rt-thread/bsp/imxrt/Libraries/imxrt1050/drivers/drv_flexspi_hyper.c

465 lines
19 KiB
C
Raw Normal View History

2018-12-29 16:06:09 +08:00
/*
* File : code_run.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERsrcANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* srcange Logs:
* Date Author Notes
* 2018-07-05 ZYH the first version
*/
#include <rtthread.h>
#define PRINTF rt_kprintf
#include "board.h"
#include <rthw.h>
#include "drv_flexspi.h"
#define DBG_ENABLE
#define DBG_SECTION_NAME "[Hyper]"
#define DBG_LEVEL DBG_LOG
#define DBG_COLOR
#include <rtdbg.h>
#define FLEXSPI_CLOCK kCLOCK_FlexSpi
#define HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA 0
#define HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA 1
#define HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS 2
#define HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE 4
#define HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR 6
#define HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM 10
#define CUSTOM_LUT_LENGTH 48
static flexspi_device_config_t deviceconfig = {
.flexspiRootClk = 42000000, /* 42MHZ SPI serial clock */
.isSck2Enabled = false,
.flashSize = FLASH_SIZE,
.CSIntervalUnit = kFLEXSPI_CsIntervalUnit1SckCycle,
.CSInterval = 2,
.CSHoldTime = 0,
.CSSetupTime = 3,
.dataValidTime = 1,
.columnspace = 3,
.enableWordAddress = true,
.AWRSeqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA,
.AWRSeqNumber = 1,
.ARDSeqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA,
.ARDSeqNumber = 1,
.AHBWriteWaitUnit = kFLEXSPI_AhbWriteWaitUnit2AhbCycle,
.AHBWriteWaitInterval = 20,
};
static uint32_t customLUT[CUSTOM_LUT_LENGTH] = {
/* Read Data */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04),
/* Write Data */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x02),
/* Read Status */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 3] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x70), // DATA 0x70
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 5] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_DUMMY_RWDS_DDR, kFLEXSPI_8PAD, 0x0B),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
/* Write Enable */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 3] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // DATA 0xAA
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE + 7] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
/* Erase Sector */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 3] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x80), // DATA 0x80
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 5] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 6] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 7] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 8] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 9] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 10] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x02),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 11] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x55),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 12] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 13] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR + 14] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x30, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x00),
/* program page */
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xAA), // ADDR 0x555
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 2] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 3] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xA0), // DATA 0xA0
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 4] =
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x00, kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x18),
[4 * HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM + 5] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_CADDR_DDR, kFLEXSPI_8PAD, 0x10, kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x80),
};
SECTION("itcm") status_t flexspi_nor_hyperbus_read(FLEXSPI_Type *base, uint32_t addr, uint32_t *buffer, uint32_t bytes)
{
flexspi_transfer_t flashXfer;
status_t status;
flashXfer.deviceAddress = addr * 2;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Read;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READDATA;
flashXfer.data = buffer;
flashXfer.dataSize = bytes;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
return status;
}
return status;
}
SECTION("itcm") status_t flexspi_nor_hyperbus_write(FLEXSPI_Type *base, uint32_t addr, uint32_t *buffer, uint32_t bytes)
{
flexspi_transfer_t flashXfer;
status_t status;
flashXfer.deviceAddress = addr * 2;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Write;
flashXfer.SeqNumber = 1;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEDATA;
flashXfer.data = buffer;
flashXfer.dataSize = bytes;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
return status;
}
return status;
}
SECTION("itcm") status_t flexspi_nor_write_enable(FLEXSPI_Type *base, uint32_t baseAddr)
{
flexspi_transfer_t flashXfer;
status_t status;
/* Write neable */
flashXfer.deviceAddress = baseAddr;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_WRITEENABLE;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
return status;
}
SECTION("itcm") status_t flexspi_nor_wait_bus_busy(FLEXSPI_Type *base)
{
/* Wait status ready. */
bool isBusy;
uint32_t readValue;
status_t status;
flexspi_transfer_t flashXfer;
flashXfer.deviceAddress = 0;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Read;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_READSTATUS;
flashXfer.data = &readValue;
flashXfer.dataSize = 2;
do
{
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
return status;
}
if (readValue & 0x8000)
{
isBusy = false;
}
else
{
isBusy = true;
}
if (readValue & 0x3200)
{
status = kStatus_Fail;
break;
}
} while (isBusy);
return status;
}
SECTION("itcm") status_t flexspi_nor_flash_erase_sector(FLEXSPI_Type *base, uint32_t address)
{
status_t status;
flexspi_transfer_t flashXfer;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
/* Write enable */
status = flexspi_nor_write_enable(base, address);
if (status != kStatus_Success)
{
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return status;
}
flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Command;
flashXfer.SeqNumber = 4;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_ERASESECTOR;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return status;
}
status = flexspi_nor_wait_bus_busy(base);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLEXSPI_NOR_SECTOR_SIZE);
rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLEXSPI_NOR_SECTOR_SIZE);
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return status;
}
SECTION("itcm") status_t flexspi_nor_flash_page_program(FLEXSPI_Type *base, uint32_t address, const uint32_t *src)
{
status_t status;
flexspi_transfer_t flashXfer;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
/* Write neable */
status = flexspi_nor_write_enable(base, address);
if (status != kStatus_Success)
{
rt_hw_interrupt_enable(level);
return status;
}
/* Prepare page program command */
flashXfer.deviceAddress = address;
flashXfer.port = kFLEXSPI_PortA1;
flashXfer.cmdType = kFLEXSPI_Write;
flashXfer.SeqNumber = 2;
flashXfer.seqIndex = HYPERFLASH_CMD_LUT_SEQ_IDX_PAGEPROGRAM;
flashXfer.data = (uint32_t *)src;
flashXfer.dataSize = FLASH_PAGE_SIZE;
status = FLEXSPI_TransferBlocking(base, &flashXfer);
if (status != kStatus_Success)
{
rt_hw_interrupt_enable(level);
return status;
}
status = flexspi_nor_wait_bus_busy(base);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLASH_PAGE_SIZE);
rt_hw_cpu_icache_ops(RT_HW_CACHE_INVALIDATE,(void *)(FLEXSPI_AMBA_BASE+address),FLASH_PAGE_SIZE);
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return status;
}
SECTION("itcm") status_t flexspi_nor_hyperflash_cfi(FLEXSPI_Type *base)
{
/*
* Read ID-CFI Parameters
*/
// CFI Entry
status_t status;
uint32_t buffer[2];
uint32_t data = 0x9800;
status = flexspi_nor_hyperbus_write(base, 0x555, &data, 2);
if (status != kStatus_Success)
{
return status;
}
// ID-CFI Read
// Read Query Unique ASCII String
status = flexspi_nor_hyperbus_read(base, 0x10, &buffer[0], sizeof(buffer));
if (status != kStatus_Success)
{
return status;
}
buffer[1] &= 0xFFFF;
// Check that the data read out is unicode "QRY" in big-endian order
if ((buffer[0] != 0x52005100) || (buffer[1] != 0x5900))
{
status = kStatus_Fail;
return status;
}
// ASO Exit
data = 0xF000;
status = flexspi_nor_hyperbus_write(base, 0x0, &data, 2);
if (status != kStatus_Success)
{
return status;
}
return status;
}
SECTION("itcm") int rt_hw_flexspi_init(void)
{
flexspi_config_t config;
status_t status;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
// Set flexspi root clock to 166MHZ.
const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
CLOCK_InitUsb1Pfd(kCLOCK_Pfd0, 26); /* Set PLL3 PFD0 clock 332MHZ. */
CLOCK_SetMux(kCLOCK_FlexspiMux, 0x3); /* Choose PLL3 PFD0 clock as flexspi source clock. */
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 3); /* flexspi clock 83M, DDR mode, internal clock 42M. */
/*Get FLEXSPI default settings and configure the flexspi. */
FLEXSPI_GetDefaultConfig(&config);
/*Set AHB buffer size for reading data through AHB bus. */
config.ahbConfig.enableAHBPrefetch = true;
/*Allow AHB read start address do not follow the alignment requirement. */
config.ahbConfig.enableReadAddressOpt = true;
/* enable diff clock and DQS */
config.enableSckBDiffOpt = true;
config.rxSampleClock = kFLEXSPI_ReadSampleClkExternalInputFromDqsPad;
config.enableCombination = true;
FLEXSPI_Init(FLEXSPI, &config);
/* Configure flash settings according to serial flash feature. */
FLEXSPI_SetFlashConfig(FLEXSPI, &deviceconfig, kFLEXSPI_PortA1);
/* Update LUT table. */
FLEXSPI_UpdateLUT(FLEXSPI, 0, customLUT, CUSTOM_LUT_LENGTH);
/* Do software reset. */
FLEXSPI_SoftwareReset(FLEXSPI);
status = flexspi_nor_hyperflash_cfi(FLEXSPI);
/* Get vendor ID. */
if (status != kStatus_Success)
{
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return status;
}
FLEXSPI_Enable(FLEXSPI, false);
CLOCK_DisableClock(FLEXSPI_CLOCK);
CLOCK_SetDiv(kCLOCK_FlexspiDiv, 0); /* flexspi clock 332M, DDR mode, internal clock 166M. */
CLOCK_EnableClock(FLEXSPI_CLOCK);
FLEXSPI_Enable(FLEXSPI, true);
FLEXSPI_SoftwareReset(FLEXSPI);
rt_hw_interrupt_enable(level);
return 0;
}
INIT_PREV_EXPORT(rt_hw_flexspi_init);