rt-thread/bsp/renesas/libraries/HAL_Drivers/drv_sci.c

908 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-09-24 Vandoul first version
* 2023-09-27 Vandoul add sci uart
*/
#include "drv_sci.h"
#ifdef BSP_USING_SCI
//#define DRV_DEBUG
#define DBG_TAG "drv.sci"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
#ifdef R_SCI_B_SPI_H
#define R_SCI_SPI_Write R_SCI_B_SPI_Write
#define R_SCI_SPI_Read R_SCI_B_SPI_Read
#define R_SCI_SPI_WriteRead R_SCI_B_SPI_WriteRead
#define R_SCI_SPI_Open R_SCI_B_SPI_Open
#define R_SCI_SPI_Close R_SCI_B_SPI_Close
#define R_SCI_SPI_CallbackSet R_SCI_B_SPI_CallbackSet
#endif
enum
{
#ifdef BSP_USING_SCI0
RA_SCI_INDEX0,
#endif
#ifdef BSP_USING_SCI1
RA_SCI_INDEX1,
#endif
#ifdef BSP_USING_SCI2
RA_SCI_INDEX2,
#endif
#ifdef BSP_USING_SCI3
RA_SCI_INDEX3,
#endif
#ifdef BSP_USING_SCI4
RA_SCI_INDEX4,
#endif
#ifdef BSP_USING_SCI5
RA_SCI_INDEX5,
#endif
#ifdef BSP_USING_SCI6
RA_SCI_INDEX6,
#endif
#ifdef BSP_USING_SCI7
RA_SCI_INDEX7,
#endif
#ifdef BSP_USING_SCI8
RA_SCI_INDEX8,
#endif
#ifdef BSP_USING_SCI9
RA_SCI_INDEX9,
#endif
RA_SCI_INDEX_MAX,
};
struct ra_sci_param
{
const char bus_name[RT_NAME_MAX];
const void *sci_ctrl;
const void *sci_cfg;
const void *ops;
};
#ifdef RT_USING_I2C
rt_weak const struct rt_i2c_bus_device_ops sci_ops_i2c;
#endif
#ifdef RT_USING_SPI
rt_weak const struct rt_spi_ops sci_ops_spi;
#endif
#ifdef RT_USING_UART
rt_weak const struct rt_uart_ops sci_ops_uart;
#endif
struct ra_sci_object
{
union
{
#ifdef RT_USING_SPI
struct
{
struct rt_spi_bus sbus;
struct rt_spi_configuration *spi_cfg;
};
#endif
#ifdef RT_USING_I2C
struct
{
struct rt_i2c_bus_device ibus;
};
#endif
#ifdef RT_USING_UART
struct
{
struct rt_serial_device ubus;
};
#endif
};
const struct ra_sci_param *param;
struct rt_event event;
};
#ifndef BIT
#define BIT(idx) (1ul << (idx))
#endif
#ifndef BITS
#define BITS(b,e) ((((uint32_t)-1)<<(b))&(((uint32_t)-1)>>(31-(e))))
#endif
#define _TO_STR(_a) #_a
#define CONCAT3STR(_a,_b,_c) _TO_STR(_a##_b##_c)
#define RA_SCI_EVENT_ABORTED BIT(0)
#define RA_SCI_EVENT_RX_COMPLETE BIT(1)
#define RA_SCI_EVENT_TX_COMPLETE BIT(2)
#define RA_SCI_EVENT_ERROR BIT(3)
#define RA_SCI_EVENT_ALL BITS(0,3)
#define RA_SCI_HANDLE_ITEM(idx,type,id) {.bus_name=CONCAT3STR(sci,idx,id),.sci_ctrl=&g_sci##idx##_ctrl,.sci_cfg=&g_sci##idx##_cfg,.ops=&sci_ops_##type}
const static struct ra_sci_param sci_param[] =
{
#ifdef BSP_USING_SCI0
#ifdef BSP_USING_SCI0_SPI
RA_SCI_HANDLE_ITEM(0, spi, s),
#elif defined(BSP_USING_SCI0_I2C)
RA_SCI_HANDLE_ITEM(0, i2c, i),
#elif defined(BSP_USING_SCI0_UART)
RA_SCI_HANDLE_ITEM(0, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI1
#ifdef BSP_USING_SCI1_SPI
RA_SCI_HANDLE_ITEM(1, spi, s),
#elif defined(BSP_USING_SCI1_I2C)
RA_SCI_HANDLE_ITEM(1, i2c, i),
#elif defined(BSP_USING_SCI1_UART)
RA_SCI_HANDLE_ITEM(1, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI2
#ifdef BSP_USING_SCI2_SPI
RA_SCI_HANDLE_ITEM(2, spi, s),
#elif defined(BSP_USING_SCI2_I2C)
RA_SCI_HANDLE_ITEM(2, i2c, i),
#elif defined(BSP_USING_SCI2_UART)
RA_SCI_HANDLE_ITEM(2, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI3
#ifdef BSP_USING_SCI3_SPI
RA_SCI_HANDLE_ITEM(3, spi, s),
#elif defined(BSP_USING_SCI3_I2C)
RA_SCI_HANDLE_ITEM(3, i2c, i),
#elif defined(BSP_USING_SCI3_UART)
RA_SCI_HANDLE_ITEM(3, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI4
#ifdef BSP_USING_SCI4_SPI
RA_SCI_HANDLE_ITEM(4, spi, s),
#elif defined(BSP_USING_SCI4_I2C)
RA_SCI_HANDLE_ITEM(4, i2c, i),
#elif defined(BSP_USING_SCI4_UART)
RA_SCI_HANDLE_ITEM(4, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI5
#ifdef BSP_USING_SCI5_SPI
RA_SCI_HANDLE_ITEM(5, spi, s),
#elif defined(BSP_USING_SCI5_I2C)
RA_SCI_HANDLE_ITEM(5, i2c, i),
#elif defined(BSP_USING_SCI5_UART)
RA_SCI_HANDLE_ITEM(5, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI6
#ifdef BSP_USING_SCI6_SPI
RA_SCI_HANDLE_ITEM(6, spi, s),
#elif defined(BSP_USING_SCI6_I2C)
RA_SCI_HANDLE_ITEM(6, i2c, i),
#elif defined(BSP_USING_SCI6_UART)
RA_SCI_HANDLE_ITEM(6, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI7
#ifdef BSP_USING_SCI7_SPI
RA_SCI_HANDLE_ITEM(7, spi, s),
#elif defined(BSP_USING_SCI7_I2C)
RA_SCI_HANDLE_ITEM(7, i2c, i),
#elif defined(BSP_USING_SCI7_UART)
RA_SCI_HANDLE_ITEM(7, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI8
#ifdef BSP_USING_SCI8_SPI
RA_SCI_HANDLE_ITEM(8, spi, s),
#elif defined(BSP_USING_SCI8_I2C)
RA_SCI_HANDLE_ITEM(8, i2c, i),
#elif defined(BSP_USING_SCI8_UART)
RA_SCI_HANDLE_ITEM(8, uart, u),
#endif
#endif
#ifdef BSP_USING_SCI9
#ifdef BSP_USING_SCI9_SPI
RA_SCI_HANDLE_ITEM(9, spi, s),
#elif defined(BSP_USING_SCI9_I2C)
RA_SCI_HANDLE_ITEM(9, i2c, i),
#elif defined(BSP_USING_SCI9_UART)
RA_SCI_HANDLE_ITEM(9, uart, u),
#endif
#endif
};
static struct ra_sci_object sci_obj[RA_SCI_INDEX_MAX];
rt_used static rt_err_t ra_wait_complete(struct ra_sci_object *obj)
{
rt_uint32_t event = 0;
if (RT_EOK != rt_event_recv(&obj->event, RA_SCI_EVENT_ALL, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, (rt_int32_t)rt_tick_from_millisecond(400), &event))
{
return -RT_ETIMEOUT;
}
if ((event & (RA_SCI_EVENT_ABORTED | RA_SCI_EVENT_ERROR)) == 0)
{
return RT_EOK;
}
return -RT_ERROR;
}
/**
* @brief SCI UART
* @defgroup SCI_UART
* @{
*/
#ifdef BSP_USING_SCIn_UART
const static int uart_buff_size[][2] =
{
#ifdef BSP_USING_SCI0_UART
{BSP_SCI0_UART_RX_BUFSIZE, BSP_SCI0_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI1_UART
{BSP_SCI1_UART_RX_BUFSIZE, BSP_SCI1_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI2_UART
{BSP_SCI2_UART_RX_BUFSIZE, BSP_SCI2_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI3_UART
{BSP_SCI3_UART_RX_BUFSIZE, BSP_SCI3_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI4_UART
{BSP_SCI4_UART_RX_BUFSIZE, BSP_SCI4_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI5_UART
{BSP_SCI5_UART_RX_BUFSIZE, BSP_SCI5_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI6_UART
{BSP_SCI6_UART_RX_BUFSIZE, BSP_SCI6_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI7_UART
{BSP_SCI7_UART_RX_BUFSIZE, BSP_SCI7_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI8_UART
{BSP_SCI8_UART_RX_BUFSIZE, BSP_SCI8_UART_TX_BUFSIZE},
#endif
#ifdef BSP_USING_SCI9_UART
{BSP_SCI9_UART_RX_BUFSIZE, BSP_SCI9_UART_TX_BUFSIZE},
#endif
{0, 0},
};
void sci_uart_irq_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
if (NULL != p_args)
{
struct ra_sci_object *obj = (struct ra_sci_object *)p_args->p_context;
RT_ASSERT(obj != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_device *serial = &obj->ubus;
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
}
rt_interrupt_leave();
}
static rt_err_t ra_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct ra_sci_object *obj;
const struct ra_sci_param *param;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
fsp_err_t err = FSP_SUCCESS;
obj = rt_container_of(serial, struct ra_sci_object, ubus);
param = obj->param;
RT_ASSERT(param != RT_NULL);
err = R_SCI_UART_Open((uart_ctrl_t *const)param->sci_ctrl, (uart_cfg_t *const)param->sci_cfg);
if (FSP_SUCCESS != err)
{
return -RT_ERROR;
}
err = R_SCI_UART_CallbackSet((uart_ctrl_t *const)param->sci_ctrl, sci_uart_irq_callback, obj, NULL);
if (FSP_SUCCESS != err)
{
//LOG_W("R_SCI_UART_CallbackSet API failed,%d", err);
}
return RT_EOK;
}
static rt_err_t ra_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
return RT_EOK;
}
static int ra_uart_putc(struct rt_serial_device *serial, char c)
{
struct ra_sci_object *obj;
const struct ra_sci_param *param;
RT_ASSERT(serial != RT_NULL);
obj = rt_container_of(serial, struct ra_sci_object, ubus);
param = obj->param;
RT_ASSERT(param != RT_NULL);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)param->sci_ctrl;
p_ctrl->p_reg->TDR = c;
while ((p_ctrl->p_reg->SSR_b.TEND) == 0);
return RT_EOK;
}
static int ra_uart_getc(struct rt_serial_device *serial)
{
return RT_EOK;
}
static rt_ssize_t ra_uart_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
rt_uint32_t tx_flag)
{
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(buf != RT_NULL);
return 0;
}
const struct rt_uart_ops sci_ops_uart =
{
.configure = ra_uart_configure,
.control = ra_uart_control,
.putc = ra_uart_putc,
.getc = ra_uart_getc,
.transmit = ra_uart_transmit,
};
#else
void sci_uart_irq_callback(uart_callback_args_t *p_args)
{
}
#endif
/**
* @}
*/
/**
* @brief SCI I2C
* @defgroup SCI_I2C
* @{
*/
#ifdef BSP_USING_SCIn_I2C
void sci_i2c_irq_callback(i2c_master_callback_args_t *p_args)
{
rt_interrupt_enter();
if (NULL != p_args)
{
/* capture callback event for validating the i2c transfer event*/
struct ra_sci_object *obj = (struct ra_sci_object *)p_args->p_context;
uint32_t event = 0;
RT_ASSERT(obj != RT_NULL);
switch (p_args->event)
{
case I2C_MASTER_EVENT_ABORTED:
event |= RA_SCI_EVENT_ABORTED;
break;
case I2C_MASTER_EVENT_RX_COMPLETE:
event |= RA_SCI_EVENT_RX_COMPLETE;
break;
case I2C_MASTER_EVENT_TX_COMPLETE:
event |= RA_SCI_EVENT_TX_COMPLETE;
break;
}
rt_event_send(&obj->event, event);
LOG_D("event:%x", p_args->event);
}
rt_interrupt_leave();
LOG_D("p_args:%p", p_args);
}
static rt_ssize_t ra_i2c_mst_xfer(struct rt_i2c_bus_device *bus,
struct rt_i2c_msg msgs[],
rt_uint32_t num)
{
rt_size_t i;
RT_ASSERT(bus != RT_NULL);
struct ra_sci_object *obj = rt_container_of(bus, struct ra_sci_object, ibus);
const struct ra_sci_param *param = obj->param;
i2c_master_ctrl_t *master_ctrl = (i2c_master_ctrl_t *)param->sci_ctrl;
int err = FSP_SUCCESS;
bool restart = false;
for (i = 0; i < num; i++)
{
struct rt_i2c_msg *msg = &msgs[i];
if (msg->flags & RT_I2C_NO_STOP)
{
restart = true;
}
else
{
restart = false;
}
if (msg->flags & RT_I2C_ADDR_10BIT)
{
//LOG_E("10Bit not support");
//break;
#ifdef SOC_SERIES_R7FA8M85
R_SCI_B_I2C_SlaveAddressSet(master_ctrl, msg->addr, I2C_MASTER_ADDR_MODE_10BIT);
#else
R_SCI_I2C_SlaveAddressSet(master_ctrl, msg->addr, I2C_MASTER_ADDR_MODE_10BIT);
#endif
}
else
{
//master_ctrl->slave = msg->addr;
#ifdef SOC_SERIES_R7FA8M85
R_SCI_B_I2C_SlaveAddressSet(master_ctrl, msg->addr, I2C_MASTER_ADDR_MODE_7BIT);
#else
R_SCI_I2C_SlaveAddressSet(master_ctrl, msg->addr, I2C_MASTER_ADDR_MODE_7BIT);
#endif
}
if (msg->flags & RT_I2C_RD)
{
#ifdef SOC_SERIES_R7FA8M85
err = R_SCI_B_I2C_Read(master_ctrl, msg->buf, msg->len, restart);
#else
err = R_SCI_I2C_Read(master_ctrl, msg->buf, msg->len, restart);
#endif
}
else
{
#ifdef SOC_SERIES_R7FA8M85
err = R_SCI_B_I2C_Write(master_ctrl, msg->buf, msg->len, restart);
#else
err = R_SCI_I2C_Write(master_ctrl, msg->buf, msg->len, restart);
#endif
}
if (FSP_SUCCESS == err)
{
/* handle error */
err = ra_wait_complete(obj);
if (RT_EOK != err)
{
//LOG_E("POWER_CTL reg I2C write failed,%d,%d", err, i);
break;
}
}
/* handle error */
else
{
/* Write API returns itself is not successful */
LOG_E("R_IIC_MASTER_Write/Read API failed,%d", i);
break;
}
}
return (rt_ssize_t)i;
}
const struct rt_i2c_bus_device_ops sci_ops_i2c =
{
.master_xfer = ra_i2c_mst_xfer,
.slave_xfer = RT_NULL,
.i2c_bus_control = RT_NULL
};
#endif
/**
* @}
*/
/**
* @brief SCI SPI
* @defgroup SCI_SPI
* @{
*/
#ifdef BSP_USING_SCIn_SPI
void sci_spi_irq_callback(spi_callback_args_t *p_args)
{
rt_interrupt_enter();
if (NULL != p_args)
{
/* capture callback event for validating the i2c transfer event*/
struct ra_sci_object *obj = (struct ra_sci_object *)p_args->p_context;
uint32_t event = 0;
switch (p_args->event)
{
case SPI_EVENT_ERR_MODE_FAULT :
case SPI_EVENT_ERR_READ_OVERFLOW:
case SPI_EVENT_ERR_PARITY :
case SPI_EVENT_ERR_OVERRUN :
case SPI_EVENT_ERR_FRAMING :
case SPI_EVENT_ERR_MODE_UNDERRUN:
event |= RA_SCI_EVENT_ERROR;
break;
case SPI_EVENT_TRANSFER_ABORTED :
event |= RA_SCI_EVENT_ABORTED;
break;
case SPI_EVENT_TRANSFER_COMPLETE:
event |= RA_SCI_EVENT_TX_COMPLETE;
break;
}
rt_event_send(&obj->event, event);
LOG_D("event:%x", p_args->event);
}
rt_interrupt_leave();
LOG_D("p_args:%p", p_args);
}
static spi_bit_width_t ra_width_shift(rt_uint8_t data_width)
{
spi_bit_width_t bit_width = SPI_BIT_WIDTH_8_BITS;
if (data_width == 1)
bit_width = SPI_BIT_WIDTH_8_BITS;
else if (data_width == 2)
bit_width = SPI_BIT_WIDTH_16_BITS;
else if (data_width == 4)
bit_width = SPI_BIT_WIDTH_32_BITS;
return bit_width;
}
static rt_err_t ra_write_message(struct rt_spi_device *device, const void *send_buf, const rt_size_t len)
{
RT_ASSERT(device != NULL);
RT_ASSERT(send_buf != NULL);
RT_ASSERT(len > 0);
rt_err_t err = RT_EOK;
struct ra_sci_object *obj = rt_container_of(device->bus, struct ra_sci_object, sbus);
const struct ra_sci_param *param = obj->param;
spi_bit_width_t bit_width = ra_width_shift(obj->spi_cfg->data_width);
/**< send msessage */
err = R_SCI_SPI_Write((spi_ctrl_t *)param->sci_ctrl, send_buf, len, bit_width);
if (RT_EOK != err)
{
LOG_E("%s write failed. %d", param->bus_name, err);
return -RT_ERROR;
}
/* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */
ra_wait_complete(obj);
return len;
}
static rt_err_t ra_read_message(struct rt_spi_device *device, void *recv_buf, const rt_size_t len)
{
RT_ASSERT(device != NULL);
RT_ASSERT(recv_buf != NULL);
RT_ASSERT(len > 0);
rt_err_t err = RT_EOK;
struct ra_sci_object *obj = rt_container_of(device->bus, struct ra_sci_object, sbus);
const struct ra_sci_param *param = obj->param;
spi_bit_width_t bit_width = ra_width_shift(obj->spi_cfg->data_width);
/**< receive message */
err = R_SCI_SPI_Read((spi_ctrl_t *)param->sci_ctrl, recv_buf, len, bit_width);
if (RT_EOK != err)
{
LOG_E("%s write failed. %d", param->bus_name, err);
return -RT_ERROR;
}
/* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */
ra_wait_complete(obj);
return len;
}
static rt_err_t ra_write_read_message(struct rt_spi_device *device, struct rt_spi_message *message)
{
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
RT_ASSERT(message->length > 0);
rt_err_t err = RT_EOK;
struct ra_sci_object *obj = rt_container_of(device->bus, struct ra_sci_object, sbus);
const struct ra_sci_param *param = obj->param;
spi_bit_width_t bit_width = ra_width_shift(obj->spi_cfg->data_width);
/**< write and receive message */
err = R_SCI_SPI_WriteRead((spi_ctrl_t *)param->sci_ctrl, message->send_buf, message->recv_buf, message->length, bit_width);
if (RT_EOK != err)
{
LOG_E("%s write and read failed. %d", param->bus_name, err);
return -RT_ERROR;
}
/* Wait for SPI_EVENT_TRANSFER_COMPLETE callback event. */
ra_wait_complete(obj);
return message->length;
}
/**< init spi TODO : MSB does not support modification */
static rt_err_t ra_hw_spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != NULL);
RT_ASSERT(configuration != NULL);
rt_err_t err = RT_EOK;
struct ra_sci_object *obj = rt_container_of(device->bus, struct ra_sci_object, sbus);
const struct ra_sci_param *param = obj->param;
const spi_cfg_t *cfg = (const spi_cfg_t *)param->sci_cfg;
/**< data_width : 1 -> 8 bits , 2 -> 16 bits, 4 -> 32 bits, default 32 bits*/
rt_uint8_t data_width = configuration->data_width / 8;
RT_ASSERT(data_width == 1 || data_width == 2 || data_width == 4);
configuration->data_width = configuration->data_width / 8;
obj->spi_cfg = configuration;
#ifdef R_SCI_B_SPI_H
sci_b_spi_extended_cfg_t spi_cfg = *(sci_b_spi_extended_cfg_t *)cfg->p_extend;
#else
sci_spi_extended_cfg_t *spi_cfg = (sci_spi_extended_cfg_t *)cfg->p_extend;
#endif
/**< Configure Select Line */
rt_pin_write(device->cs_pin, PIN_HIGH);
/**< config bitrate */
#ifdef R_SCI_B_SPI_H
R_SCI_B_SPI_CalculateBitrate(obj->spi_cfg->max_hz, SCI_B_SPI_SOURCE_CLOCK_PCLK, &spi_cfg.clk_div);
#else
R_SCI_SPI_CalculateBitrate(obj->spi_cfg->max_hz, &cfg_ext->clk_div, false);
#endif
/**< init */
err = R_SCI_SPI_Open((spi_ctrl_t *)param->sci_ctrl, cfg);
/* handle error */
if (err == FSP_ERR_IN_USE)
{
R_SCI_SPI_Close((spi_ctrl_t *)param->sci_ctrl);
err = R_SCI_SPI_Open((spi_ctrl_t *)param->sci_ctrl, cfg);
}
if (RT_EOK != err)
{
LOG_E("%s init failed. %d", param->bus_name, err);
return -RT_ERROR;
}
err = R_SCI_SPI_CallbackSet((spi_ctrl_t *)param->sci_ctrl, sci_spi_irq_callback, obj, NULL);
if (FSP_SUCCESS != err)
{
LOG_E("R_SCI_I2C_CallbackSet API failed,%d", err);
}
return RT_EOK;
}
static rt_ssize_t ra_spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
rt_err_t err = RT_EOK;
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
{
if (device->config.mode & RT_SPI_CS_HIGH)
rt_pin_write(device->cs_pin, PIN_HIGH);
else
rt_pin_write(device->cs_pin, PIN_LOW);
}
if (message->length > 0)
{
if (message->send_buf == RT_NULL && message->recv_buf != RT_NULL)
{
/**< receive message */
err = ra_read_message(device, (void *)message->recv_buf, (const rt_size_t)message->length);
}
else if (message->send_buf != RT_NULL && message->recv_buf == RT_NULL)
{
/**< send message */
err = ra_write_message(device, (const void *)message->send_buf, (const rt_size_t)message->length);
}
else if (message->send_buf != RT_NULL && message->recv_buf != RT_NULL)
{
/**< send and receive message */
err = ra_write_read_message(device, message);
}
}
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
{
if (device->config.mode & RT_SPI_CS_HIGH)
rt_pin_write(device->cs_pin, PIN_LOW);
else
rt_pin_write(device->cs_pin, PIN_HIGH);
}
return err;
}
const struct rt_spi_ops sci_ops_spi =
{
.configure = ra_hw_spi_configure,
.xfer = ra_spixfer,
};
#endif
/**
* @}
*/
static int ra_hw_sci_init(void)
{
for (rt_uint8_t idx = 0; idx < RA_SCI_INDEX_MAX; idx++)
{
struct ra_sci_object *obj = &sci_obj[idx];
const struct ra_sci_param *param = &sci_param[idx];
obj->param = param;
rt_err_t err;
#ifdef BSP_USING_SCIn_SPI
if ((uint32_t)param->ops == (uint32_t)&sci_ops_spi)
{
/**< register spi bus */
err = rt_spi_bus_register(&obj->sbus, param->bus_name, param->ops);
if (RT_EOK != err)
{
LOG_E("bus %s register failed. %d", param->bus_name, err);
return -RT_ERROR;
}
}
else
#endif
#ifdef BSP_USING_SCIn_I2C
if ((uint32_t)param->ops == (uint32_t)&sci_ops_i2c)
{
obj->ibus.ops = param->ops;
obj->ibus.priv = 0;
/* opening IIC master module */
#ifdef SOC_SERIES_R7FA8M85
err = R_SCI_B_I2C_Open((i2c_master_ctrl_t *)param->sci_ctrl, param->sci_cfg);
#else
err = R_SCI_I2C_Open((i2c_master_ctrl_t *)param->sci_ctrl, param->sci_cfg);
#endif
if (err != FSP_SUCCESS)
{
LOG_E("R_IIC_MASTER_Open API failed,%d", err);
continue;
}
#ifdef SOC_SERIES_R7FA8M85
err = R_SCI_B_I2C_CallbackSet((i2c_master_ctrl_t *)param->sci_ctrl, sci_i2c_irq_callback, obj, NULL);
#else
err = R_SCI_I2C_CallbackSet((i2c_master_ctrl_t *)param->sci_ctrl, sci_i2c_irq_callback, obj, NULL);
#endif
/* handle error */
if (FSP_SUCCESS != err)
{
LOG_E("R_SCI_I2C_CallbackSet API failed,%d", err);
continue;
}
err = rt_i2c_bus_device_register(&obj->ibus, param->bus_name);
if (RT_EOK != err)
{
LOG_E("i2c bus %s register failed,%d", param->bus_name, err);
continue;
}
}
else
#endif
#ifdef BSP_USING_SCIn_UART
if ((uint32_t)param->ops == (uint32_t)&sci_ops_uart)
{
if (rt_device_find(param->bus_name) != RT_NULL)
{
continue;
}
struct rt_serial_device *serial = &obj->ubus;
obj->ubus.ops = param->ops;
serial->config.rx_bufsz = uart_buff_size[bufsz_idx][0];
serial->config.tx_bufsz = uart_buff_size[bufsz_idx][1];
bufsz_idx ++;
err = rt_hw_serial_register(serial, param->bus_name, RT_DEVICE_FLAG_RDWR, RT_NULL);
if (RT_EOK != err)
{
LOG_E("uart %s register failed,%d", param->bus_name, err);
continue;
}
}
#endif
{
}
if (RT_EOK != rt_event_init(&obj->event, param->bus_name, RT_IPC_FLAG_PRIO))
{
LOG_E("sci event init fail!");
return -RT_ERROR;
}
}
return RT_EOK;
}
INIT_BOARD_EXPORT(ra_hw_sci_init);
#ifdef BSP_USING_SCIn_UART
rt_weak int rt_hw_usart_init(void)
{
int bufsz_idx = 0;
for (rt_uint8_t idx = 0; idx < RA_SCI_INDEX_MAX; idx++)
{
struct ra_sci_object *obj = &sci_obj[idx];
const struct ra_sci_param *param = &sci_param[idx];
obj->param = param;
rt_err_t err;
if ((uint32_t)param->ops == (uint32_t)&sci_ops_uart)
{
if (rt_device_find(param->bus_name) != RT_NULL)
{
continue;
}
struct rt_serial_device *serial = &obj->ubus;
obj->ubus.ops = param->ops;
serial->config.rx_bufsz = uart_buff_size[bufsz_idx][0];
serial->config.tx_bufsz = uart_buff_size[bufsz_idx][1];
bufsz_idx ++;
err = rt_hw_serial_register(serial, param->bus_name, RT_DEVICE_FLAG_RDWR, RT_NULL);
if (RT_EOK != err)
{
continue;
}
if (RT_EOK != rt_event_init(&obj->event, param->bus_name, RT_IPC_FLAG_PRIO))
{
return -RT_ERROR;
}
}
}
return RT_EOK;
}
#endif
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
#ifdef BSP_USING_SCIn_SPI
rt_err_t rt_hw_sci_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#endif
#endif /* BSP_USING_SCI */