rt-thread/bsp/nxp/mcxn/Libraries/drivers/drv_spi.c

220 lines
6.2 KiB
C
Raw Normal View History

2024-01-29 18:18:15 +08:00
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-15 Magicoe The first version for LPC55S6x
*/
#include "rtdevice.h"
#include "fsl_common.h"
#include "fsl_lpspi.h"
#include "fsl_lpspi_edma.h"
#define DMA_MAX_TRANSFER_COUNT (32767)
enum
{
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
};
struct lpc_spi
{
struct rt_spi_bus parent;
LPSPI_Type *LPSPIx;
clock_attach_id_t clock_attach_id;
clock_div_name_t clock_div_name;
clock_name_t clock_name;
DMA_Type *DMAx;
uint8_t tx_dma_chl;
uint8_t rx_dma_chl;
edma_handle_t dma_tx_handle;
edma_handle_t dma_rx_handle;
dma_request_source_t tx_dma_request;
dma_request_source_t rx_dma_request;
lpspi_master_edma_handle_t spi_dma_handle;
rt_sem_t sem;
char *name;
};
static struct lpc_spi lpc_obj[] =
{
#ifdef BSP_USING_SPI3
{
.LPSPIx = LPSPI3,
.clock_attach_id = kFRO_HF_DIV_to_FLEXCOMM3,
.clock_div_name = kCLOCK_DivFlexcom3Clk,
.clock_name = kCLOCK_FroHf,
.tx_dma_request = kDmaRequestMuxLpFlexcomm3Tx,
.rx_dma_request = kDmaRequestMuxLpFlexcomm3Rx,
.DMAx = DMA0,
.tx_dma_chl = 2,
.rx_dma_chl = 3,
.name = "spi3",
},
#endif
};
struct lpc_sw_spi_cs
{
rt_uint32_t pin;
};
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin)
{
rt_err_t ret = RT_EOK;
struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
struct lpc_sw_spi_cs *cs_pin = (struct lpc_sw_spi_cs *)rt_malloc(sizeof(struct lpc_sw_spi_cs));
cs_pin->pin = pin;
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, PIN_HIGH);
ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
return ret;
}
static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
rt_err_t ret = RT_EOK;
// struct lpc_spi *spi = RT_NULL;
// spi = (struct lpc_spi *)(device->bus->parent.user_data);
// ret = lpc_spi_init(spi->SPIx, cfg);
return ret;
}
static void LPSPI_MasterUserCallback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData)
{
struct lpc_spi *spi = (struct lpc_spi*)userData;
rt_sem_release(spi->sem);
}
static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
int i;
lpspi_transfer_t transfer = {0};
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct lpc_spi *spi = (struct lpc_spi *)(device->bus->parent.user_data);
struct lpc_sw_spi_cs *cs = device->parent.user_data;
if(message->cs_take)
{
rt_pin_write(cs->pin, PIN_LOW);
}
transfer.dataSize = message->length;
transfer.rxData = (uint8_t *)(message->recv_buf);
transfer.txData = (uint8_t *)(message->send_buf);
// if(message->length < MAX_DMA_TRANSFER_SIZE)
if(0)
{
// SPI_MasterTransferBlocking(spi->SPIx, &transfer);
}
else
{
uint32_t block, remain;
block = message->length / DMA_MAX_TRANSFER_COUNT;
remain = message->length % DMA_MAX_TRANSFER_COUNT;
for(i=0; i<block; i++)
{
transfer.dataSize = DMA_MAX_TRANSFER_COUNT;
if(message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i*DMA_MAX_TRANSFER_COUNT);
if(message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i*DMA_MAX_TRANSFER_COUNT);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
if(remain)
{
transfer.dataSize = remain;
if(message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i*DMA_MAX_TRANSFER_COUNT);
if(message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i*DMA_MAX_TRANSFER_COUNT);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
}
if(message->cs_release)
{
rt_pin_write(cs->pin, PIN_HIGH);
}
return message->length;
}
static struct rt_spi_ops lpc_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer
};
int rt_hw_spi_init(void)
{
int i;
for(i=0; i<ARRAY_SIZE(lpc_obj); i++)
{
CLOCK_SetClkDiv(lpc_obj[i].clock_div_name, 1u);
CLOCK_AttachClk(lpc_obj[i].clock_attach_id);
lpc_obj[i].parent.parent.user_data = &lpc_obj[i];
lpc_obj[i].sem = rt_sem_create("sem_spi", 0, RT_IPC_FLAG_FIFO);
lpspi_master_config_t masterConfig;
LPSPI_MasterGetDefaultConfig(&masterConfig);
masterConfig.baudRate = 24*1000*1000;
masterConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
LPSPI_MasterInit(lpc_obj[i].LPSPIx, &masterConfig, CLOCK_GetFreq(lpc_obj[i].clock_name));
EDMA_CreateHandle(&lpc_obj[i].dma_tx_handle, lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl);
EDMA_CreateHandle(&lpc_obj[i].dma_rx_handle, lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl, lpc_obj[i].tx_dma_request);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl, lpc_obj[i].rx_dma_request);
LPSPI_MasterTransferCreateHandleEDMA(lpc_obj[i].LPSPIx, &lpc_obj[i].spi_dma_handle, LPSPI_MasterUserCallback, &lpc_obj[i], &lpc_obj[i].dma_rx_handle, &lpc_obj[i].dma_tx_handle);
rt_spi_bus_register(&lpc_obj[i].parent, lpc_obj[i].name, &lpc_spi_ops);
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_spi_init);