rt-thread/bsp/samd21/sam_d2x_asflib/sam0/drivers/adc/adc.h

1157 lines
33 KiB
C
Raw Normal View History

2017-08-30 12:18:28 +08:00
/**
* \file
*
* \brief SAM Peripheral Analog-to-Digital Converter Driver
*
* Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef ADC_H_INCLUDED
#define ADC_H_INCLUDED
/**
* \defgroup asfdoc_sam0_adc_group SAM Analog-to-Digital Converter (ADC) Driver
*
* This driver for Atmel&reg; | SMART ARM&reg;-based microcontrollers provides an interface for the configuration
* and management of the device's Analog-to-Digital Converter functionality, for
* the conversion of analog voltages into a corresponding digital form.
* The following driver Application Programming Interface (API) modes are covered by this manual:
* - Polled APIs
* \if ADC_CALLBACK_MODE
* - Callback APIs
* \endif
*
* The following peripheral is used by this module:
* - ADC (Analog-to-Digital Converter)
*
* The following devices can use this module:
* \if DEVICE_SAML21_SUPPORT
* - Atmel | SMART SAM L21/L22
* - Atmel | SMART SAM C20/C21
* \else
* - Atmel | SMART SAM D20/D21
* - Atmel | SMART SAM R21
* - Atmel | SMART SAM D09/D10/D11
* - Atmel | SMART SAM DA1
* - Atmel | SMART SAM HA1
* \endif
*
* The outline of this documentation is as follows:
* - \ref asfdoc_sam0_adc_prerequisites
* - \ref asfdoc_sam0_adc_module_overview
* - \ref asfdoc_sam0_adc_special_considerations
* - \ref asfdoc_sam0_adc_extra_info
* - \ref asfdoc_sam0_adc_examples
* - \ref asfdoc_sam0_adc_api_overview
*
*
* \section asfdoc_sam0_adc_prerequisites Prerequisites
*
* There are no prerequisites for this module.
*
*
* \section asfdoc_sam0_adc_module_overview Module Overview
*
* This driver provides an interface for the Analog-to-Digital conversion
* functions on the device, to convert analog voltages to a corresponding
* digital value. The ADC has up to 12-bit resolution, and is capable of
* \if DEVICE_SAML21_SUPPORT
* converting up to 1,000,000 samples per second (MSPS).
* \else
* converting up to 500K samples per second (KSPS).
* \endif
*
* The ADC has a compare function for accurate monitoring of user defined
* thresholds with minimum software intervention required.
* The ADC may be configured for 8-, 10-, or 12-bit result, reducing the
* conversion time. ADC conversion results are provided left or right adjusted
* which eases calculation when the result is represented as a signed integer.
*
* The input selection is flexible, and both single-ended and differential
* measurements can be made. For differential measurements, an optional gain
* stage is available to increase the dynamic range. In addition, several
* internal signal inputs are available. The ADC can provide both signed and
* unsigned results.
*
* The ADC measurements can either be started by application software or an
* incoming event from another peripheral in the device, and both internal and
* external reference voltages can be selected.
*
* \note Internal references will be enabled by the driver, but not disabled.
* Any reference not used by the application should be disabled by the application.
*
* A simplified block diagram of the ADC can be seen in
* \ref asfdoc_sam0_adc_module_block_diagram "the figure below".
*
* \anchor asfdoc_sam0_adc_module_block_diagram
* \dot
* digraph overview {
* splines = false;
* rankdir=LR;
*
* mux1 [label="Positive input", shape=box];
* mux2 [label="Negative input", shape=box];
*
*
* mux3 [label="Reference", shape=box];
*
* adc [label="ADC", shape=polygon, sides=5, orientation=90, distortion=-0.6, style=filled, fillcolor=darkolivegreen1, height=1, width=1];
* prescaler [label="PRESCALER", shape=box, style=filled, fillcolor=lightblue];
*
* mux1 -> adc;
* mux2 -> adc;
* mux3 -> adc:sw;
* prescaler -> adc;
*
* postproc [label="Post processing", shape=box];
* result [label="RESULT", shape=box, style=filled, fillcolor=lightblue];
*
* adc:e -> postproc:w;
* postproc:e -> result:w;
*
* {rank=same; mux1 mux2}
* {rank=same; prescaler adc}
*
* }
* \enddot
*
*
* \subsection asfdoc_sam0_adc_module_overview_prescaler Sample Clock Prescaler
* The ADC features a prescaler, which enables conversion at lower clock rates
* than the input Generic Clock to the ADC module. This feature can be used to
* lower the synchronization time of the digital interface to the ADC module
* via a high speed Generic Clock frequency, while still allowing the ADC
* sampling rate to be reduced.
*
* \subsection asfdoc_sam0_adc_module_overview_resolution ADC Resolution
* The ADC supports full 8-, 10-, or 12-bit resolution. Hardware
* oversampling and decimation can be used to increase the
* effective resolution at the expense of throughput. Using oversampling and
* decimation mode the ADC resolution is increased from 12-bit to an effective
* 13-, 14-, 15-, or 16-bit. In these modes the conversion rate is reduced, as
* a greater number of samples is used to achieve the increased resolution. The
* available resolutions and effective conversion rate is listed in
* \ref asfdoc_sam0_adc_module_conversion_rate "the table below".
*
* \anchor asfdoc_sam0_adc_module_conversion_rate
* <table>
* <caption>Effective ADC Conversion Speed Using Oversampling</caption>
* <tr>
* <th>Resolution</th>
* <th>Effective conversion rate</th>
* </tr>
* <tr>
* <td>13-bit</td>
* <td>Conversion rate divided by 4</td>
* </tr>
* <tr>
* <td>14-bit</td>
* <td>Conversion rate divided by 16</td>
* </tr>
* <tr>
* <td>15-bit</td>
* <td>Conversion rate divided by 64</td>
* </tr>
* <tr>
* <td>16-bit</td>
* <td>Conversion rate divided by 256</td>
* </tr>
* </table>
*
* \subsection asfdoc_sam0_adc_module_overview_conversion Conversion Modes
* ADC conversions can be software triggered on demand by the user application,
* if continuous sampling is not required. It is also possible to configure the
* ADC in free running mode, where new conversions are started as soon as the
* previous conversion is completed, or configure the ADC to scan across a
* number of input pins (see \ref asfdoc_sam0_adc_module_overview_pin_scan).
*
* \subsection asfdoc_sam0_adc_module_overview_diff_mode Differential and Single-ended Conversion
* The ADC has two conversion modes; differential and single-ended. When
* measuring signals where the positive input pin is always at a higher voltage
* than the negative input pin, the single-ended conversion mode should be used
* in order to achieve a full 12-bit output resolution.
*
* If however the positive input pin voltage may drop below the negative input
* pin the signed differential mode should be used.
*
* \subsection asfdoc_sam0_adc_module_overview_sample_time Sample Time
* The sample time for each ADC conversion is configurable as a number of half
* prescaled ADC clock cycles (depending on the prescaler value), allowing the
* user application to achieve faster or slower sampling depending on the
* source impedance of the ADC input channels. For applications with high
* impedance inputs the sample time can be increased to give the ADC an adequate
* time to sample and convert the input channel.
*
* The resulting sampling time is given by the following equation:
* \f[
* t_{SAMPLE} = (sample\_length+1) \times \frac{ADC_{CLK}} {2}
* \f]
*
* \subsection asfdoc_sam0_adc_module_overview_averaging Averaging
* The ADC can be configured to trade conversion speed for accuracy by averaging
* multiple samples in hardware. This feature is suitable when operating in
* noisy conditions.
*
* You can specify any number of samples to accumulate (up to 1024) and the
* divide ratio to use (up to divide by 128). To modify these settings the
* ADC_RESOLUTION_CUSTOM needs to be set as the resolution. When this is set
* the number of samples to accumulate and the division ratio can be set by
* the configuration struct members \ref adc_config.accumulate_samples and
* \ref adc_config.divide_result. When using this mode the ADC result register
* will be set to be 16-bit wide to accommodate the larger result sizes
* produced by the accumulator.
*
* The effective ADC conversion rate will be reduced by a factor of the number
* of accumulated samples;
* however, the effective resolution will be increased according to
* \ref asfdoc_sam0_adc_module_hw_av_resolution "the table below".
*
* \anchor asfdoc_sam0_adc_module_hw_av_resolution
* <table>
* <caption>Effective ADC Resolution From Various Hardware Averaging Modes</caption>
* <tr>
* <th>Number of samples</tr>
* <th>Final result</tr>
* </tr>
* <tr>
* <td>1</td>
* <td>12-bit</td>
* </tr>
* <tr>
* <td>2</td>
* <td>13-bit</td>
* </tr>
* <tr>
* <td>4</td>
* <td>14-bit</td>
* </tr>
* <tr>
* <td>8</td>
* <td>15-bit</td>
* </tr>
* <tr>
* <td>16</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>32</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>64</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>128</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>256</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>512</td>
* <td>16-bit</td>
* </tr>
* <tr>
* <td>1024</td>
* <td>16-bit</td>
* </tr>
* </table>
*
*
* \subsection asfdoc_sam0_adc_module_overview_offset_corr Offset and Gain Correction
* Inherent gain and offset errors affect the absolute accuracy of the ADC.
*
* The offset error is defined as the deviation of the ADC's actual transfer
* function from ideal straight line at zero input voltage.
*
* The gain error is defined as the deviation of the last output step's
* midpoint from the ideal straight line, after compensating for offset error.
*
* The offset correction value is subtracted from the converted data before the
* result is ready. The gain correction value is multiplied with the offset
* corrected value.
*
* The equation for both offset and gain error compensation is shown below:
* \f[
* ADC_{RESULT} = (VALUE_{CONV} + CORR_{OFFSET}) \times CORR_{GAIN}
* \f]
*
* When enabled, a given set of offset and gain correction values can be applied
* to the sampled data in hardware, giving a corrected stream of sample data to
* the user application at the cost of an increased sample latency.
*
* In single conversion, a latency of 13 ADC Generic Clock cycles is added for
* the final sample result availability. As the correction time is always less
* than the propagation delay, in free running mode this latency appears only
* during the first conversion. After the first conversion is complete, future
* conversion results are available at the defined sampling rate.
*
* \subsection asfdoc_sam0_adc_module_overview_pin_scan Pin Scan
* In pin scan mode, the first ADC conversion will begin from the configured
* positive channel, plus the requested starting offset. When the first
* conversion is completed, the next conversion will start at the next positive
* input channel and so on, until all requested pins to scan have been sampled
* and converted.
* SAM L21/L22 has automatic sequences feature instead of pin scan mode. In automatic
* sequence mode, all of 32 positives inputs can be included in a sequence. The
* sequence starts from the lowest input, and go to the next enabled input
* automatically.
*
* Pin scanning gives a simple mechanism to sample a large number of physical
* input channel samples, using a single physical ADC channel.
*
* \subsection asfdoc_sam0_adc_module_overview_window_monitor Window Monitor
* The ADC module window monitor function can be used to automatically compare
* the conversion result against a preconfigured pair of upper and lower
* threshold values.
*
* The threshold values are evaluated differently, depending on whether
* differential or single-ended mode is selected. In differential mode, the
* upper and lower thresholds are evaluated as signed values for the comparison,
* while in single-ended mode the comparisons are made as a set of unsigned
* values.
*
* The significant bits of the lower window monitor threshold and upper window
* monitor threshold values are user-configurable, and follow the overall ADC
* sampling bit precision set when the ADC is configured by the user application.
* For example, only the eight lower bits of the window threshold values will be
* compared to the sampled data whilst the ADC is configured in 8-bit mode.
* In addition, if using differential mode, the 8<SUP>th</SUP> bit will be considered as
* the sign bit even if bit 9 is zero.
*
* \subsection asfdoc_sam0_adc_module_overview_events Events
* Event generation and event actions are configurable in the ADC.
*
* The ADC has two actions that can be triggered upon event reception:
* \li Start conversion
* \li Flush pipeline and start conversion
*
* The ADC can generate two events:
* \li Window monitor
* \li Result ready
*
* If the event actions are enabled in the configuration, any incoming event
* will trigger the action.
*
* If the window monitor event is enabled, an event will be generated
* when the configured window condition is detected.
*
* If the result ready event is enabled, an event will be generated when a
* conversion is completed.
*
* \note The connection of events between modules requires the use of the
* \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
* to route output event of one module to the input event of another.
* For more information on event routing, refer to the event driver
* documentation.
*
*
* \section asfdoc_sam0_adc_special_considerations Special Considerations
*
* An integrated analog temperature sensor is available for use with the ADC.
* The bandgap voltage, as well as the scaled I/O and core voltages can also be
* measured by the ADC. For internal ADC inputs, the internal source(s) may need
* to be manually enabled by the user application before they can be measured.
*
*
* \section asfdoc_sam0_adc_extra_info Extra Information
*
* For extra information, see \ref asfdoc_sam0_adc_extra. This includes:
* - \ref asfdoc_sam0_adc_extra_acronyms
* - \ref asfdoc_sam0_adc_extra_dependencies
* - \ref asfdoc_sam0_adc_extra_errata
* - \ref asfdoc_sam0_adc_extra_history
*
*
* \section asfdoc_sam0_adc_examples Examples
*
* For a list of examples related to this driver, see
* \ref asfdoc_sam0_adc_exqsg.
*
*
* \section asfdoc_sam0_adc_api_overview API Overview
* @{
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <compiler.h>
#include <system.h>
#include <adc_feature.h>
/**
* \name Module Status Flags
*
* ADC status flags, returned by \ref adc_get_status() and cleared by
* \ref adc_clear_status().
*
* @{
*/
/** ADC result ready. */
#define ADC_STATUS_RESULT_READY (1UL << 0)
/** Window monitor match. */
#define ADC_STATUS_WINDOW (1UL << 1)
/** ADC result overwritten before read. */
#define ADC_STATUS_OVERRUN (1UL << 2)
/** @} */
#if ADC_CALLBACK_MODE == true
# if (ADC_INST_NUM > 1)
# define _ADC_INTERRUPT_VECT_NUM(n, unused) \
SYSTEM_INTERRUPT_MODULE_ADC##n,
/**
* \internal Get the interrupt vector for the given device instance
*
* \param[in] The ADC module instance number
*
* \return Interrupt vector for of the given ADC module instance.
*/
static enum system_interrupt_vector _adc_interrupt_get_interrupt_vector(
uint32_t inst_num)
{
static uint8_t adc_interrupt_vectors[ADC_INST_NUM] = {
MREPEAT(ADC_INST_NUM, _ADC_INTERRUPT_VECT_NUM, 0)
};
return (enum system_interrupt_vector)adc_interrupt_vectors[inst_num];
}
# endif
#endif
#if !defined(__DOXYGEN__)
uint8_t _adc_get_inst_index(
Adc *const hw);
#endif
/**
* \name Driver Initialization and Configuration
* @{
*/
enum status_code adc_init(
struct adc_module *const module_inst,
Adc *hw,
struct adc_config *config);
void adc_get_config_defaults(
struct adc_config *const config);
#if (SAMD) || (SAMHA1) || (SAMR21)
void adc_regular_ain_channel(
uint32_t *pin_array, uint8_t size);
#endif
/** @} */
/**
* \name Status Management
* @{
*/
/**
* \brief Retrieves the current module status.
*
* Retrieves the status of the module, giving overall state information.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*
* \return Bitmask of \c ADC_STATUS_* flags.
*
* \retval ADC_STATUS_RESULT_READY ADC result is ready to be read
* \retval ADC_STATUS_WINDOW ADC has detected a value inside the set
* window range
* \retval ADC_STATUS_OVERRUN ADC result has overrun
*/
static inline uint32_t adc_get_status(
struct adc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
uint32_t int_flags = adc_module->INTFLAG.reg;
uint32_t status_flags = 0;
/* Check for ADC Result Ready */
if (int_flags & ADC_INTFLAG_RESRDY) {
status_flags |= ADC_STATUS_RESULT_READY;
}
/* Check for ADC Window Match */
if (int_flags & ADC_INTFLAG_WINMON) {
status_flags |= ADC_STATUS_WINDOW;
}
/* Check for ADC Overrun */
if (int_flags & ADC_INTFLAG_OVERRUN) {
status_flags |= ADC_STATUS_OVERRUN;
}
return status_flags;
}
/**
* \brief Clears a module status flag.
*
* Clears the given status flag of the module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] status_flags Bitmask of \c ADC_STATUS_* flags to clear
*/
static inline void adc_clear_status(
struct adc_module *const module_inst,
const uint32_t status_flags)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
uint32_t int_flags = 0;
/* Check for ADC Result Ready */
if (status_flags & ADC_STATUS_RESULT_READY) {
int_flags |= ADC_INTFLAG_RESRDY;
}
/* Check for ADC Window Match */
if (status_flags & ADC_STATUS_WINDOW) {
int_flags |= ADC_INTFLAG_WINMON;
}
/* Check for ADC Overrun */
if (status_flags & ADC_STATUS_OVERRUN) {
int_flags |= ADC_INTFLAG_OVERRUN;
}
/* Clear interrupt flag */
adc_module->INTFLAG.reg = int_flags;
}
/** @} */
/**
* \name Enable, Disable, and Reset ADC Module, Start Conversion and Read Result
* @{
*/
/**
* \brief Enables the ADC module.
*
* Enables an ADC module that has previously been configured. If any internal reference
* is selected it will be enabled.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_enable(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
#if ADC_CALLBACK_MODE == true
# if (ADC_INST_NUM > 1)
system_interrupt_enable(_adc_interrupt_get_interrupt_vector(
_adc_get_inst_index(adc_module)));
# elif (SAMC20)
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC0);
# else
system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC);
# endif
#endif
/* Disbale interrupt */
adc_module->INTENCLR.reg = ADC_INTENCLR_MASK;
/* Clear interrupt flag */
adc_module->INTFLAG.reg = ADC_INTFLAG_MASK;
adc_module->CTRLA.reg |= ADC_CTRLA_ENABLE;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
return STATUS_OK;
}
/**
* \brief Disables the ADC module.
*
* Disables an ADC module that was previously enabled.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_disable(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
#if ADC_CALLBACK_MODE == true
# if (ADC_INST_NUM > 1)
system_interrupt_disable(_adc_interrupt_get_interrupt_vector(
_adc_get_inst_index(adc_module)));
# elif (SAMC20)
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC0);
# else
system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC);
# endif
#endif
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Disbale interrupt */
adc_module->INTENCLR.reg = ADC_INTENCLR_MASK;
/* Clear interrupt flag */
adc_module->INTFLAG.reg = ADC_INTFLAG_MASK;
adc_module->CTRLA.reg &= ~ADC_CTRLA_ENABLE;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
return STATUS_OK;
}
/**
* \brief Resets the ADC module.
*
* Resets an ADC module, clearing all module state, and registers to their
* default values.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline enum status_code adc_reset(
struct adc_module *const module_inst)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Disable to make sure the pipeline is flushed before reset */
adc_disable(module_inst);
/* Software reset the module */
adc_module->CTRLA.reg |= ADC_CTRLA_SWRST;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
return STATUS_OK;
}
/**
* \brief Enables an ADC event input or output.
*
* Enables one or more input or output events to or from the ADC module. See
* \ref adc_events "Struct adc_events" for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the ADC peripheral
* \param[in] events Struct containing flags of events to enable
*/
static inline void adc_enable_events(
struct adc_module *const module_inst,
struct adc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Adc *const adc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= ADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= ADC_EVCTRL_RESRDYEO;
}
adc_module->EVCTRL.reg |= event_mask;
}
/**
* \brief Disables an ADC event input or output.
*
* Disables one or more input or output events to or from the ADC module. See
* \ref adc_events "Struct adc_events" for a list of events this module supports.
*
* \note Events cannot be altered while the module is enabled.
*
* \param[in] module_inst Software instance for the ADC peripheral
* \param[in] events Struct containing flags of events to disable
*/
static inline void adc_disable_events(
struct adc_module *const module_inst,
struct adc_events *const events)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Assert(events);
Adc *const adc_module = module_inst->hw;
uint32_t event_mask = 0;
/* Configure Window Monitor event */
if (events->generate_event_on_window_monitor) {
event_mask |= ADC_EVCTRL_WINMONEO;
}
/* Configure Result Ready event */
if (events->generate_event_on_conversion_done) {
event_mask |= ADC_EVCTRL_RESRDYEO;
}
adc_module->EVCTRL.reg &= ~event_mask;
}
/**
* \brief Starts an ADC conversion.
*
* Starts a new ADC conversion.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline void adc_start_conversion(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
adc_module->SWTRIG.reg |= ADC_SWTRIG_START;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
}
/**
* \brief Reads the ADC result.
*
* Reads the result from an ADC conversion that was previously started.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[out] result Pointer to store the result value in
*
* \return Status of the ADC read request.
* \retval STATUS_OK The result was retrieved successfully
* \retval STATUS_BUSY A conversion result was not ready
* \retval STATUS_ERR_OVERFLOW The result register has been overwritten by the
* ADC module before the result was read by the software
*/
static inline enum status_code adc_read(
struct adc_module *const module_inst,
uint16_t *result)
{
Assert(module_inst);
Assert(module_inst->hw);
Assert(result);
if (!(adc_get_status(module_inst) & ADC_STATUS_RESULT_READY)) {
/* Result not ready */
return STATUS_BUSY;
}
Adc *const adc_module = module_inst->hw;
#if (SAMD) || (SAMHA1) || (SAMR21)
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
#endif
/* Get ADC result */
*result = adc_module->RESULT.reg;
/* Reset ready flag */
adc_clear_status(module_inst, ADC_STATUS_RESULT_READY);
if (adc_get_status(module_inst) & ADC_STATUS_OVERRUN) {
adc_clear_status(module_inst, ADC_STATUS_OVERRUN);
return STATUS_ERR_OVERFLOW;
}
return STATUS_OK;
}
/** @} */
/**
* \name Runtime Changes of ADC Module
* @{
*/
/**
* \brief Flushes the ADC pipeline.
*
* Flushes the pipeline and restarts the ADC clock on the next peripheral clock
* edge. All conversions in progress will be lost. When flush is complete, the
* module will resume where it left off.
*
* \param[in] module_inst Pointer to the ADC software instance struct
*/
static inline void adc_flush(
struct adc_module *const module_inst)
{
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
adc_module->SWTRIG.reg |= ADC_SWTRIG_FLUSH;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
}
void adc_set_window_mode(
struct adc_module *const module_inst,
const enum adc_window_mode window_mode,
const int16_t window_lower_value,
const int16_t window_upper_value);
/**
* \brief Sets positive ADC input pin.
*
* Sets the positive ADC input pin selection.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] positive_input Positive input pin
*/
static inline void adc_set_positive_input(
struct adc_module *const module_inst,
const enum adc_positive_input positive_input)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set positive input pin */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXPOS_Msk) |
(positive_input);
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
}
/**
* \brief Sets negative ADC input pin for differential mode.
*
* Sets the negative ADC input pin, when the ADC is configured in differential
* mode.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] negative_input Negative input pin
*/
static inline void adc_set_negative_input(
struct adc_module *const module_inst,
const enum adc_negative_input negative_input)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
/* Set negative input pin */
adc_module->INPUTCTRL.reg =
(adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXNEG_Msk) |
(negative_input);
while (adc_is_syncing(module_inst)) {
/* Wait for synchronization */
}
}
/** @} */
#if ADC_CALLBACK_MODE == true
/**
* \name Enable and Disable Interrupts
* @{
*/
/**
* \brief Enable interrupt.
*
* Enable the given interrupt request from the ADC module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] interrupt Interrupt to enable
*/
static inline void adc_enable_interrupt(struct adc_module *const module_inst,
enum adc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Enable interrupt */
adc_module->INTENSET.reg = interrupt;
}
/**
* \brief Disable interrupt.
*
* Disable the given interrupt request from the ADC module.
*
* \param[in] module_inst Pointer to the ADC software instance struct
* \param[in] interrupt Interrupt to disable
*/
static inline void adc_disable_interrupt(struct adc_module *const module_inst,
enum adc_interrupt_flag interrupt)
{
/* Sanity check arguments */
Assert(module_inst);
Assert(module_inst->hw);
Adc *const adc_module = module_inst->hw;
/* Enable interrupt */
adc_module->INTENCLR.reg = interrupt;
}
/** @} */
#endif /* ADC_CALLBACK_MODE == true */
#ifdef __cplusplus
}
#endif
/** @} */
/**
* \page asfdoc_sam0_adc_extra Extra Information for ADC Driver
*
* \section asfdoc_sam0_adc_extra_acronyms Acronyms
* Below is a table listing the acronyms used in this module, along with their
* intended meanings.
*
* <table>
* <tr>
* <th>Acronym</th>
* <th>Description</th>
* </tr>
* <tr>
* <td>ADC</td>
* <td>Analog-to-Digital Converter</td>
* </tr>
* <tr>
* <td>DAC</td>
* <td>Digital-to-Analog Converter</td>
* </tr>
* <tr>
* <td>LSB</td>
* <td>Least Significant Bit</td>
* </tr>
* <tr>
* <td>MSB</td>
* <td>Most Significant Bit</td>
* </tr>
* <tr>
* <td>DMA</td>
* <td>Direct Memory Access</td>
* </tr>
* </table>
*
*
* \section asfdoc_sam0_adc_extra_dependencies Dependencies
* This driver has the following dependencies:
*
* - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
*
*
* \section asfdoc_sam0_adc_extra_errata Errata
* There are no errata related to this driver.
*
*
* \section asfdoc_sam0_adc_extra_history Module History
* An overview of the module history is presented in the table below, with
* details on the enhancements and fixes made to the module since its first
* release. The current version of this corresponds to the newest version in
* the table.
*
* <table>
* <tr>
* <th>Changelog</th>
* </tr>
* \if DEVICE_SAML21_SUPPORT
* <tr>
* <td>Initial Release</td>
* </tr>
* \else
* <tr>
* <td>Added support for SAM R21</td>
* </tr>
* <tr>
* <td>Added support for SAM D21 and new DMA quick start guide</td>
* </tr>
* <tr>
* <td>Added ADC calibration constant loading from the device signature
* row when the module is initialized</td>
* </tr>
* <tr>
* <td>Initial Release</td>
* </tr>
* \endif
* </table>
*/
/**
* \page asfdoc_sam0_adc_exqsg Examples for ADC Driver
*
* This is a list of the available Quick Start guides (QSGs) and example
* applications for \ref asfdoc_sam0_adc_group. QSGs are simple examples with
* step-by-step instructions to configure and use this driver in a selection of
* use cases. Note that a QSG can be compiled as a standalone application or be
* added to the user application.
*
* - \subpage asfdoc_sam0_adc_basic_use_case
* \if ADC_CALLBACK_MODE
* - \subpage asfdoc_sam0_adc_basic_use_case_callback
* \endif
* - \subpage asfdoc_sam0_adc_dma_use_case
*
* \page asfdoc_sam0_adc_document_revision_history Document Revision History
*
* <table>
* <tr>
* <th>Doc. Rev.</th>
* <th>Date</th>
* <th>Comments</th>
* </tr>
* \if DEVICE_SAML21_SUPPORT
* <tr>
* <td>42451B</td>
* <td>12/2015</td>
* <td>Added support for SAM L22</td>
* </tr>
* <tr>
* <td>42451A</td>
* <td>07/2015</td>
* <td>Initial document release</td>
* </tr>
* \else
* <tr>
* <td>42109E</td>
* <td>12/2015</td>
* <td>Added support for SAM DA1 and SAM D09</td>
* </tr>
* <tr>
* <td>42109D</td>
* <td>12/2014</td>
* <td>Added support for SAM R21 and SAM D10/D11</td>
* </tr>
* <tr>
* <td>42109C</td>
* <td>01/2014</td>
* <td>Added support for SAM D21</td>
* </tr>
* <tr>
* <td>42109B</td>
* <td>06/2013</td>
* <td>Added additional documentation on the event system. Corrected
* documentation typos.</td>
* </tr>
* <tr>
* <td>42109A</td>
* <td>06/2013</td>
* <td>Initial release</td>
* </tr>
* \endif
* </table>
*/
#endif /* ADC_H_INCLUDED */