | (mode << index), gpio_desc->membase + reg);
//regval = hal_readl(gpio_desc->membase + reg);
//GPIO_ERR("gpio_desc->membase + reg: 0x%x\n", regval);
}
static irqreturn_t gpio_irq_handle(int dummy, void *data)
{
uint32_t hwirq = *((uint32_t *)data);
uint32_t bank, reg, val, base_bank;
struct gpio_desc *gpio_desc = irq_to_gpio_desc(hwirq);
if (gpio_desc == NULL)
{
return 0;
}
for (bank = 0; bank < gpio_desc->irq_banks; bank ++)
{
if (hwirq == gpio_desc->irq[bank])
{
break;
}
}
if (bank == gpio_desc->irq_banks)
{
return 0;
}
base_bank = gpio_desc->irq_bank_base[bank];
reg = gpio_irq_status_reg_from_bank(bank, base_bank);
val = hal_readl(gpio_desc->membase + reg);
GPIO_INFO("hwirq = %ld, gpio_desc address is 0x%lx.", hwirq, gpio_desc->membase);
GPIO_INFO("base_bank is %ld, hwirq is %ld, val is %ld.", base_bank, hwirq, val);
if (val)
{
uint32_t irqoffset;
uint32_t irq_pin;
int i;
for (irqoffset = 0; irqoffset < IRQ_PER_BANK; irqoffset++)
{
if ((1 << irqoffset) & val)
{
break;
}
}
if (irqoffset >= IRQ_PER_BANK)
{
GPIO_INFO("return");
return 0;
}
irq_pin = ((base_bank + bank) * IRQ_PER_BANK) + irqoffset + gpio_desc->virq_offset;
for (i = 0; i < gpio_desc->irq_desc_size; i++)
{
if (irq_pin == gpio_desc->irq_desc[i].pin)
{
break;
}
}
if (i >= gpio_desc->irq_desc_size)
{
return 0;
}
if (gpio_desc->irq_desc[i].irq_attach != NULL)
{
gpio_desc->irq_desc[i].irq_attach(gpio_desc->irq_desc[i].data);
}
else
{
gpio_desc->irq_desc[i].handle_irq(gpio_desc->irq_desc[i].virq, gpio_desc->irq_desc[i].data);
}
gpio_irq_ack(gpio_desc, i);
}
return 0;
}
bool hal_gpio_check_valid(gpio_pin_t pin)
{
uint32_t bank = pin / PINS_PER_BANK;
uint32_t mask = count_gpio_bank_mask();
if (!((1 << bank) & mask))
{
return false;
}
return true;
}
static int gpio_conf_set(gpio_pin_t pin, unsigned long *gpio_config)
{
struct gpio_desc *gpio_desc = pin_to_gpio_desc(pin);
if (gpio_desc == NULL)
{
GPIO_ERR("gpio_desc is not inited");
return -1;
}
unsigned long config = (unsigned long)gpio_config;
uint32_t offset, shift, mask, reg;
uint32_t arg;
pin_config_param_t param;
int ret;
param = pinconf_to_config_param(config);
arg = pinconf_to_config_argument(config);
ret = gpio_pconf_reg(pin, param, &offset, &shift, &mask);
if (ret < 0)
{
GPIO_ERR("can't get reg for pin %u", pin);
return -1;
}
/* fix me: shuold we keep spin_lock to protect here?*/
reg = hal_readl(gpio_desc->membase + offset);
reg &= ~(mask << shift);
hal_writel(reg | arg << shift, gpio_desc->membase + offset);
return 0;
}
static int gpio_conf_get(gpio_pin_t pin, unsigned long *gpio_config)
{
struct gpio_desc *gpio_desc = pin_to_gpio_desc(pin);
if (gpio_desc == NULL)
{
GPIO_ERR("gpio_desc is not inited");
return -1;
}
uint32_t offset, shift, mask;
uint32_t arg, val;
pin_config_param_t param = pinconf_to_config_param(*gpio_config);
int ret = 0;
ret = gpio_pconf_reg(pin, param, &offset, &shift, &mask);
if (ret < 0)
{
GPIO_ERR("can't get reg for pin %u", pin);
return -1;
}
val = (hal_readl(gpio_desc->membase + offset) >> shift) & mask;
switch (param)
{
case GPIO_TYPE_DRV:
case GPIO_TYPE_DAT:
case GPIO_TYPE_PUD:
case GPIO_TYPE_FUNC:
arg = val;
break;
default:
ret = -1;
GPIO_ERR("Invalid mux type");
return -1;
}
if (!ret)
{
*gpio_config = pinconf_to_config_packed(param, arg);
}
return ret;
}
int hal_gpio_get_data(gpio_pin_t pin, gpio_data_t *data)
{
unsigned long config;
int ret = 0;
if (NULL == data)
{
ret = -1;
GPIO_ERR("Invalid parameter!");
return ret;
}
config = GPIO_CFG_PACK(GPIO_TYPE_DAT, 0xffffff);
ret = gpio_conf_get(pin, &config);
if (ret < 0)
{
GPIO_ERR("get conf error!");
return ret;
}
*data = GPIO_CFG_UNPACK_VALUE(config);
return ret;
}
int hal_gpio_set_data(gpio_pin_t pin, gpio_data_t data)
{
unsigned long config;
int ret = 0;
config = GPIO_CFG_PACK(GPIO_TYPE_DAT, data);
ret = gpio_conf_set(pin, (unsigned long *)config);
if (ret < 0)
{
GPIO_ERR("set conf error!");
return ret;
}
return ret;
}
int hal_gpio_set_direction(gpio_pin_t pin, gpio_direction_t direction)
{
unsigned long config;
int ret = 0;
config = GPIO_CFG_PACK(GPIO_TYPE_FUNC, direction);
ret = gpio_conf_set(pin, (unsigned long *)config);
if (ret < 0)
{
GPIO_ERR("set conf error!");
return ret;
}
return ret;
}
int hal_gpio_get_direction(gpio_pin_t pin, gpio_direction_t *direction)
{
unsigned long config;
int ret = 0;
if (NULL == direction)
{
ret = -1;
GPIO_ERR("Invalid parameter!");
return ret;
}
config = GPIO_CFG_PACK(GPIO_TYPE_FUNC, 0xffffff);
ret = gpio_conf_get(pin, &config);
if (ret < 0)
{
GPIO_ERR("get conf error!");
return ret;
}
*direction = GPIO_CFG_UNPACK_VALUE(config);
return ret;
}
int hal_gpio_set_pull(gpio_pin_t pin, gpio_pull_status_t pull)
{
unsigned long config;
int ret = 0;
config = GPIO_CFG_PACK(GPIO_TYPE_PUD, pull);
ret = gpio_conf_set(pin, (unsigned long *)config);
if (ret < 0)
{
GPIO_ERR("set conf error!");
return ret;
}
return ret;
}
int hal_gpio_get_pull(gpio_pin_t pin, gpio_pull_status_t *pull)
{
unsigned long config;
int ret = 0;
if (NULL == pull)
{
ret = -1;
GPIO_ERR("Invalid parameter!");
return ret;
}
config = GPIO_CFG_PACK(GPIO_TYPE_PUD, 0xffffff);
ret = gpio_conf_get(pin, &config);
if (ret < 0)
{
GPIO_ERR("get conf error!");
return ret;
}
*pull = GPIO_CFG_UNPACK_VALUE(config);
return ret;
}
int hal_gpio_set_driving_level(gpio_pin_t pin, gpio_driving_level_t level)
{
unsigned long config;
int ret = 0;
config = GPIO_CFG_PACK(GPIO_TYPE_DRV, level);
ret = gpio_conf_set(pin, (unsigned long *)config);
if (ret < 0)
{
GPIO_ERR("set conf error!");
return ret;
}
return ret;
}
int hal_gpio_get_driving_level(gpio_pin_t pin, gpio_driving_level_t *level)
{
unsigned long config;
int ret = 0;
if (NULL == level)
{
ret = -1;
GPIO_ERR("Invalid parameter!");
return ret;
}
config = GPIO_CFG_PACK(GPIO_TYPE_DRV, 0xffffff);
ret = gpio_conf_get(pin, &config);
if (ret < 0)
{
GPIO_ERR("get conf error!");
return ret;
}
*level = GPIO_CFG_UNPACK_VALUE(config);
return ret;
}
int hal_gpio_pinmux_set_function(gpio_pin_t pin, gpio_muxsel_t function_index)
{
unsigned long config;
int ret = 0;
config = GPIO_CFG_PACK(GPIO_TYPE_FUNC, function_index);
ret = gpio_conf_set(pin, (unsigned long *)config);
if (ret < 0)
{
GPIO_ERR("set pin mux error!");
return ret;
}
return ret;
}
int hal_gpio_sel_vol_mode(gpio_pin_t pin, gpio_power_mode_t pm_sel)
{
uint32_t bank, temp;
struct gpio_desc *gpio_desc;
gpio_desc = pin_to_gpio_desc(pin);
if (gpio_desc == NULL)
{
return -1;
}
bank = (pin - gpio_desc->pin_base) / PINS_PER_BANK;
temp = hal_readl(gpio_desc->membase + POWER_MODE_SEL);
temp |= (pm_sel << bank);
hal_writel(temp, gpio_desc->membase + POWER_MODE_SEL);
if (bank == 5)
{
temp = hal_readl(gpio_desc->membase + POWER_VOL_SEL);
temp &= ~(1 >> 0);
temp |= (!pm_sel);
hal_writel(temp, gpio_desc->membase + POWER_VOL_SEL);
}
return 0;
}
int hal_gpio_set_debounce(gpio_pin_t pin, unsigned value)
{
uint32_t irq, hw_irq, reg, reg_val;
struct gpio_desc *gpio_desc;
unsigned bank_base;
unsigned int val_clk_select, val_clk_per_scale;
int ret = 0;
gpio_desc = pin_to_gpio_desc(pin);
if (gpio_desc == NULL)
{
return -1;
}
ret = hal_gpio_to_irq(pin, &irq);
if (ret < 0)
{
GPIO_ERR("gpio to irq error");
return -1;
}
hw_irq = irq - gpio_desc->virq_offset - GPIO_IRQ_START;
bank_base = gpio_desc->irq_bank_base[hw_irq / IRQ_PER_BANK];
reg = gpio_irq_debounce_reg(hw_irq, bank_base);
reg_val = hal_readl(gpio_desc->membase + reg);
val_clk_select = value & 1;
val_clk_per_scale = (value >> 4) & 0x07;
/*set debounce pio interrupt clock select */
reg_val &= ~(1 << 0);
reg_val |= val_clk_select;
/* set debounce clock pre scale */
reg_val &= ~(7 << 4);
reg_val |= val_clk_per_scale << 4;
hal_writel(reg_val, gpio_desc->membase + reg);
return 0;
}
int hal_gpio_to_irq(gpio_pin_t pin, uint32_t *irq)
{
int i = 0;
struct gpio_desc *gpio_desc = pin_to_gpio_desc(pin);
for (i = 0; i < gpio_desc->irq_banks * IRQ_PER_BANK; i++)
{
if (pin != gpio_desc->irq_desc[i].pin)
{
continue;
}
GPIO_INFO("gpio %lu to irq %lu succeed!", pin, gpio_desc->irq_desc[i].virq);
*irq = gpio_desc->irq_desc[i].virq;
return 0;
}
return -1;
}
int hal_gpio_irq_attach(uint32_t irq, void (*hdle)(void *), unsigned long flags, void *data)
{
struct gpio_desc *gpio_desc = virq_to_gpio_desc(irq);
GPIO_INFO("gpio_desc address is 0x%lx.", gpio_desc->membase);
int irq_max_num = gpio_desc->irq_desc_size + GPIO_IRQ_START;
int ret = 0;
irq -= gpio_desc->virq_offset;
if (irq >= GPIO_IRQ_START && irq < irq_max_num)
{
if (hdle && gpio_desc->irq_desc[irq - GPIO_IRQ_START].irq_attach == NULL)
{
gpio_desc->irq_desc[irq - GPIO_IRQ_START].irq_attach = hdle;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].flags = flags;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].data = data;
}
/*set irq tpye*/
gpio_irq_set_type(gpio_desc, irq - GPIO_IRQ_START, flags);
/*set pin mux*/
ret = hal_gpio_pinmux_set_function(gpio_desc->irq_desc[irq - GPIO_IRQ_START].pin, GPIO_MUXSEL_EINT);
if (ret < 0)
{
GPIO_ERR("set pin mux error!");
return -1;
}
GPIO_INFO("request irq %lu succeed!", irq);
return irq;
}
GPIO_ERR("Wrong irq NO.(%u) to request !!", (unsigned int)irq);
return -1;
}
int hal_gpio_irq_request(uint32_t irq, irq_handler_t hdle, unsigned long flags, void *data)
{
struct gpio_desc *gpio_desc = virq_to_gpio_desc(irq);
GPIO_INFO("gpio_desc address is 0x%lx.", gpio_desc->membase);
int irq_max_num = gpio_desc->irq_desc_size + GPIO_IRQ_START;
int ret = 0;
irq -= gpio_desc->virq_offset;
if (irq >= GPIO_IRQ_START && irq < irq_max_num)
{
if (hdle && gpio_desc->irq_desc[irq - GPIO_IRQ_START].handle_irq == bad_gpio_irq_handle)
{
gpio_desc->irq_desc[irq - GPIO_IRQ_START].handle_irq = hdle;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].flags = flags;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].data = data;
}
/*set irq tpye*/
gpio_irq_set_type(gpio_desc, irq - GPIO_IRQ_START, flags);
/*set pin mux*/
ret = hal_gpio_pinmux_set_function(gpio_desc->irq_desc[irq - GPIO_IRQ_START].pin, GPIO_MUXSEL_EINT);
if (ret < 0)
{
GPIO_ERR("set pin mux error!");
return -1;
}
GPIO_INFO("request irq %lu succeed!", irq);
return irq;
}
GPIO_ERR("Wrong irq NO.(%u) to request !!", (unsigned int)irq);
return -1;
}
int hal_gpio_irq_free(uint32_t irq)
{
struct gpio_desc *gpio_desc = virq_to_gpio_desc(irq);
int irq_max_num = gpio_desc->irq_desc_size + GPIO_IRQ_START;
irq -= gpio_desc->virq_offset;
if (irq >= GPIO_IRQ_START && irq < irq_max_num)
{
gpio_desc->irq_desc[irq - GPIO_IRQ_START].irq_attach = NULL;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].handle_irq = bad_gpio_irq_handle;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].flags = 0;
gpio_desc->irq_desc[irq - GPIO_IRQ_START].data = NULL;
GPIO_INFO("free irq %lu succeed!", irq);
return irq;
}
GPIO_ERR("Wrong irq NO.(%u) to free !!", (unsigned int)irq);
return -1;
}
int hal_gpio_irq_enable(uint32_t irq)
{
struct gpio_desc *gpio_desc = virq_to_gpio_desc(irq);
GPIO_INFO("1:gpio_desc address is 0x%lx.", gpio_desc->membase);
int irq_max_num = gpio_desc->irq_desc_size + GPIO_IRQ_START;
uint32_t hw_irq = irq - gpio_desc->virq_offset - GPIO_IRQ_START;
unsigned bank_base = gpio_desc->irq_bank_base[hw_irq / IRQ_PER_BANK];
uint32_t reg = gpio_irq_ctrl_reg(hw_irq, bank_base);
uint32_t index = gpio_irq_ctrl_offset(hw_irq);
uint32_t val = 0;
irq -= gpio_desc->virq_offset;
if (irq < GPIO_IRQ_START || irq >= irq_max_num)
{
GPIO_ERR("Wrong irq NO.(%u) to enable !!", (unsigned int)irq);
return -1;
}
/*clear pending*/
gpio_irq_ack(gpio_desc, hw_irq);
/*unmask the irq,should keep spin lock to protect*/
val = hal_readl(gpio_desc->membase + reg);
hal_writel(val | (1 << index), gpio_desc->membase + reg);
return 0;
}
#ifdef CONFIG_STANDBY
struct gpio_pm_reg_cache gpio_pm_reg;
static int gpio_pm_alloc_mem(uint32_t desc_index, uint32_t mem_size)
{
if (desc_index > 1)
{
GPIO_ERR("index[%d] exceed desc_index range!", desc_index);
return -1;
}
gpio_pm_reg.reg_dump[desc_index] = hal_malloc(mem_size);
if (gpio_pm_reg.reg_dump[desc_index] == NULL)
{
GPIO_ERR("malloc reg_mem[%d] error!", desc_index);
return -1;
}
gpio_pm_reg.reg_dump_size[desc_index] = mem_size;
return 0;
}
int hal_gpio_suspend()
{
int i;
void *mem = NULL;
uint32_t mem_size;
uint32_t flags;
struct gpio_desc *gpio_desc = NULL;
GPIO_INFO("gpio suspend\n");
flags = hal_interrupt_save();
for (i = 0; g_gpio_desc[i] != NULL; i++) {
gpio_desc = (struct gpio_desc *)g_gpio_desc[i];
mem = gpio_pm_reg.reg_dump[i];
mem_size = gpio_pm_reg.reg_dump_size[i];
if (mem != NULL)
memcpy(mem, (uint32_t *)gpio_desc->membase, mem_size);
}
hal_interrupt_restore(flags);
return 0;
}
int hal_gpio_resume()
{
int i;
void *mem = NULL;
uint32_t mem_size;
uint32_t flags;
struct gpio_desc *gpio_desc = NULL;
flags = hal_interrupt_save();
for (i = 0; g_gpio_desc[i] != NULL; i++) {
gpio_desc = (struct gpio_desc *)g_gpio_desc[i];
mem = gpio_pm_reg.reg_dump[i];
mem_size = gpio_pm_reg.reg_dump_size[i];
if (gpio_pm_reg.reg_dump[i] != NULL)
memcpy((uint32_t *)gpio_desc->membase, mem, mem_size);
}
hal_interrupt_restore(flags);
GPIO_INFO("gpio resume");
return 0;
}
#else
static int gpio_pm_alloc_mem(uint32_t desc_index, uint32_t mem_size)
{
return 0;
}
#endif
int hal_gpio_irq_disable(uint32_t irq)
{
struct gpio_desc *gpio_desc = virq_to_gpio_desc(irq);
GPIO_INFO("gpio_desc address is 0x%lx.", gpio_desc->membase);
int irq_max_num = gpio_desc->irq_desc_size + GPIO_IRQ_START;
uint32_t hw_irq = irq - gpio_desc->virq_offset - GPIO_IRQ_START;
unsigned bank_base = gpio_desc->irq_bank_base[hw_irq / IRQ_PER_BANK];
uint32_t reg = gpio_irq_ctrl_reg(hw_irq, bank_base);
uint32_t index = gpio_irq_ctrl_offset(hw_irq);
uint32_t val = 0;
irq -= gpio_desc->virq_offset;
if (irq < GPIO_IRQ_START || irq >= irq_max_num)
{
GPIO_ERR("Wrong irq NO.(%u) to enable !!", (unsigned int)irq);
return -1;
}
/*mask the irq,should keep spin lock to protect*/
val = hal_readl(gpio_desc->membase + reg);
hal_writel(val & ~(1 << index), gpio_desc->membase + reg);
return 0;
}
int hal_gpio_init(void)
{
int i, j, ret;
struct gpio_desc *gpio_desc = NULL;
struct gpio_irq_desc *irq_desc = NULL;
int irq_desc_array_size = 0;
char *irqname = NULL;
/* initialize g_gpio_desc */
g_gpio_desc = gpio_get_platform_desc();
if (g_gpio_desc == NULL)
{
GPIO_ERR("initialize global platform desc failed!");
return -1;
}
for (j = 0; g_gpio_desc[j] != NULL; j++)
{
gpio_desc = (struct gpio_desc *)g_gpio_desc[j];
irq_desc_array_size = gpio_desc->irq_banks * IRQ_PER_BANK;
gpio_desc->irq_desc_size = irq_desc_array_size;
irq_desc = (struct gpio_irq_desc *)hal_malloc(irq_desc_array_size * sizeof(struct gpio_irq_desc));
if (irq_desc == NULL)
{
GPIO_ERR("alloc memory failed!");
return -1;
}
ret = gpio_pm_alloc_mem(j, gpio_desc->resource_size);
if (ret)
{
GPIO_ERR("gpio[%d] pm alloc mem err!", j);
return ret;
}
memset(irq_desc, 0, irq_desc_array_size * sizeof(struct gpio_irq_desc));
for (i = 0; i < irq_desc_array_size; i++)
{
unsigned int j = i / IRQ_PER_BANK;
unsigned int k = i % IRQ_PER_BANK;
unsigned bank_base = gpio_desc->irq_bank_base[j];
irq_desc[i].pin = gpio_get_pin_base_from_bank(j, bank_base) + gpio_desc->virq_offset + k;
irq_desc[i].virq = GPIO_IRQ_START + gpio_desc->virq_offset + i;
irq_desc[i].handle_irq = bad_gpio_irq_handle;
irq_desc[i].irq_attach = NULL;
}
gpio_desc->irq_desc = irq_desc;
for (i = 0; i < gpio_desc->irq_banks; i++)
{
/* mask all irq */
unsigned bank_base = gpio_desc->irq_bank_base[i];
hal_writel(0, gpio_desc->membase +
gpio_irq_ctrl_reg_from_bank(i, bank_base));
/* clear pending flags */
hal_writel(0xffffffff, gpio_desc->membase +
gpio_irq_status_reg_from_bank(i, bank_base));
}
/* request irq */
for (i = 0; i < gpio_desc->irq_arry_size; i++)
{
irqname = (char *)hal_malloc(12);
if(irqname == NULL)
{
GPIO_ERR("fatal error, malloc failure.");
return -1;
}
memset(irqname, 0x00, 12);
sprintf(irqname, "gpio-ctl%d%d", j, i);
ret = request_irq(gpio_desc->irq[i], gpio_irq_handle, 0, irqname, (void *)&gpio_desc->irq[i]);
#if 0
rt_hw_interrupt_install(gpio_desc->irq[i], gpio_irq_handle, RT_NULL, irqname);
rt_hw_interrupt_umask(gpio_desc->irq[i]);
#endif
}
#if 1
/* enable irq */
for (i = 0; i < gpio_desc->irq_arry_size; i++)
{
enable_irq(gpio_desc->irq[i]);
}
#endif
}
GPIO_INFO("gpio init success!");
return 0;
}