rt-thread/bsp/nuvoton/libraries/ma35/rtt_port/drv_pdma.c

1266 lines
39 KiB
C
Raw Normal View History

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-7-15 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_PDMA)
#include <rtdevice.h>
#include <rtthread.h>
#include <drv_pdma.h>
#include <nu_bitutil.h>
#include "drv_sys.h"
/* Private define ---------------------------------------------------------------*/
// RT_DEV_NAME_PREFIX pdma
#ifndef NU_PDMA_MEMFUN_ACTOR_MAX
#define NU_PDMA_MEMFUN_ACTOR_MAX (4)
#endif
/* To select the first PDMA base */
#if !defined(USE_MA35D1_SUBM)
#define DEF_PDMA_BASE_START PDMA0_BASE
#else
#define DEF_PDMA_BASE_START PDMA2_BASE
#endif
enum
{
PDMA_START = -1,
#if defined(BSP_USING_PDMA0)
PDMA0_IDX,
#endif
#if defined(BSP_USING_PDMA1)
PDMA1_IDX,
#endif
#if defined(BSP_USING_PDMA2)
PDMA2_IDX,
#endif
#if defined(BSP_USING_PDMA3)
PDMA3_IDX,
#endif
PDMA_CNT
};
#define NU_PDMA_SG_TBL_MAXSIZE (NU_PDMA_SG_LIMITED_DISTANCE/sizeof(DSCT_T))
#define NU_PDMA_CH_MAX (PDMA_CNT*PDMA_CH_MAX) /* Specify maximum channels of PDMA */
#define NU_PDMA_CH_Pos (0) /* Specify first channel number of PDMA */
#define NU_PDMA_CH_Msk (PDMA_CH_Msk << NU_PDMA_CH_Pos)
#define NU_PDMA_GET_BASE(ch) (PDMA_T *)((((ch)/PDMA_CH_MAX)*0x10000UL) + DEF_PDMA_BASE_START)
#define NU_PDMA_GET_MOD_IDX(ch) ((ch)/PDMA_CH_MAX)
#define NU_PDMA_GET_MOD_CHIDX(ch) ((ch)%PDMA_CH_MAX)
/* Private typedef --------------------------------------------------------------*/
struct nu_pdma_periph_ctl
{
uint32_t m_u32Peripheral;
nu_pdma_memctrl_t m_eMemCtl;
};
typedef struct nu_pdma_periph_ctl nu_pdma_periph_ctl_t;
struct nu_pdma_chn
{
struct nu_pdma_chn_cb m_sCB_Event;
struct nu_pdma_chn_cb m_sCB_Trigger;
struct nu_pdma_chn_cb m_sCB_Disable;
nu_pdma_desc_t *m_ppsSgtbl;
uint32_t m_u32WantedSGTblNum;
uint32_t m_u32EventFilter;
uint32_t m_u32IdleTimeout_us;
nu_pdma_periph_ctl_t m_spPeripCtl;
};
typedef struct nu_pdma_chn nu_pdma_chn_t;
struct nu_pdma_memfun_actor
{
int m_i32ChannID;
uint32_t m_u32Result;
rt_sem_t m_psSemMemFun;
} ;
typedef struct nu_pdma_memfun_actor *nu_pdma_memfun_actor_t;
/* Private functions ------------------------------------------------------------*/
static int nu_pdma_peripheral_set(uint32_t u32PeriphType);
static void nu_pdma_init(void);
static void nu_pdma_channel_enable(int i32ChannID);
static void nu_pdma_channel_disable(int i32ChannID);
static void nu_pdma_channel_reset(int i32ChannID);
static rt_err_t nu_pdma_timeout_set(int i32ChannID, int i32Timeout_us);
static void nu_pdma_periph_ctrl_fill(int i32ChannID, int i32CtlPoolIdx);
static rt_size_t nu_pdma_memfun(void *dest, void *src, uint32_t u32DataWidth, unsigned int u32TransferCnt, nu_pdma_memctrl_t eMemCtl);
static void nu_pdma_memfun_cb(void *pvUserData, uint32_t u32Events);
static void nu_pdma_memfun_actor_init(void);
static int nu_pdma_memfun_employ(void);
static int nu_pdma_non_transfer_count_get(int32_t i32ChannID);
/* Public functions -------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static volatile int nu_pdma_inited = 0;
static volatile uint32_t nu_pdma_chn_mask_arr[PDMA_CNT] = {0};
static nu_pdma_chn_t nu_pdma_chn_arr[NU_PDMA_CH_MAX];
static volatile uint32_t nu_pdma_memfun_actor_mask = 0;
static volatile uint32_t nu_pdma_memfun_actor_maxnum = 0;
static rt_sem_t nu_pdma_memfun_actor_pool_sem = RT_NULL;
static rt_mutex_t nu_pdma_memfun_actor_pool_lock = RT_NULL;
static void nu_pdma_isr(int vector, void *pvdata);
const static struct nu_module nu_pdma_arr[] =
{
#if defined(BSP_USING_PDMA0)
{
.name = "pdma0",
.m_pvBase = (void *)PDMA0,
.u32RstId = PDMA0_RST,
.eIRQn = PDMA0_IRQn
},
#endif
#if defined(BSP_USING_PDMA1)
{
.name = "pdma1",
.m_pvBase = (void *)PDMA1,
.u32RstId = PDMA1_RST,
.eIRQn = PDMA1_IRQn
},
#endif
#if defined(BSP_USING_PDMA2)
{
.name = "pdma2",
.m_pvBase = (void *)PDMA2,
.u32RstId = PDMA2_RST,
.eIRQn = PDMA2_IRQn
},
#endif
#if defined(BSP_USING_PDMA3)
{
.name = "pdma3",
.m_pvBase = (void *)PDMA3,
.u32RstId = PDMA3_RST,
.eIRQn = PDMA3_IRQn
}
#endif
};
static const nu_pdma_periph_ctl_t g_nu_pdma_peripheral_ctl_pool[ ] =
{
// M2M
{ PDMA_MEM, eMemCtl_SrcInc_DstInc },
// M2P
{ PDMA_UART0_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART1_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART2_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART3_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART4_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART5_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART6_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART7_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART8_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART9_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART10_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART11_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART12_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART13_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART14_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART15_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_UART16_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_QSPI0_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_QSPI1_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_SPI0_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_SPI1_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_SPI2_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_SPI3_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C0_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C1_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C2_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C3_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C4_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2C5_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2S0_TX, eMemCtl_SrcInc_DstFix },
{ PDMA_I2S1_TX, eMemCtl_SrcInc_DstFix },
// P2M
{ PDMA_UART0_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART1_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART2_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART3_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART4_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART5_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART6_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART7_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART8_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART9_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART10_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART11_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART12_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART13_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART14_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART15_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_UART16_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_QSPI0_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_QSPI1_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_SPI0_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_SPI1_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_SPI2_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_SPI3_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C0_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C1_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C2_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C3_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C4_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2C5_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2S0_RX, eMemCtl_SrcFix_DstInc },
{ PDMA_I2S1_RX, eMemCtl_SrcFix_DstInc },
};
#define NU_PERIPHERAL_SIZE ( sizeof(g_nu_pdma_peripheral_ctl_pool) / sizeof(g_nu_pdma_peripheral_ctl_pool[0]) )
static struct nu_pdma_memfun_actor nu_pdma_memfun_actor_arr[NU_PDMA_MEMFUN_ACTOR_MAX];
static int nu_pdma_check_is_nonallocated(uint32_t u32ChnId)
{
uint32_t mod_idx = NU_PDMA_GET_MOD_IDX(u32ChnId);
RT_ASSERT(mod_idx < PDMA_CNT);
return !(nu_pdma_chn_mask_arr[mod_idx] & (1 << NU_PDMA_GET_MOD_CHIDX(u32ChnId)));
}
static int nu_pdma_peripheral_set(uint32_t u32PeriphType)
{
int idx = 0;
while (idx < NU_PERIPHERAL_SIZE)
{
if (g_nu_pdma_peripheral_ctl_pool[idx].m_u32Peripheral == u32PeriphType)
return idx;
idx++;
}
// Not such peripheral
return -1;
}
static void nu_pdma_periph_ctrl_fill(int i32ChannID, int i32CtlPoolIdx)
{
nu_pdma_chn_t *psPdmaChann = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos];
psPdmaChann->m_spPeripCtl.m_u32Peripheral = g_nu_pdma_peripheral_ctl_pool[i32CtlPoolIdx].m_u32Peripheral;
psPdmaChann->m_spPeripCtl.m_eMemCtl = g_nu_pdma_peripheral_ctl_pool[i32CtlPoolIdx].m_eMemCtl;
}
/**
* Hardware PDMA Initialization
*/
static void nu_pdma_init(void)
{
int i;
if (nu_pdma_inited)
return;
rt_memset(nu_pdma_chn_arr, 0x00, NU_PDMA_CH_MAX * sizeof(nu_pdma_chn_t));
for (i = (PDMA_START + 1); i < PDMA_CNT; i++)
{
nu_pdma_chn_mask_arr[i] = ~(NU_PDMA_CH_Msk);
nu_sys_ip_reset(nu_pdma_arr[i].u32RstId);
/* Initialize PDMA setting */
PDMA_Open((PDMA_T *)nu_pdma_arr[i].m_pvBase, PDMA_CH_Msk);
PDMA_Close((PDMA_T *)nu_pdma_arr[i].m_pvBase);
/* Register PDMA ISR */
rt_hw_interrupt_install(nu_pdma_arr[i].eIRQn, nu_pdma_isr, nu_pdma_arr[i].m_pvBase, nu_pdma_arr[i].name);
rt_hw_interrupt_umask(nu_pdma_arr[i].eIRQn);
}
nu_pdma_inited = 1;
}
static inline void nu_pdma_channel_enable(int i32ChannID)
{
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
int u32ModChannId = NU_PDMA_GET_MOD_CHIDX(i32ChannID);
/* Clean descriptor table control register. */
PDMA->DSCT[u32ModChannId].CTL = 0UL;
/* Enable the channel */
PDMA->CHCTL |= (1 << u32ModChannId);
}
static inline void nu_pdma_channel_disable(int i32ChannID)
{
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
PDMA->CHCTL &= ~(1 << NU_PDMA_GET_MOD_CHIDX(i32ChannID));
}
static inline void nu_pdma_channel_reset(int i32ChannID)
{
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
int u32ModChannId = NU_PDMA_GET_MOD_CHIDX(i32ChannID);
PDMA->CHRST = (1 << u32ModChannId);
/* Wait for cleared channel CHCTL. */
while ((PDMA->CHCTL & (1 << u32ModChannId)));
}
void nu_pdma_channel_terminate(int i32ChannID)
{
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_pdma_channel_terminate;
/* Reset specified channel. */
nu_pdma_channel_reset(i32ChannID);
/* Enable specified channel after reset. */
nu_pdma_channel_enable(i32ChannID);
exit_pdma_channel_terminate:
return;
}
static rt_err_t nu_pdma_timeout_set(int i32ChannID, int i32Timeout_us)
{
rt_err_t ret = RT_EINVAL;
PDMA_T *PDMA = NULL;
uint32_t u32ModChannId;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_timeout_set;
PDMA = NU_PDMA_GET_BASE(i32ChannID);
u32ModChannId = NU_PDMA_GET_MOD_CHIDX(i32ChannID);
nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_u32IdleTimeout_us = i32Timeout_us;
if (i32Timeout_us)
{
uint32_t u32ToClk_Max = 1000000ul / (CLK_GetSYSCLK1Freq() / (1 << 8));
uint32_t u32Divider = (i32Timeout_us / u32ToClk_Max) / (1 << 16);
uint32_t u32TOutCnt = (i32Timeout_us / u32ToClk_Max) % (1 << 16);
PDMA_DisableTimeout(PDMA, 1 << u32ModChannId);
PDMA_EnableInt(PDMA, u32ModChannId, PDMA_INT_TIMEOUT); // Interrupt type
if (u32Divider > 7)
{
u32Divider = 7;
u32TOutCnt = (1 << 16) - 1;
}
if (u32ModChannId < 8)
PDMA->TOUTPSC = (PDMA->TOUTPSC & ~(0x7ul << (PDMA_TOUTPSC_TOUTPSC1_Pos * u32ModChannId))) | (u32Divider << (PDMA_TOUTPSC_TOUTPSC1_Pos * u32ModChannId));
else
PDMA->TOUTPSC1 = (PDMA->TOUTPSC1 & ~(0x7ul << (PDMA_TOUTPSC_TOUTPSC1_Pos * u32ModChannId))) | (u32Divider << (PDMA_TOUTPSC_TOUTPSC1_Pos * u32ModChannId));
//rt_kprintf("[%d]HCLK=%d, u32Divider=%d, u32TOutCnt=%d\n", i32Timeout_us, CLK_GetSYSCLK1Freq(), u32Divider, u32TOutCnt );
PDMA_SetTimeOut(PDMA, u32ModChannId, 1, u32TOutCnt);
ret = RT_EOK;
}
else
{
PDMA_DisableInt(PDMA, u32ModChannId, PDMA_INT_TIMEOUT); // Interrupt type
PDMA_DisableTimeout(PDMA, 1 << u32ModChannId);
}
exit_nu_pdma_timeout_set:
return -(ret);
}
int nu_pdma_channel_allocate(int32_t i32PeripType)
{
int ChnId, i32PeripCtlIdx, j;
nu_pdma_init();
if ((i32PeripCtlIdx = nu_pdma_peripheral_set(i32PeripType)) < 0)
goto exit_nu_pdma_channel_allocate;
for (j = (PDMA_START + 1); j < PDMA_CNT; j++)
{
/* Find the position of first '0' in nu_pdma_chn_mask_arr[j]. */
ChnId = nu_cto(nu_pdma_chn_mask_arr[j]);
if (ChnId < PDMA_CH_MAX)
{
nu_pdma_chn_mask_arr[j] |= (1 << ChnId);
ChnId += (j * PDMA_CH_MAX);
rt_memset(nu_pdma_chn_arr + ChnId - NU_PDMA_CH_Pos, 0x00, sizeof(nu_pdma_chn_t));
/* Set idx number of g_nu_pdma_peripheral_ctl_pool */
nu_pdma_periph_ctrl_fill(ChnId, i32PeripCtlIdx);
/* Reset channel */
nu_pdma_channel_terminate(ChnId);
return ChnId;
}
}
exit_nu_pdma_channel_allocate:
// No channel available
return -(RT_ERROR);
}
rt_err_t nu_pdma_channel_free(int i32ChannID)
{
rt_err_t ret = RT_EINVAL;
if (! nu_pdma_inited)
goto exit_nu_pdma_channel_free;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_channel_free;
if ((i32ChannID < NU_PDMA_CH_MAX) && (i32ChannID >= NU_PDMA_CH_Pos))
{
nu_pdma_chn_mask_arr[NU_PDMA_GET_MOD_IDX(i32ChannID)] &= ~(1 << NU_PDMA_GET_MOD_CHIDX(i32ChannID));
nu_pdma_channel_disable(i32ChannID);
ret = RT_EOK;
}
exit_nu_pdma_channel_free:
return -(ret);
}
rt_err_t nu_pdma_filtering_set(int i32ChannID, uint32_t u32EventFilter)
{
rt_err_t ret = RT_EINVAL;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_filtering_set;
nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_u32EventFilter = u32EventFilter;
ret = RT_EOK;
exit_nu_pdma_filtering_set:
return -(ret) ;
}
uint32_t nu_pdma_filtering_get(int i32ChannID)
{
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_filtering_get;
return nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_u32EventFilter;
exit_nu_pdma_filtering_get:
return 0;
}
rt_err_t nu_pdma_callback_register(int i32ChannID, nu_pdma_chn_cb_t psChnCb)
{
rt_err_t ret = RT_EINVAL;
nu_pdma_chn_cb_t psChnCb_Current = RT_NULL;
RT_ASSERT(psChnCb != RT_NULL);
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_callback_register;
switch (psChnCb->m_eCBType)
{
case eCBType_Event:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Event;
break;
case eCBType_Trigger:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Trigger;
break;
case eCBType_Disable:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Disable;
break;
default:
goto exit_nu_pdma_callback_register;
}
psChnCb_Current->m_pfnCBHandler = psChnCb->m_pfnCBHandler;
psChnCb_Current->m_pvUserData = psChnCb->m_pvUserData;
ret = RT_EOK;
exit_nu_pdma_callback_register:
return -(ret) ;
}
nu_pdma_cb_handler_t nu_pdma_callback_hijack(int i32ChannID, nu_pdma_cbtype_t eCBType, nu_pdma_chn_cb_t psChnCb_Hijack)
{
nu_pdma_chn_cb_t psChnCb_Current = RT_NULL;
struct nu_pdma_chn_cb sChnCB_Tmp;
RT_ASSERT(psChnCb_Hijack != NULL);
sChnCB_Tmp.m_pfnCBHandler = RT_NULL;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_callback_hijack;
switch (eCBType)
{
case eCBType_Event:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Event;
break;
case eCBType_Trigger:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Trigger;
break;
case eCBType_Disable:
psChnCb_Current = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_sCB_Disable;
break;
default:
goto exit_nu_pdma_callback_hijack;
}
/* Backup */
sChnCB_Tmp.m_pfnCBHandler = psChnCb_Current->m_pfnCBHandler;
sChnCB_Tmp.m_pvUserData = psChnCb_Current->m_pvUserData;
/* Update */
psChnCb_Current->m_pfnCBHandler = psChnCb_Hijack->m_pfnCBHandler;
psChnCb_Current->m_pvUserData = psChnCb_Hijack->m_pvUserData;
/* Restore */
psChnCb_Hijack->m_pfnCBHandler = sChnCB_Tmp.m_pfnCBHandler;
psChnCb_Hijack->m_pvUserData = sChnCB_Tmp.m_pvUserData;
exit_nu_pdma_callback_hijack:
return sChnCB_Tmp.m_pfnCBHandler;
}
static int nu_pdma_non_transfer_count_get(int32_t i32ChannID)
{
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
return ((PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)].CTL & PDMA_DSCT_CTL_TXCNT_Msk) >> PDMA_DSCT_CTL_TXCNT_Pos) + 1;
}
int nu_pdma_transferred_byte_get(int32_t i32ChannID, int32_t i32TriggerByteLen)
{
int i32BitWidth = 0;
int cur_txcnt = 0;
PDMA_T *PDMA;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_transferred_byte_get;
PDMA = NU_PDMA_GET_BASE(i32ChannID);
if ((PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)].CTL & PDMA_DSCT_CTL_OPMODE_Msk) != PDMA_OP_SCATTER)
{
i32BitWidth = PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)].CTL & PDMA_DSCT_CTL_TXWIDTH_Msk;
i32BitWidth = (i32BitWidth == PDMA_WIDTH_8) ? 1 : (i32BitWidth == PDMA_WIDTH_16) ? 2 : (i32BitWidth == PDMA_WIDTH_32) ? 4 : 0;
cur_txcnt = nu_pdma_non_transfer_count_get(i32ChannID);
// rt_kprintf("\n[%s] %d %d %02x\n", __func__, i32ChannID, cur_txcnt, (PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)].CTL & PDMA_DSCT_CTL_OPMODE_Msk) );
return (i32TriggerByteLen - (cur_txcnt) * i32BitWidth);
}
// rt_kprintf("\n@@@@ %d %02x @@@@\n", i32ChannID, PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)].CTL & PDMA_DSCT_CTL_OPMODE_Msk);
return 0;
exit_nu_pdma_transferred_byte_get:
return -1;
}
nu_pdma_memctrl_t nu_pdma_channel_memctrl_get(int i32ChannID)
{
nu_pdma_memctrl_t eMemCtrl = eMemCtl_Undefined;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_channel_memctrl_get;
eMemCtrl = nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_spPeripCtl.m_eMemCtl;
exit_nu_pdma_channel_memctrl_get:
return eMemCtrl;
}
rt_err_t nu_pdma_channel_memctrl_set(int i32ChannID, nu_pdma_memctrl_t eMemCtrl)
{
rt_err_t ret = RT_EINVAL;
nu_pdma_chn_t *psPdmaChann = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos];
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_channel_memctrl_set;
else if ((eMemCtrl < eMemCtl_SrcFix_DstFix) || (eMemCtrl > eMemCtl_SrcInc_DstInc))
goto exit_nu_pdma_channel_memctrl_set;
/* PDMA_MEM/SAR_FIX/BURST mode is not supported. */
if ((psPdmaChann->m_spPeripCtl.m_u32Peripheral == PDMA_MEM) &&
((eMemCtrl == eMemCtl_SrcFix_DstInc) || (eMemCtrl == eMemCtl_SrcFix_DstFix)))
goto exit_nu_pdma_channel_memctrl_set;
nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_spPeripCtl.m_eMemCtl = eMemCtrl;
ret = RT_EOK;
exit_nu_pdma_channel_memctrl_set:
return -(ret);
}
static void nu_pdma_channel_memctrl_fill(nu_pdma_memctrl_t eMemCtl, uint32_t *pu32SrcCtl, uint32_t *pu32DstCtl)
{
switch ((int)eMemCtl)
{
case eMemCtl_SrcFix_DstFix:
*pu32SrcCtl = PDMA_SAR_FIX;
*pu32DstCtl = PDMA_DAR_FIX;
break;
case eMemCtl_SrcFix_DstInc:
*pu32SrcCtl = PDMA_SAR_FIX;
*pu32DstCtl = PDMA_DAR_INC;
break;
case eMemCtl_SrcInc_DstFix:
*pu32SrcCtl = PDMA_SAR_INC;
*pu32DstCtl = PDMA_DAR_FIX;
break;
case eMemCtl_SrcInc_DstInc:
*pu32SrcCtl = PDMA_SAR_INC;
*pu32DstCtl = PDMA_DAR_INC;
break;
default:
break;
}
}
/* This is for Scatter-gather DMA. */
rt_err_t nu_pdma_desc_setup(int i32ChannID, nu_pdma_desc_t dma_desc, uint32_t u32DataWidth, uint32_t u32AddrSrc,
uint32_t u32AddrDst, int32_t i32TransferCnt, nu_pdma_desc_t next, uint32_t u32BeSilent)
{
nu_pdma_periph_ctl_t *psPeriphCtl = NULL;
uint32_t u32SrcCtl = 0;
uint32_t u32DstCtl = 0;
rt_err_t ret = RT_EINVAL;
if (!dma_desc)
goto exit_nu_pdma_desc_setup;
else if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_desc_setup;
else if (!(u32DataWidth == 8 || u32DataWidth == 16 || u32DataWidth == 32))
goto exit_nu_pdma_desc_setup;
else if ((u32AddrSrc % (u32DataWidth / 8)) || (u32AddrDst % (u32DataWidth / 8)))
goto exit_nu_pdma_desc_setup;
else if (i32TransferCnt > NU_PDMA_MAX_TXCNT)
goto exit_nu_pdma_desc_setup;
psPeriphCtl = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_spPeripCtl;
nu_pdma_channel_memctrl_fill(psPeriphCtl->m_eMemCtl, &u32SrcCtl, &u32DstCtl);
dma_desc->CTL = ((i32TransferCnt - 1) << PDMA_DSCT_CTL_TXCNT_Pos) |
((u32DataWidth == 8) ? PDMA_WIDTH_8 : (u32DataWidth == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32) |
u32SrcCtl |
u32DstCtl |
PDMA_OP_BASIC;
dma_desc->SA = u32AddrSrc;
dma_desc->DA = u32AddrDst;
dma_desc->NEXT = 0; /* Terminating node by default. */
if (psPeriphCtl->m_u32Peripheral == PDMA_MEM)
{
/* For M2M transfer */
dma_desc->CTL |= (PDMA_REQ_BURST | PDMA_BURST_32);
}
else
{
/* For P2M and M2P transfer */
dma_desc->CTL |= (PDMA_REQ_SINGLE);
}
if (next)
{
/* Link to Next and modify to scatter-gather DMA mode. */
dma_desc->CTL = (dma_desc->CTL & ~PDMA_DSCT_CTL_OPMODE_Msk) | PDMA_OP_SCATTER;
dma_desc->NEXT = (uint32_t)next;
}
/* Be silent */
if (u32BeSilent)
dma_desc->CTL |= PDMA_DSCT_CTL_TBINTDIS_Msk;
ret = RT_EOK;
exit_nu_pdma_desc_setup:
return -(ret);
}
rt_err_t nu_pdma_sgtbls_allocate(nu_pdma_desc_t *ppsSgtbls, int num)
{
int i;
nu_pdma_desc_t psSgTblHead;
RT_ASSERT(ppsSgtbls != NULL);
RT_ASSERT(num > 0);
psSgTblHead = (nu_pdma_desc_t) rt_malloc_align(RT_ALIGN(sizeof(DSCT_T) * num, 64), 64);
RT_ASSERT(psSgTblHead != RT_NULL);
rt_memset((void *)psSgTblHead, 0, sizeof(DSCT_T) * num);
for (i = 0; i < num; i++)
ppsSgtbls[i] = &psSgTblHead[i];
return RT_EOK;
}
void nu_pdma_sgtbls_free(nu_pdma_desc_t *ppsSgtbls, int num)
{
nu_pdma_desc_t psSgTblHead;
RT_ASSERT(ppsSgtbls != NULL);
psSgTblHead = *ppsSgtbls;
RT_ASSERT(psSgTblHead != NULL);
rt_free_align(psSgTblHead);
}
static void _nu_pdma_transfer(int i32ChannID, uint32_t u32Peripheral, nu_pdma_desc_t head, uint32_t u32IdleTimeout_us)
{
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
nu_pdma_chn_t *psPdmaChann = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos];
#if !defined(USE_MA35D1_SUBM)
/* Writeback data in dcache to memory before transferring. */
{
static uint32_t bNonCacheAlignedWarning = 1;
nu_pdma_desc_t next = head;
int CACHE_LINE_SIZE = nu_cpu_dcache_line_size();
while (next != RT_NULL)
{
uint32_t u32TxCnt = ((next->CTL & PDMA_DSCT_CTL_TXCNT_Msk) >> PDMA_DSCT_CTL_TXCNT_Pos) + 1;
uint32_t u32DataWidth = (1 << ((next->CTL & PDMA_DSCT_CTL_TXWIDTH_Msk) >> PDMA_DSCT_CTL_TXWIDTH_Pos));
uint32_t u32SrcCtl = (next->CTL & PDMA_DSCT_CTL_SAINC_Msk);
uint32_t u32DstCtl = (next->CTL & PDMA_DSCT_CTL_DAINC_Msk);
uint32_t u32FlushLen = u32TxCnt * u32DataWidth;
#if 0
rt_kprintf("[%s] i32ChannID=%d\n", __func__, i32ChannID);
rt_kprintf("[%s] PDMA=0x%08x\n", __func__, (uint32_t)PDMA);
rt_kprintf("[%s] u32TxCnt=%d\n", __func__, u32TxCnt);
rt_kprintf("[%s] u32DataWidth=%d\n", __func__, u32DataWidth);
rt_kprintf("[%s] u32SrcCtl=0x%08x\n", __func__, u32SrcCtl);
rt_kprintf("[%s] u32DstCtl=0x%08x\n", __func__, u32DstCtl);
rt_kprintf("[%s] u32FlushLen=%d\n", __func__, u32FlushLen);
#endif
/* Flush Src buffer into memory. */
if ((u32SrcCtl == PDMA_SAR_INC)) // for M2P, M2M
rt_hw_cpu_dcache_clean_inv((void *)next->SA, u32FlushLen);
/* Flush Dst buffer into memory. */
if ((u32DstCtl == PDMA_DAR_INC)) // for P2M, M2M
rt_hw_cpu_dcache_clean_inv((void *)next->DA, u32FlushLen);
/* Flush descriptor into memory */
rt_hw_cpu_dcache_clean_inv((void *)next, sizeof(DSCT_T));
if (bNonCacheAlignedWarning)
{
if ((u32FlushLen & (CACHE_LINE_SIZE - 1)) ||
(next->SA & (CACHE_LINE_SIZE - 1)) ||
(next->DA & (CACHE_LINE_SIZE - 1)) ||
((rt_uint32_t)next & (CACHE_LINE_SIZE - 1)))
{
/*
Race-condition avoidance between DMA-transferring and DCache write-back:
Source, destination, DMA descriptor address and length should be aligned at len(CACHE_LINE_SIZE)
*/
bNonCacheAlignedWarning = 0;
rt_kprintf("[PDMA-W]\n");
}
}
next = (nu_pdma_desc_t)next->NEXT;
if (next == head) break;
}
}
#endif
PDMA_DisableTimeout(PDMA, 1 << NU_PDMA_GET_MOD_CHIDX(i32ChannID));
PDMA_EnableInt(PDMA, NU_PDMA_GET_MOD_CHIDX(i32ChannID), PDMA_INT_TRANS_DONE);
nu_pdma_timeout_set(i32ChannID, u32IdleTimeout_us);
/* Set scatter-gather mode and head */
/* Take care the head structure, you should make sure cache-coherence. */
PDMA_SetTransferMode(PDMA,
NU_PDMA_GET_MOD_CHIDX(i32ChannID),
u32Peripheral,
(head->NEXT != 0) ? 1 : 0,
(uint32_t)head);
/* If peripheral is M2M, trigger it. */
if (u32Peripheral == PDMA_MEM)
{
PDMA_Trigger(PDMA, NU_PDMA_GET_MOD_CHIDX(i32ChannID));
}
else if (psPdmaChann->m_sCB_Trigger.m_pfnCBHandler)
{
psPdmaChann->m_sCB_Trigger.m_pfnCBHandler(psPdmaChann->m_sCB_Trigger.m_pvUserData, psPdmaChann->m_sCB_Trigger.m_u32Reserved);
}
}
static void _nu_pdma_free_sgtbls(nu_pdma_chn_t *psPdmaChann)
{
if (psPdmaChann->m_ppsSgtbl)
{
nu_pdma_sgtbls_free(psPdmaChann->m_ppsSgtbl, psPdmaChann->m_u32WantedSGTblNum);
rt_free_align((void *)psPdmaChann->m_ppsSgtbl);
psPdmaChann->m_ppsSgtbl = RT_NULL;
psPdmaChann->m_u32WantedSGTblNum = 0;
}
}
static rt_err_t _nu_pdma_transfer_chain(int i32ChannID, uint32_t u32DataWidth, uint32_t u32AddrSrc, uint32_t u32AddrDst, uint32_t u32TransferCnt, uint32_t u32IdleTimeout_us)
{
int i = 0;
rt_err_t ret = RT_ERROR;
nu_pdma_periph_ctl_t *psPeriphCtl = NULL;
nu_pdma_chn_t *psPdmaChann = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos];
nu_pdma_memctrl_t eMemCtl = nu_pdma_channel_memctrl_get(i32ChannID);
rt_uint32_t u32Offset = 0;
rt_uint32_t u32TxCnt = 0;
psPeriphCtl = &psPdmaChann->m_spPeripCtl;
if (psPdmaChann->m_u32WantedSGTblNum != (u32TransferCnt / NU_PDMA_MAX_TXCNT + 1))
{
if (psPdmaChann->m_u32WantedSGTblNum > 0)
_nu_pdma_free_sgtbls(psPdmaChann);
psPdmaChann->m_u32WantedSGTblNum = u32TransferCnt / NU_PDMA_MAX_TXCNT + 1;
psPdmaChann->m_ppsSgtbl = (nu_pdma_desc_t *)rt_malloc_align(sizeof(nu_pdma_desc_t) * psPdmaChann->m_u32WantedSGTblNum, 4);
if (!psPdmaChann->m_ppsSgtbl)
goto exit__nu_pdma_transfer_chain;
ret = nu_pdma_sgtbls_allocate(psPdmaChann->m_ppsSgtbl, psPdmaChann->m_u32WantedSGTblNum);
if (ret != RT_EOK)
goto exit__nu_pdma_transfer_chain;
}
for (i = 0; i < psPdmaChann->m_u32WantedSGTblNum; i++)
{
u32TxCnt = (u32TransferCnt > NU_PDMA_MAX_TXCNT) ? NU_PDMA_MAX_TXCNT : u32TransferCnt;
ret = nu_pdma_desc_setup(i32ChannID,
psPdmaChann->m_ppsSgtbl[i],
u32DataWidth,
(eMemCtl & 0x2ul) ? u32AddrSrc + u32Offset : u32AddrSrc, /* Src address is Inc or not. */
(eMemCtl & 0x1ul) ? u32AddrDst + u32Offset : u32AddrDst, /* Dst address is Inc or not. */
u32TxCnt,
((i + 1) == psPdmaChann->m_u32WantedSGTblNum) ? RT_NULL : psPdmaChann->m_ppsSgtbl[i + 1],
((i + 1) == psPdmaChann->m_u32WantedSGTblNum) ? 0 : 1); // Silent, w/o TD interrupt
if (ret != RT_EOK)
goto exit__nu_pdma_transfer_chain;
u32TransferCnt -= u32TxCnt;
u32Offset += (u32TxCnt * u32DataWidth / 8);
}
_nu_pdma_transfer(i32ChannID, psPeriphCtl->m_u32Peripheral, psPdmaChann->m_ppsSgtbl[0], u32IdleTimeout_us);
ret = RT_EOK;
return ret;
exit__nu_pdma_transfer_chain:
_nu_pdma_free_sgtbls(psPdmaChann);
return -(ret);
}
rt_err_t nu_pdma_transfer(int i32ChannID, uint32_t u32DataWidth, uint32_t u32AddrSrc, uint32_t u32AddrDst, uint32_t u32TransferCnt, uint32_t u32IdleTimeout_us)
{
rt_err_t ret = RT_EINVAL;
PDMA_T *PDMA = NU_PDMA_GET_BASE(i32ChannID);
nu_pdma_desc_t head;
nu_pdma_chn_t *psPdmaChann;
nu_pdma_periph_ctl_t *psPeriphCtl = NULL;
if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_transfer;
else if (!u32TransferCnt)
goto exit_nu_pdma_transfer;
else if (u32TransferCnt > NU_PDMA_MAX_TXCNT)
return _nu_pdma_transfer_chain(i32ChannID, u32DataWidth, u32AddrSrc, u32AddrDst, u32TransferCnt, u32IdleTimeout_us);
psPdmaChann = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos];
psPeriphCtl = &psPdmaChann->m_spPeripCtl;
head = &PDMA->DSCT[NU_PDMA_GET_MOD_CHIDX(i32ChannID)];
ret = nu_pdma_desc_setup(i32ChannID,
head,
u32DataWidth,
u32AddrSrc,
u32AddrDst,
u32TransferCnt,
RT_NULL,
0);
if (ret != RT_EOK)
goto exit_nu_pdma_transfer;
_nu_pdma_transfer(i32ChannID, psPeriphCtl->m_u32Peripheral, head, u32IdleTimeout_us);
ret = RT_EOK;
exit_nu_pdma_transfer:
return -(ret);
}
rt_err_t nu_pdma_sg_transfer(int i32ChannID, nu_pdma_desc_t head, uint32_t u32IdleTimeout_us)
{
rt_err_t ret = RT_EINVAL;
nu_pdma_periph_ctl_t *psPeriphCtl = NULL;
if (!head)
goto exit_nu_pdma_sg_transfer;
else if (nu_pdma_check_is_nonallocated(i32ChannID))
goto exit_nu_pdma_sg_transfer;
psPeriphCtl = &nu_pdma_chn_arr[i32ChannID - NU_PDMA_CH_Pos].m_spPeripCtl;
_nu_pdma_transfer(i32ChannID, psPeriphCtl->m_u32Peripheral, head, u32IdleTimeout_us);
ret = RT_EOK;
exit_nu_pdma_sg_transfer:
return -(ret);
}
static void nu_pdma_isr(int vector, void *pvdata)
{
int i;
PDMA_T *PDMA = (void *)pvdata;
uint32_t intsts = PDMA_GET_INT_STATUS(PDMA);
uint32_t abtsts = PDMA_GET_ABORT_STS(PDMA);
uint32_t tdsts = PDMA_GET_TD_STS(PDMA);
uint32_t unalignsts = PDMA_GET_ALIGN_STS(PDMA);
uint32_t reqto = intsts & PDMA_INTSTS_REQTOFn_Msk;
uint32_t reqto_ch = (reqto >> PDMA_INTSTS_REQTOFn_Pos);
int allch_sts = (reqto_ch | tdsts | abtsts | unalignsts);
// Abort
if (intsts & PDMA_INTSTS_ABTIF_Msk)
{
// Clear all Abort flags
PDMA_CLR_ABORT_FLAG(PDMA, abtsts);
}
// Transfer done
if (intsts & PDMA_INTSTS_TDIF_Msk)
{
// Clear all transfer done flags
PDMA_CLR_TD_FLAG(PDMA, tdsts);
}
// Unaligned
if (intsts & PDMA_INTSTS_ALIGNF_Msk)
{
// Clear all Unaligned flags
PDMA_CLR_ALIGN_FLAG(PDMA, unalignsts);
}
// Timeout
if (reqto)
{
// Clear all Timeout flags
PDMA->INTSTS = reqto;
}
// Find the position of first '1' in allch_sts.
while ((i = nu_ctz(allch_sts)) < PDMA_CH_MAX)
{
int module_id = ((uint32_t)PDMA - DEF_PDMA_BASE_START) / 0x10000UL;
int j = i + (module_id * PDMA_CH_MAX);
int ch_mask = (1 << i);
if (nu_pdma_chn_mask_arr[module_id] & ch_mask)
{
int ch_event = 0;
nu_pdma_chn_t *dma_chn = nu_pdma_chn_arr + j - NU_PDMA_CH_Pos;
if (dma_chn->m_sCB_Event.m_pfnCBHandler)
{
if (abtsts & ch_mask)
{
ch_event |= NU_PDMA_EVENT_ABORT;
}
if (tdsts & ch_mask)
{
ch_event |= NU_PDMA_EVENT_TRANSFER_DONE;
}
if (unalignsts & ch_mask)
{
ch_event |= NU_PDMA_EVENT_ALIGNMENT;
}
if (reqto_ch & ch_mask)
{
PDMA_DisableTimeout(PDMA, ch_mask);
ch_event |= NU_PDMA_EVENT_TIMEOUT;
}
if (dma_chn->m_sCB_Disable.m_pfnCBHandler)
dma_chn->m_sCB_Disable.m_pfnCBHandler(dma_chn->m_sCB_Disable.m_pvUserData, dma_chn->m_sCB_Disable.m_u32Reserved);
if ((dma_chn->m_u32EventFilter & ch_event) && dma_chn->m_sCB_Event.m_pfnCBHandler)
dma_chn->m_sCB_Event.m_pfnCBHandler(dma_chn->m_sCB_Event.m_pvUserData, ch_event);
if (reqto_ch & ch_mask)
nu_pdma_timeout_set(j, nu_pdma_chn_arr[j - NU_PDMA_CH_Pos].m_u32IdleTimeout_us);
}//if(dma_chn->handler)
} //if (nu_pdma_chn_mask & ch_mask)
// Clear the served bit.
allch_sts &= ~ch_mask;
} //while
}
static void nu_pdma_memfun_actor_init(void)
{
int i = 0 ;
nu_pdma_init();
for (i = 0; i < NU_PDMA_MEMFUN_ACTOR_MAX; i++)
{
rt_memset(&nu_pdma_memfun_actor_arr[i], 0, sizeof(struct nu_pdma_memfun_actor));
if (-(RT_ERROR) != (nu_pdma_memfun_actor_arr[i].m_i32ChannID = nu_pdma_channel_allocate(PDMA_MEM)))
{
nu_pdma_memfun_actor_arr[i].m_psSemMemFun = rt_sem_create("memactor_sem", 0, RT_IPC_FLAG_FIFO);
RT_ASSERT(nu_pdma_memfun_actor_arr[i].m_psSemMemFun != RT_NULL);
}
else
break;
}
if (i)
{
nu_pdma_memfun_actor_maxnum = i;
nu_pdma_memfun_actor_mask = ~(((1 << i) - 1));
nu_pdma_memfun_actor_pool_sem = rt_sem_create("mempool_sem", nu_pdma_memfun_actor_maxnum, RT_IPC_FLAG_FIFO);
RT_ASSERT(nu_pdma_memfun_actor_pool_sem != RT_NULL);
nu_pdma_memfun_actor_pool_lock = rt_mutex_create("mempool_lock", RT_IPC_FLAG_PRIO);
RT_ASSERT(nu_pdma_memfun_actor_pool_lock != RT_NULL);
}
}
static void nu_pdma_memfun_cb(void *pvUserData, uint32_t u32Events)
{
rt_err_t result = RT_EOK;
nu_pdma_memfun_actor_t psMemFunActor = (nu_pdma_memfun_actor_t)pvUserData;
psMemFunActor->m_u32Result = u32Events;
result = rt_sem_release(psMemFunActor->m_psSemMemFun);
RT_ASSERT(result == RT_EOK);
}
static int nu_pdma_memfun_employ(void)
{
int idx = -1 ;
rt_err_t result = RT_EOK;
/* Headhunter */
if (nu_pdma_memfun_actor_pool_sem &&
((result = rt_sem_take(nu_pdma_memfun_actor_pool_sem, RT_WAITING_FOREVER)) == RT_EOK))
{
RT_ASSERT(result == RT_EOK);
result = rt_mutex_take(nu_pdma_memfun_actor_pool_lock, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
/* Find the position of first '0' in nu_pdma_memfun_actor_mask. */
idx = nu_cto(nu_pdma_memfun_actor_mask);
if (idx != 32)
{
nu_pdma_memfun_actor_mask |= (1 << idx);
}
else
{
idx = -1;
}
result = rt_mutex_release(nu_pdma_memfun_actor_pool_lock);
RT_ASSERT(result == RT_EOK);
}
return idx;
}
static rt_size_t nu_pdma_memfun(void *dest, void *src, uint32_t u32DataWidth, unsigned int u32TransferCnt, nu_pdma_memctrl_t eMemCtl)
{
nu_pdma_memfun_actor_t psMemFunActor = NULL;
struct nu_pdma_chn_cb sChnCB;
rt_err_t result = RT_ERROR;
int idx;
rt_size_t ret = 0;
/* Employ actor */
while ((idx = nu_pdma_memfun_employ()) < 0);
psMemFunActor = &nu_pdma_memfun_actor_arr[idx];
/* Set PDMA memory control to eMemCtl. */
nu_pdma_channel_memctrl_set(psMemFunActor->m_i32ChannID, eMemCtl);
/* Register ISR callback function */
sChnCB.m_eCBType = eCBType_Event;
sChnCB.m_pfnCBHandler = nu_pdma_memfun_cb;
sChnCB.m_pvUserData = (void *)psMemFunActor;
nu_pdma_filtering_set(psMemFunActor->m_i32ChannID, NU_PDMA_EVENT_ABORT | NU_PDMA_EVENT_TRANSFER_DONE);
nu_pdma_callback_register(psMemFunActor->m_i32ChannID, &sChnCB);
psMemFunActor->m_u32Result = 0;
/* Trigger it */
nu_pdma_transfer(psMemFunActor->m_i32ChannID,
u32DataWidth,
(uint32_t)src,
(uint32_t)dest,
u32TransferCnt,
0);
/* Wait it done. */
result = rt_sem_take(psMemFunActor->m_psSemMemFun, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
/* Give result if get NU_PDMA_EVENT_TRANSFER_DONE.*/
if (psMemFunActor->m_u32Result & NU_PDMA_EVENT_TRANSFER_DONE)
{
ret += u32TransferCnt;
}
else
{
ret += (u32TransferCnt - nu_pdma_non_transfer_count_get(psMemFunActor->m_i32ChannID));
}
/* Terminate it if get ABORT event */
if (psMemFunActor->m_u32Result & NU_PDMA_EVENT_ABORT)
{
nu_pdma_channel_terminate(psMemFunActor->m_i32ChannID);
}
result = rt_mutex_take(nu_pdma_memfun_actor_pool_lock, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
nu_pdma_memfun_actor_mask &= ~(1 << idx);
result = rt_mutex_release(nu_pdma_memfun_actor_pool_lock);
RT_ASSERT(result == RT_EOK);
/* Fire actor */
result = rt_sem_release(nu_pdma_memfun_actor_pool_sem);
RT_ASSERT(result == RT_EOK);
return ret;
}
rt_size_t nu_pdma_mempush(void *dest, void *src, uint32_t data_width, unsigned int transfer_count)
{
if (data_width == 8 || data_width == 16 || data_width == 32)
return nu_pdma_memfun(dest, src, data_width, transfer_count, eMemCtl_SrcInc_DstFix);
return 0;
}
void *nu_pdma_memcpy(void *dest, void *src, unsigned int count)
{
int i = 0;
uint32_t u32Offset = 0;
uint32_t u32Remaining = count;
for (i = 4; (i > 0) && (u32Remaining > 0) ; i >>= 1)
{
uint32_t u32src = (uint32_t)src + u32Offset;
uint32_t u32dest = (uint32_t)dest + u32Offset;
if (((u32src % i) == (u32dest % i)) &&
((u32src % i) == 0) &&
(RT_ALIGN_DOWN(u32Remaining, i) >= i))
{
uint32_t u32TXCnt = u32Remaining / i;
if (u32TXCnt != nu_pdma_memfun((void *)u32dest, (void *)u32src, i * 8, u32TXCnt, eMemCtl_SrcInc_DstInc))
goto exit_nu_pdma_memcpy;
u32Offset += (u32TXCnt * i);
u32Remaining -= (u32TXCnt * i);
}
}
if (count == u32Offset)
return dest;
exit_nu_pdma_memcpy:
return NULL;
}
/**
* PDMA memfun actor initialization
*/
int rt_hw_pdma_memfun_init(void)
{
nu_pdma_memfun_actor_init();
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_pdma_memfun_init);
#endif // #if defined(BSP_USING_PDMA)