637 lines
22 KiB
C
Raw Normal View History

2018-12-05 11:44:53 +08:00
/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dma.h"
#include "fsl_i2s_dma.h"
#include "fsl_flexcomm.h"
#include <string.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_i2s_dma"
#endif
#define DMA_MAX_TRANSFER_BYTES (DMA_MAX_TRANSFER_COUNT * sizeof(uint32_t))
#define DMA_DESCRIPTORS (2U)
/*<! @brief Structure for statically allocated private data. */
typedef struct _i2s_dma_private_handle
{
I2S_Type *base; /*!< I2S base address */
i2s_dma_handle_t *handle; /*!< I2S handle */
volatile uint16_t enqueuedBytes[DMA_DESCRIPTORS]; /*!< Number of bytes being transferred by DMA descriptors */
volatile uint8_t enqueuedBytesStart; /*!< First item in enqueuedBytes (for reading) */
volatile uint8_t enqueuedBytesEnd; /*!< Last item in enqueuedBytes (for adding) */
volatile uint8_t
dmaDescriptorsUsed; /*!< Number of DMA descriptors with valid data (in queue, excluding initial descriptor) */
volatile uint8_t
descriptor; /*!< Index of next DMA descriptor in s_DmaDescriptors to be configured with data (does not include
I2S instance offset) */
volatile uint8_t queueDescriptor; /*!< Queue index of buffer to be actually consumed by DMA
* (queueUser - advanced when user adds a buffer,
* queueDescriptor - advanced when user buffer queued to DMA,
* queueDriver - advanced when DMA queued buffer sent out to I2S) */
volatile i2s_transfer_t descriptorQueue[I2S_NUM_BUFFERS]; /*!< Transfer data to be queued to DMA */
volatile bool intA; /*!< If next scheduled DMA transfer will cause interrupt A or B */
} i2s_dma_private_handle_t;
/*! @brief I2S DMA transfer private state. */
enum _i2s_dma_state
{
kI2S_DmaStateIdle = 0x0U, /*!< I2S is in idle state */
kI2S_DmaStateTx, /*!< I2S is busy transmitting data */
kI2S_DmaStateRx, /*!< I2S is busy receiving data */
};
/*******************************************************************************
* Prototypes
******************************************************************************/
static status_t I2S_EnqueueUserBuffer(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer);
static uint32_t I2S_GetInstance(I2S_Type *base);
static inline void I2S_DisableDMAInterrupts(i2s_dma_handle_t *handle);
static inline void I2S_EnableDMAInterrupts(i2s_dma_handle_t *handle);
static void I2S_TxEnableDMA(I2S_Type *base, bool enable);
static void I2S_RxEnableDMA(I2S_Type *base, bool enable);
static uint16_t I2S_GetTransferBytes(volatile i2s_transfer_t *transfer);
static status_t I2S_StartTransferDMA(I2S_Type *base, i2s_dma_handle_t *handle);
static void I2S_AddTransferDMA(I2S_Type *base, i2s_dma_handle_t *handle);
/*******************************************************************************
* Variables
******************************************************************************/
/*<! @brief DMA transfer descriptors. */
#if defined(__ICCARM__)
#pragma data_alignment = 16
static dma_descriptor_t s_DmaDescriptors[DMA_DESCRIPTORS * FSL_FEATURE_SOC_I2S_COUNT];
#elif defined(__CC_ARM)
__attribute__((aligned(16))) static dma_descriptor_t s_DmaDescriptors[DMA_DESCRIPTORS * FSL_FEATURE_SOC_I2S_COUNT];
#elif defined(__GNUC__)
__attribute__((aligned(16))) static dma_descriptor_t s_DmaDescriptors[DMA_DESCRIPTORS * FSL_FEATURE_SOC_I2S_COUNT];
#endif
/*<! @brief Buffer with dummy TX data. */
#if defined(__ICCARM__)
#pragma data_alignment = 4
static uint32_t s_DummyBufferTx = 0U;
#elif defined(__CC_ARM)
__attribute__((aligned(4))) static uint32_t s_DummyBufferTx = 0U;
#elif defined(__GNUC__)
__attribute__((aligned(4))) static uint32_t s_DummyBufferTx = 0U;
#endif
/*<! @brief Buffer to fill with RX data to discard. */
#if defined(__ICCARM__)
#pragma data_alignment = 4
static uint32_t s_DummyBufferRx = 0U;
#elif defined(__CC_ARM)
__attribute__((aligned(4))) static uint32_t s_DummyBufferRx = 0U;
#elif defined(__GNUC__)
__attribute__((aligned(4))) static uint32_t s_DummyBufferRx = 0U;
#endif
/*<! @brief Private array of data associated with available I2S peripherals. */
static i2s_dma_private_handle_t s_DmaPrivateHandle[FSL_FEATURE_SOC_I2S_COUNT];
/*<! @brief Base addresses of available I2S peripherals. */
static const uint32_t s_I2sBaseAddrs[FSL_FEATURE_SOC_I2S_COUNT] = I2S_BASE_ADDRS;
/*******************************************************************************
* Code
******************************************************************************/
static status_t I2S_EnqueueUserBuffer(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)
{
uint32_t instance = I2S_GetInstance(base);
i2s_dma_private_handle_t *privateHandle = &(s_DmaPrivateHandle[instance]);
/* Validate input data and tranfer buffer */
assert(handle);
if (!handle)
{
return kStatus_InvalidArgument;
}
assert((((uint32_t)transfer.data) % 4U) == 0U);
if ((((uint32_t)transfer.data) % 4U) != 0U)
{
/* Data not 4-bytes aligned */
return kStatus_InvalidArgument;
}
assert(transfer.dataSize != 0U);
if (transfer.dataSize == 0U)
{
/* No data to send or receive */
return kStatus_InvalidArgument;
}
assert((transfer.dataSize % 4U) == 0U);
if ((transfer.dataSize % 4U) != 0U)
{
/* Data length not multiply of 4 bytes */
return kStatus_InvalidArgument;
}
if (handle->i2sQueue[handle->queueUser].dataSize)
{
/* Previously prepared buffers not processed yet, reject request */
return kStatus_I2S_Busy;
}
/* Enqueue data */
privateHandle->descriptorQueue[handle->queueUser].data = transfer.data;
privateHandle->descriptorQueue[handle->queueUser].dataSize = transfer.dataSize;
handle->i2sQueue[handle->queueUser].data = transfer.data;
handle->i2sQueue[handle->queueUser].dataSize = transfer.dataSize;
handle->queueUser = (handle->queueUser + 1U) % I2S_NUM_BUFFERS;
return kStatus_Success;
}
static uint32_t I2S_GetInstance(I2S_Type *base)
{
uint32_t i;
for (i = 0U; i < ARRAY_SIZE(s_I2sBaseAddrs); i++)
{
if ((uint32_t)base == s_I2sBaseAddrs[i])
{
return i;
}
}
assert(false);
return 0U;
}
static inline void I2S_DisableDMAInterrupts(i2s_dma_handle_t *handle)
{
DMA_DisableChannelInterrupts(handle->dmaHandle->base, handle->dmaHandle->channel);
}
static inline void I2S_EnableDMAInterrupts(i2s_dma_handle_t *handle)
{
if (handle->state != kI2S_DmaStateIdle)
{
DMA_EnableChannelInterrupts(handle->dmaHandle->base, handle->dmaHandle->channel);
}
}
void I2S_TxTransferCreateHandleDMA(I2S_Type *base,
i2s_dma_handle_t *handle,
dma_handle_t *dmaHandle,
i2s_dma_transfer_callback_t callback,
void *userData)
{
assert(handle);
assert(dmaHandle);
uint32_t instance = I2S_GetInstance(base);
i2s_dma_private_handle_t *privateHandle = &(s_DmaPrivateHandle[instance]);
memset(handle, 0U, sizeof(*handle));
handle->state = kI2S_DmaStateIdle;
handle->dmaHandle = dmaHandle;
handle->completionCallback = callback;
handle->userData = userData;
memset(privateHandle, 0U, sizeof(*privateHandle));
privateHandle->base = base;
privateHandle->handle = handle;
DMA_SetCallback(dmaHandle, I2S_DMACallback, privateHandle);
}
status_t I2S_TxTransferSendDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)
{
status_t status;
I2S_DisableDMAInterrupts(handle);
/* Enqueue transfer buffer */
status = I2S_EnqueueUserBuffer(base, handle, transfer);
if (status != kStatus_Success)
{
I2S_EnableDMAInterrupts(handle);
return status;
}
/* Initialize DMA transfer */
if (handle->state == kI2S_DmaStateIdle)
{
handle->state = kI2S_DmaStateTx;
status = I2S_StartTransferDMA(base, handle);
if (status != kStatus_Success)
{
I2S_EnableDMAInterrupts(handle);
return status;
}
}
I2S_AddTransferDMA(base, handle);
I2S_EnableDMAInterrupts(handle);
return kStatus_Success;
}
void I2S_TransferAbortDMA(I2S_Type *base, i2s_dma_handle_t *handle)
{
assert(handle);
assert(handle->dmaHandle);
uint32_t instance = I2S_GetInstance(base);
i2s_dma_private_handle_t *privateHandle = &(s_DmaPrivateHandle[instance]);
I2S_DisableDMAInterrupts(handle);
/* Abort operation */
DMA_AbortTransfer(handle->dmaHandle);
if (handle->state == kI2S_DmaStateTx)
{
/* Wait until all transmitted data get out of FIFO */
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U)
{
}
/* The last piece of valid data can be still being transmitted from I2S at this moment */
/* Write additional data to FIFO */
base->FIFOWR = 0U;
while ((base->FIFOSTAT & I2S_FIFOSTAT_TXEMPTY_MASK) == 0U)
{
}
/* At this moment the additional data are out of FIFO, starting being transmitted.
* This means the preceding valid data has been just transmitted and we can stop I2S. */
I2S_TxEnableDMA(base, false);
}
else
{
I2S_RxEnableDMA(base, false);
}
I2S_Disable(base);
/* Reset state */
handle->state = kI2S_DmaStateIdle;
/* Clear transfer queue */
memset((void *)&(handle->i2sQueue), 0U, sizeof(handle->i2sQueue));
handle->queueDriver = 0U;
handle->queueUser = 0U;
/* Clear internal state */
memset((void *)&(privateHandle->descriptorQueue), 0U, sizeof(privateHandle->descriptorQueue));
memset((void *)&(privateHandle->enqueuedBytes), 0U, sizeof(privateHandle->enqueuedBytes));
privateHandle->enqueuedBytesStart = 0U;
privateHandle->enqueuedBytesEnd = 0U;
privateHandle->dmaDescriptorsUsed = 0U;
privateHandle->descriptor = 0U;
privateHandle->queueDescriptor = 0U;
privateHandle->intA = false;
}
void I2S_RxTransferCreateHandleDMA(I2S_Type *base,
i2s_dma_handle_t *handle,
dma_handle_t *dmaHandle,
i2s_dma_transfer_callback_t callback,
void *userData)
{
I2S_TxTransferCreateHandleDMA(base, handle, dmaHandle, callback, userData);
}
status_t I2S_RxTransferReceiveDMA(I2S_Type *base, i2s_dma_handle_t *handle, i2s_transfer_t transfer)
{
status_t status;
I2S_DisableDMAInterrupts(handle);
/* Enqueue transfer buffer */
status = I2S_EnqueueUserBuffer(base, handle, transfer);
if (status != kStatus_Success)
{
I2S_EnableDMAInterrupts(handle);
return status;
}
/* Initialize DMA transfer */
if (handle->state == kI2S_DmaStateIdle)
{
handle->state = kI2S_DmaStateRx;
status = I2S_StartTransferDMA(base, handle);
if (status != kStatus_Success)
{
I2S_EnableDMAInterrupts(handle);
return status;
}
}
I2S_AddTransferDMA(base, handle);
I2S_EnableDMAInterrupts(handle);
return kStatus_Success;
}
static void I2S_TxEnableDMA(I2S_Type *base, bool enable)
{
if (enable)
{
base->FIFOCFG |= I2S_FIFOCFG_DMATX_MASK;
}
else
{
base->FIFOCFG &= (~I2S_FIFOCFG_DMATX_MASK);
base->FIFOCFG |= I2S_FIFOCFG_EMPTYTX_MASK;
}
}
static void I2S_RxEnableDMA(I2S_Type *base, bool enable)
{
if (enable)
{
base->FIFOCFG |= I2S_FIFOCFG_DMARX_MASK;
}
else
{
base->FIFOCFG &= (~I2S_FIFOCFG_DMARX_MASK);
base->FIFOCFG |= I2S_FIFOCFG_EMPTYRX_MASK;
}
}
static uint16_t I2S_GetTransferBytes(volatile i2s_transfer_t *transfer)
{
assert(transfer);
uint16_t transferBytes;
if (transfer->dataSize >= (2 * DMA_MAX_TRANSFER_BYTES))
{
transferBytes = DMA_MAX_TRANSFER_BYTES;
}
else if (transfer->dataSize > DMA_MAX_TRANSFER_BYTES)
{
transferBytes = transfer->dataSize / 2U;
if ((transferBytes % 4U) != 0U)
{
transferBytes -= (transferBytes % 4U);
}
}
else
{
transferBytes = transfer->dataSize;
}
return transferBytes;
}
static status_t I2S_StartTransferDMA(I2S_Type *base, i2s_dma_handle_t *handle)
{
status_t status;
dma_transfer_config_t xferConfig = {0};
i2s_dma_private_handle_t *privateHandle;
volatile i2s_transfer_t *transfer;
uint16_t transferBytes;
uint32_t instance;
int i;
dma_descriptor_t *descriptor;
dma_descriptor_t *nextDescriptor;
dma_xfercfg_t xfercfg;
instance = I2S_GetInstance(base);
privateHandle = &(s_DmaPrivateHandle[instance]);
transfer = &(privateHandle->descriptorQueue[privateHandle->queueDescriptor]);
transferBytes = I2S_GetTransferBytes(transfer);
/* Prepare transfer of data via initial DMA transfer descriptor */
DMA_PrepareTransfer(
&xferConfig, (void *)((handle->state == kI2S_DmaStateTx) ? (uint32_t)transfer->data : (uint32_t)(&(base->FIFORD))),
(void *)((handle->state == kI2S_DmaStateTx) ? (uint32_t)(&(base->FIFOWR)) : (uint32_t)transfer->data), sizeof(uint32_t),
transferBytes, (handle->state == kI2S_DmaStateTx) ? kDMA_MemoryToPeripheral : kDMA_PeripheralToMemory,
(void *)&(s_DmaDescriptors[(instance * DMA_DESCRIPTORS) + 0U]));
/* Initial descriptor is stored in another place in memory, but treat it as another descriptor for simplicity */
privateHandle->dmaDescriptorsUsed = 1U;
privateHandle->intA = false;
privateHandle->enqueuedBytes[privateHandle->enqueuedBytesEnd] = transferBytes;
privateHandle->enqueuedBytesEnd = (privateHandle->enqueuedBytesEnd + 1U) % DMA_DESCRIPTORS;
transfer->dataSize -= transferBytes;
transfer->data += transferBytes;
if (transfer->dataSize == 0U)
{
transfer->data = NULL;
privateHandle->queueDescriptor = (privateHandle->queueDescriptor + 1U) % I2S_NUM_BUFFERS;
}
/* Link the DMA descriptors for the case when no additional transfer is queued before the initial one finishes */
for (i = 0; i < DMA_DESCRIPTORS; i++)
{
descriptor = &(s_DmaDescriptors[(instance * DMA_DESCRIPTORS) + i]);
nextDescriptor = &(s_DmaDescriptors[(instance * DMA_DESCRIPTORS) + ((i + 1) % DMA_DESCRIPTORS)]);
xfercfg.valid = true;
xfercfg.reload = true;
xfercfg.swtrig = false;
xfercfg.clrtrig = false;
xfercfg.intA = false;
xfercfg.intB = false;
xfercfg.byteWidth = sizeof(uint32_t);
xfercfg.srcInc = 0U;
xfercfg.dstInc = 0U;
xfercfg.transferCount = 8U;
DMA_CreateDescriptor(descriptor, &xfercfg,
((handle->state == kI2S_DmaStateTx) ? (void *)&s_DummyBufferTx : (void *)(uint32_t)(&(base->FIFORD))),
((handle->state == kI2S_DmaStateTx) ? (void *)(uint32_t)(&(base->FIFOWR)) : (void *)&s_DummyBufferRx),
(void *)nextDescriptor);
}
/* Submit and start initial DMA transfer */
if (handle->state == kI2S_DmaStateTx)
{
I2S_TxEnableDMA(base, true);
}
else
{
I2S_RxEnableDMA(base, true);
}
status = DMA_SubmitTransfer(handle->dmaHandle, &xferConfig);
if (status != kStatus_Success)
{
return status;
}
DMA_StartTransfer(handle->dmaHandle);
I2S_Enable(base);
return kStatus_Success;
}
static void I2S_AddTransferDMA(I2S_Type *base, i2s_dma_handle_t *handle)
{
dma_xfercfg_t xfercfg;
volatile i2s_transfer_t *transfer;
uint16_t transferBytes;
uint32_t instance;
i2s_dma_private_handle_t *privateHandle;
dma_descriptor_t *descriptor;
dma_descriptor_t *nextDescriptor;
uint32_t srcAddr = 0, destAddr = 0;
instance = I2S_GetInstance(base);
privateHandle = &(s_DmaPrivateHandle[instance]);
while (privateHandle->dmaDescriptorsUsed < DMA_DESCRIPTORS)
{
transfer = &(privateHandle->descriptorQueue[privateHandle->queueDescriptor]);
if (transfer->dataSize == 0U)
{
/* Nothing to be added */
return;
}
/* Determine currently configured descriptor and the other which it will link to */
descriptor = &(s_DmaDescriptors[(instance * DMA_DESCRIPTORS) + privateHandle->descriptor]);
privateHandle->descriptor = (privateHandle->descriptor + 1U) % DMA_DESCRIPTORS;
nextDescriptor = &(s_DmaDescriptors[(instance * DMA_DESCRIPTORS) + privateHandle->descriptor]);
transferBytes = I2S_GetTransferBytes(transfer);
privateHandle->enqueuedBytes[privateHandle->enqueuedBytesEnd] = transferBytes;
privateHandle->enqueuedBytesEnd = (privateHandle->enqueuedBytesEnd + 1U) % DMA_DESCRIPTORS;
/* Configure descriptor */
xfercfg.valid = true;
xfercfg.reload = true;
xfercfg.swtrig = false;
xfercfg.clrtrig = false;
xfercfg.intA = privateHandle->intA;
xfercfg.intB = !privateHandle->intA;
xfercfg.byteWidth = sizeof(uint32_t);
xfercfg.srcInc = (handle->state == kI2S_DmaStateTx) ? 1U : 0U;
xfercfg.dstInc = (handle->state == kI2S_DmaStateTx) ? 0U : 1U;
xfercfg.transferCount = transferBytes / sizeof(uint32_t);
srcAddr = ((handle->state == kI2S_DmaStateTx) ? (uint32_t)transfer->data : (uint32_t)&(base->FIFORD));
destAddr = ((handle->state == kI2S_DmaStateTx) ? (uint32_t)&(base->FIFOWR) : (uint32_t)transfer->data);
DMA_CreateDescriptor(descriptor, &xfercfg, (void *)srcAddr, (void *)destAddr, (void *)nextDescriptor);
/* Advance internal state */
privateHandle->dmaDescriptorsUsed++;
privateHandle->intA = !privateHandle->intA;
transfer->dataSize -= transferBytes;
transfer->data += transferBytes;
if (transfer->dataSize == 0U)
{
transfer->data = NULL;
privateHandle->queueDescriptor = (privateHandle->queueDescriptor + 1U) % I2S_NUM_BUFFERS;
}
}
}
void I2S_DMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t tcds)
{
i2s_dma_private_handle_t *privateHandle = (i2s_dma_private_handle_t *)userData;
i2s_dma_handle_t *i2sHandle = privateHandle->handle;
I2S_Type *base = privateHandle->base;
if ((!transferDone) || (i2sHandle->state == kI2S_DmaStateIdle))
{
return;
}
if (privateHandle->dmaDescriptorsUsed > 0U)
{
/* Finished descriptor, decrease amount of data to be processed */
i2sHandle->i2sQueue[i2sHandle->queueDriver].dataSize -=
privateHandle->enqueuedBytes[privateHandle->enqueuedBytesStart];
i2sHandle->i2sQueue[i2sHandle->queueDriver].data +=
privateHandle->enqueuedBytes[privateHandle->enqueuedBytesStart];
privateHandle->enqueuedBytes[privateHandle->enqueuedBytesStart] = 0U;
privateHandle->enqueuedBytesStart = (privateHandle->enqueuedBytesStart + 1U) % DMA_DESCRIPTORS;
privateHandle->dmaDescriptorsUsed--;
if (i2sHandle->i2sQueue[i2sHandle->queueDriver].dataSize == 0U)
{
/* Entire user buffer sent or received - advance to next one */
i2sHandle->i2sQueue[i2sHandle->queueDriver].data = NULL;
i2sHandle->queueDriver = (i2sHandle->queueDriver + 1U) % I2S_NUM_BUFFERS;
/* Notify user about buffer completion */
if (i2sHandle->completionCallback)
{
(i2sHandle->completionCallback)(base, i2sHandle, kStatus_I2S_BufferComplete, i2sHandle->userData);
}
}
}
if (i2sHandle->i2sQueue[i2sHandle->queueDriver].dataSize == 0U)
{
/* All user buffers processed */
I2S_TransferAbortDMA(base, i2sHandle);
/* Notify user about completion of the final buffer */
if (i2sHandle->completionCallback)
{
(i2sHandle->completionCallback)(base, i2sHandle, kStatus_I2S_Done, i2sHandle->userData);
}
}
else
{
/* Enqueue another user buffer to DMA if it could not be done when in I2S_Rx/TxTransferSendDMA */
I2S_AddTransferDMA(base, i2sHandle);
}
}