rt-thread/bsp/imxrt1052-evk/Libraries/drivers/fsl_dcp.c

1130 lines
35 KiB
C
Raw Normal View History

2017-10-26 15:39:32 +08:00
/*
* The Clear BSD License
2017-10-26 15:39:32 +08:00
* Copyright 2017 NXP
* All rights reserved.
*
*
2017-10-26 15:39:32 +08:00
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
2017-10-26 15:39:32 +08:00
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
2017-10-26 15:39:32 +08:00
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_dcp.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcp"
#endif
2017-10-26 15:39:32 +08:00
/*! Compile time sizeof() check */
#define BUILD_ASSURE(condition, msg) extern int msg[1 - 2 * (!(condition))] __attribute__((unused))
#define dcp_memcpy memcpy
/*! Internal states of the HASH creation process */
typedef enum _dcp_hash_algo_state
{
kDCP_StateHashInit = 1u, /*!< Init state. */
kDCP_StateHashUpdate, /*!< Update state. */
} dcp_hash_algo_state_t;
/*! multiple of 64-byte block represented as byte array of 32-bit words */
typedef union _dcp_hash_block
{
uint32_t w[DCP_HASH_BLOCK_SIZE / 4]; /*!< array of 32-bit words */
uint8_t b[DCP_HASH_BLOCK_SIZE]; /*!< byte array */
} dcp_hash_block_t;
/*! internal dcp_hash context structure */
typedef struct _dcp_hash_ctx_internal
{
dcp_hash_block_t blk; /*!< memory buffer. only full blocks are written to DCP during hash updates */
size_t blksz; /*!< number of valid bytes in memory buffer */
dcp_hash_algo_t algo; /*!< selected algorithm from the set of supported algorithms */
dcp_hash_algo_state_t state; /*!< finite machine state of the hash software process */
uint32_t fullMessageSize; /*!< track message size */
uint32_t ctrl0; /*!< HASH_INIT and HASH_TERM flags */
uint32_t runningHash[9]; /*!< running hash. up to SHA-256 plus size, that is 36 bytes. */
dcp_handle_t *handle;
} dcp_hash_ctx_internal_t;
/*!< SHA-1/SHA-2 digest length in bytes */
enum _dcp_hash_digest_len
{
kDCP_OutLenSha1 = 20u,
kDCP_OutLenSha256 = 32u,
kDCP_OutLenCrc32 = 4u,
};
enum _dcp_work_packet_bit_definitions
{
kDCP_CONTROL0_DECR_SEMAPHOR = 1u << 1, /* DECR_SEMAPHOR */
kDCP_CONTROL0_ENABLE_HASH = 1u << 6, /* ENABLE_HASH */
kDCP_CONTROL0_HASH_INIT = 1u << 12, /* HASH_INIT */
kDCP_CONTROL0_HASH_TERM = 1u << 13, /* HASH_TERM */
kDCP_CONTROL1_HASH_SELECT_SHA256 = 2u << 16,
kDCP_CONTROL1_HASH_SELECT_SHA1 = 0u << 16,
kDCP_CONTROL1_HASH_SELECT_CRC32 = 1u << 16,
};
/*! 64-byte block represented as byte array of 16 32-bit words */
typedef union _dcp_sha_block
{
uint32_t w[64 / 4]; /*!< array of 32-bit words */
uint8_t b[64]; /*!< byte array */
} dcp_sha_block_t;
#if defined(DCP_HASH_CAVP_COMPATIBLE)
/* result of sha1 hash for message with zero size */
static uint8_t s_nullSha1[] = {0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55,
0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09};
/* result of sha256 hash for message with zero size */
static uint8_t s_nullSha256[] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
#endif /* DCP_HASH_CAVP_COMPATIBLE */
/*******************************************************************************
* Variables
******************************************************************************/
static dcp_context_t s_dcpContextSwitchingBuffer;
/*******************************************************************************
* Code
******************************************************************************/
static void dcp_reverse_and_copy(uint8_t *src, uint8_t *dest, size_t src_len)
{
for (int i = 0; i < src_len; i++)
{
dest[i] = src[src_len - 1 - i];
}
}
static status_t dcp_get_channel_status(DCP_Type *base, dcp_channel_t channel)
{
uint32_t statReg = 0;
uint32_t semaReg = 0;
status_t status = kStatus_Fail;
switch (channel)
{
case kDCP_Channel0:
statReg = base->CH0STAT;
semaReg = base->CH0SEMA;
break;
case kDCP_Channel1:
statReg = base->CH1STAT;
semaReg = base->CH1SEMA;
break;
case kDCP_Channel2:
statReg = base->CH2STAT;
semaReg = base->CH2SEMA;
break;
case kDCP_Channel3:
statReg = base->CH3STAT;
semaReg = base->CH3SEMA;
break;
default:
break;
}
if (!((semaReg & DCP_CH0SEMA_VALUE_MASK) || (statReg & DCP_CH0STAT_ERROR_CODE_MASK)))
{
status = kStatus_Success;
}
return status;
}
static void dcp_clear_status(DCP_Type *base)
{
volatile uint32_t *dcpStatClrPtr = &base->STAT + 2u;
*dcpStatClrPtr = 0xFFu;
}
static void dcp_clear_channel_status(DCP_Type *base, uint32_t mask)
{
volatile uint32_t *chStatClrPtr;
if (mask & kDCP_Channel0)
{
chStatClrPtr = &base->CH0STAT + 2u;
*chStatClrPtr = 0xFFu;
}
if (mask & kDCP_Channel1)
{
chStatClrPtr = &base->CH1STAT + 2u;
*chStatClrPtr = 0xFFu;
}
if (mask & kDCP_Channel2)
{
chStatClrPtr = &base->CH2STAT + 2u;
*chStatClrPtr = 0xFFu;
}
if (mask & kDCP_Channel3)
{
chStatClrPtr = &base->CH3STAT + 2u;
*chStatClrPtr = 0xFFu;
}
}
static status_t dcp_aes_set_sram_based_key(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key)
{
base->KEY = DCP_KEY_INDEX(handle->keySlot) | DCP_KEY_SUBWORD(0);
/* move the key by 32-bit words */
int i = 0;
size_t keySize = 16u;
while (keySize)
{
keySize -= sizeof(uint32_t);
base->KEYDATA = ((uint32_t *)(uintptr_t)key)[i];
i++;
}
return kStatus_Success;
}
static status_t dcp_schedule_work(DCP_Type *base, dcp_handle_t *handle, dcp_work_packet_t *dcpPacket)
{
status_t status;
/* check if our channel is active */
if ((base->STAT & (uint32_t)handle->channel) != handle->channel)
{
/* disable global interrupt */
uint32_t currPriMask = DisableGlobalIRQ();
/* re-check if our channel is still available */
if ((base->STAT & (uint32_t)handle->channel) == 0)
{
volatile uint32_t *cmdptr = NULL;
volatile uint32_t *chsema = NULL;
switch (handle->channel)
{
case kDCP_Channel0:
cmdptr = &base->CH0CMDPTR;
chsema = &base->CH0SEMA;
break;
case kDCP_Channel1:
cmdptr = &base->CH1CMDPTR;
chsema = &base->CH1SEMA;
break;
case kDCP_Channel2:
cmdptr = &base->CH2CMDPTR;
chsema = &base->CH2SEMA;
break;
case kDCP_Channel3:
cmdptr = &base->CH3CMDPTR;
chsema = &base->CH3SEMA;
break;
default:
break;
}
if (cmdptr && chsema)
{
/* set out packet to DCP CMDPTR */
*cmdptr = (uint32_t)dcpPacket;
/* set the channel semaphore */
*chsema = 1u;
}
status = kStatus_Success;
}
else
{
status = kStatus_DCP_Again;
}
/* global interrupt enable */
EnableGlobalIRQ(currPriMask);
}
else
{
return kStatus_DCP_Again;
}
return status;
}
status_t DCP_AES_SetKey(DCP_Type *base, dcp_handle_t *handle, const uint8_t *key, size_t keySize)
{
status_t status = kStatus_Fail;
if ((kDCP_OtpKey == handle->keySlot) || (kDCP_OtpUniqueKey == handle->keySlot))
{
/* for AES OTP and unique key, check and return read from fuses status */
if ((base->STAT & DCP_STAT_OTP_KEY_READY_MASK) == DCP_STAT_OTP_KEY_READY_MASK)
{
status = kStatus_Success;
}
}
else
{
/* only work with aligned key[] */
if (0x3U & (uintptr_t)key)
{
return kStatus_InvalidArgument;
}
/* keySize must be 16. */
if (keySize != 16U)
{
return kStatus_InvalidArgument;
}
/* move the key by 32-bit words */
int i = 0;
while (keySize)
{
keySize -= sizeof(uint32_t);
handle->keyWord[i] = ((uint32_t *)(uintptr_t)key)[i];
i++;
}
if (kDCP_PayloadKey != handle->keySlot)
{
/* move the key by 32-bit words to DCP SRAM-based key storage */
status = dcp_aes_set_sram_based_key(base, handle, key);
}
else
{
/* for PAYLOAD_KEY, just return Ok status now */
status = kStatus_Success;
}
}
return status;
}
status_t DCP_AES_EncryptEcb(
DCP_Type *base, dcp_handle_t *handle, const uint8_t *plaintext, uint8_t *ciphertext, size_t size)
{
status_t completionStatus = kStatus_Fail;
dcp_work_packet_t dcpWork = {0};
do
{
completionStatus = DCP_AES_EncryptEcbNonBlocking(base, handle, &dcpWork, plaintext, ciphertext, size);
} while (completionStatus == kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
status_t DCP_AES_EncryptEcbNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (size % 16u))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x122u; /* CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->sourceBufferAddress = (uint32_t)plaintext;
dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 = (0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 = (0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= (1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->control1 = (handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
status_t DCP_AES_DecryptEcb(
DCP_Type *base, dcp_handle_t *handle, const uint8_t *ciphertext, uint8_t *plaintext, size_t size)
{
status_t completionStatus = kStatus_Fail;
dcp_work_packet_t dcpWork = {0};
do
{
completionStatus = DCP_AES_DecryptEcbNonBlocking(base, handle, &dcpWork, ciphertext, plaintext, size);
} while (completionStatus == kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
status_t DCP_AES_DecryptEcbNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (size % 16u))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x22u; /* ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->sourceBufferAddress = (uint32_t)ciphertext;
dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 = (0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 = (0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* ECB does not have IV, so we can point payload directly to keyWord[] stored in handle. */
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= (1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->control1 = (handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
status_t DCP_AES_EncryptCbc(DCP_Type *base,
dcp_handle_t *handle,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t iv[16])
{
status_t completionStatus = kStatus_Fail;
dcp_work_packet_t dcpWork = {0};
do
{
completionStatus = DCP_AES_EncryptCbcNonBlocking(base, handle, &dcpWork, plaintext, ciphertext, size, iv);
} while (completionStatus == kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
status_t DCP_AES_EncryptCbcNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *plaintext,
uint8_t *ciphertext,
size_t size,
const uint8_t *iv)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (size % 16u))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x322u; /* CIPHER_INIT | CIPHER_ENCRYPT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->control1 = 0x10u; /* CBC */
dcpPacket->sourceBufferAddress = (uint32_t)plaintext;
dcpPacket->destinationBufferAddress = (uint32_t)ciphertext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 |= (0xFFu << 8); /* KEY_SELECT = OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 |= (0xFEu << 8); /* KEY_SELECT = UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* In this case payload must contain key & iv in one array. */
/* Copy iv into handle right behind the keyWord[] so we can point payload to keyWord[]. */
dcp_memcpy(handle->iv, iv, 16);
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= (1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT = keySlot */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
status_t DCP_AES_DecryptCbc(DCP_Type *base,
dcp_handle_t *handle,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t iv[16])
{
status_t completionStatus = kStatus_Fail;
dcp_work_packet_t dcpWork = {0};
do
{
completionStatus = DCP_AES_DecryptCbcNonBlocking(base, handle, &dcpWork, ciphertext, plaintext, size, iv);
} while (completionStatus == kStatus_DCP_Again);
if (completionStatus != kStatus_Success)
{
return completionStatus;
}
return DCP_WaitForChannelComplete(base, handle);
}
status_t DCP_AES_DecryptCbcNonBlocking(DCP_Type *base,
dcp_handle_t *handle,
dcp_work_packet_t *dcpPacket,
const uint8_t *ciphertext,
uint8_t *plaintext,
size_t size,
const uint8_t *iv)
{
/* Size must be 16-byte multiple */
if ((size < 16u) || (size % 16u))
{
return kStatus_InvalidArgument;
}
dcpPacket->control0 = 0x222u; /* CIPHER_INIT | ENABLE_CIPHER | DECR_SEMAPHORE */
dcpPacket->control1 = 0x10u; /* CBC */
dcpPacket->sourceBufferAddress = (uint32_t)ciphertext;
dcpPacket->destinationBufferAddress = (uint32_t)plaintext;
dcpPacket->bufferSize = (uint32_t)size;
if (handle->keySlot == kDCP_OtpKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 |= (0xFFu << 8); /* OTP_KEY */
}
else if (handle->keySlot == kDCP_OtpUniqueKey)
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control0 |= (1u << 10); /* OTP_KEY */
dcpPacket->control1 |= (0xFEu << 8); /* UNIQUE_KEY */
}
else if (handle->keySlot == kDCP_PayloadKey)
{
/* in this case payload must contain KEY + IV together */
/* copy iv into handle struct so we can point payload directly to keyWord[]. */
dcp_memcpy(handle->iv, iv, 16);
dcpPacket->payloadPointer = (uint32_t)&handle->keyWord[0];
dcpPacket->control0 |= (1u << 11); /* PAYLOAD_KEY */
}
else
{
dcpPacket->payloadPointer = (uint32_t)iv;
dcpPacket->control1 |= ((uint32_t)handle->keySlot << 8); /* KEY_SELECT */
}
return dcp_schedule_work(base, handle, dcpPacket);
}
void DCP_GetDefaultConfig(dcp_config_t *config)
{
/* ENABLE_CONTEXT_CACHING is disabled by default as the DCP Hash driver uses
* dcp_hash_save_running_hash() and dcp_hash_restore_running_hash() to support
* Hash context switch (different messages interleaved) on the same channel.
*/
dcp_config_t userConfig = {
true, false, true, kDCP_chEnableAll, kDCP_chIntDisable,
};
*config = userConfig;
}
void DCP_Init(DCP_Type *base, const dcp_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_EnableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
base->CTRL = 0xF0800000u; /* reset value */
base->CTRL = 0x30800000u; /* default value */
dcp_clear_status(base);
dcp_clear_channel_status(base, kDCP_Channel0 | kDCP_Channel1 | kDCP_Channel2 | kDCP_Channel3);
base->CTRL = DCP_CTRL_GATHER_RESIDUAL_WRITES(config->gatherResidualWrites) |
DCP_CTRL_ENABLE_CONTEXT_CACHING(config->enableContextCaching) |
DCP_CTRL_ENABLE_CONTEXT_SWITCHING(config->enableContextSwitching) |
DCP_CTRL_CHANNEL_INTERRUPT_ENABLE(config->enableChannelInterrupt);
/* enable DCP channels */
base->CHANNELCTRL = DCP_CHANNELCTRL_ENABLE_CHANNEL(config->enableChannel);
/* use context switching buffer */
base->CONTEXT = (uint32_t)&s_dcpContextSwitchingBuffer;
}
void DCP_Deinit(DCP_Type *base)
{
base->CTRL = 0xF0800000u; /* reset value */
memset(&s_dcpContextSwitchingBuffer, 0, sizeof(s_dcpContextSwitchingBuffer));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
CLOCK_DisableClock(kCLOCK_Dcp);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
status_t DCP_WaitForChannelComplete(DCP_Type *base, dcp_handle_t *handle)
{
/* wait if our channel is still active */
while ((base->STAT & (uint32_t)handle->channel) == handle->channel)
{
}
if (dcp_get_channel_status(base, handle->channel) != kStatus_Success)
{
dcp_clear_status(base);
dcp_clear_channel_status(base, handle->channel);
return kStatus_Fail;
}
return kStatus_Success;
}
/*!
* @brief Check validity of algoritm.
*
* This function checks the validity of input argument.
*
* @param algo Tested algorithm value.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_input_alg(dcp_hash_algo_t algo)
{
if ((algo != kDCP_Sha256) && (algo != kDCP_Sha1) && (algo != kDCP_Crc32))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Check validity of input arguments.
*
* This function checks the validity of input arguments.
*
* @param base DCP peripheral base address.
* @param ctx Memory buffer given by user application where the DCP_HASH_Init/DCP_HASH_Update/DCP_HASH_Finish store
* context.
* @param algo Tested algorithm value.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_input_args(DCP_Type *base, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
/* Check validity of input algorithm */
if (kStatus_Success != dcp_hash_check_input_alg(algo))
{
return kStatus_InvalidArgument;
}
if ((NULL == ctx) || (NULL == base))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Check validity of internal software context.
*
* This function checks if the internal context structure looks correct.
*
* @param ctxInternal Internal context.
* @param message Input message address.
* @return kStatus_Success if valid, kStatus_InvalidArgument otherwise.
*/
static status_t dcp_hash_check_context(dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *message)
{
if ((NULL == message) || (NULL == ctxInternal) || (kStatus_Success != dcp_hash_check_input_alg(ctxInternal->algo)))
{
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/*!
* @brief Initialize the SHA engine for new hash.
*
* This function sets kDCP_CONTROL0_HASH_INIT for control0 in work packet to start a new hash.
*
* @param base SHA peripheral base address.
* @param ctxInternal Internal context.
*/
static status_t dcp_hash_engine_init(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
status_t status;
status = kStatus_InvalidArgument;
if ((kDCP_Sha256 == ctxInternal->algo) || (kDCP_Sha1 == ctxInternal->algo) || (kDCP_Crc32 == ctxInternal->algo))
{
ctxInternal->ctrl0 = kDCP_CONTROL0_HASH_INIT;
status = kStatus_Success;
}
return status;
}
static status_t dcp_hash_update_non_blocking(
DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, dcp_work_packet_t *dcpPacket, const uint8_t *msg, size_t size)
{
dcpPacket->control0 = ctxInternal->ctrl0 | kDCP_CONTROL0_ENABLE_HASH | kDCP_CONTROL0_DECR_SEMAPHOR;
if (ctxInternal->algo == kDCP_Sha256)
{
dcpPacket->control1 = kDCP_CONTROL1_HASH_SELECT_SHA256;
}
else if (ctxInternal->algo == kDCP_Sha1)
{
dcpPacket->control1 = kDCP_CONTROL1_HASH_SELECT_SHA1;
}
else if (ctxInternal->algo == kDCP_Crc32)
{
dcpPacket->control1 = kDCP_CONTROL1_HASH_SELECT_CRC32;
}
else
{
return kStatus_Fail;
}
dcpPacket->sourceBufferAddress = (uint32_t)msg;
dcpPacket->destinationBufferAddress = 0;
dcpPacket->bufferSize = size;
dcpPacket->payloadPointer = (uint32_t)ctxInternal->runningHash;
return dcp_schedule_work(base, ctxInternal->handle, dcpPacket);
}
static status_t dcp_hash_update(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal, const uint8_t *msg, size_t size)
{
status_t completionStatus = kStatus_Fail;
dcp_work_packet_t dcpWork = {0};
do
{
completionStatus = dcp_hash_update_non_blocking(base, ctxInternal, &dcpWork, msg, size);
} while (completionStatus == kStatus_DCP_Again);
completionStatus = DCP_WaitForChannelComplete(base, ctxInternal->handle);
ctxInternal->ctrl0 = 0; /* clear kDCP_CONTROL0_HASH_INIT and kDCP_CONTROL0_HASH_TERM flags */
return (completionStatus);
}
/*!
* @brief Adds message to current hash.
*
* This function merges the message to fill the internal buffer, empties the internal buffer if
* it becomes full, then process all remaining message data.
*
*
* @param base DCP peripheral base address.
* @param ctxInternal Internal context.
* @param message Input message.
* @param messageSize Size of input message in bytes.
* @return kStatus_Success.
*/
static status_t dcp_hash_process_message_data(DCP_Type *base,
dcp_hash_ctx_internal_t *ctxInternal,
const uint8_t *message,
size_t messageSize)
{
status_t status = kStatus_Fail;
/* if there is partially filled internal buffer, fill it to full block */
if (ctxInternal->blksz > 0)
{
size_t toCopy = DCP_HASH_BLOCK_SIZE - ctxInternal->blksz;
dcp_memcpy(&ctxInternal->blk.b[ctxInternal->blksz], message, toCopy);
message += toCopy;
messageSize -= toCopy;
/* process full internal block */
status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], DCP_HASH_BLOCK_SIZE);
if (kStatus_Success != status)
{
return status;
}
}
/* process all full blocks in message[] */
uint32_t fullBlocksSize = ((messageSize >> 6) << 6); /* (X / 64) * 64 */
if (fullBlocksSize > 0)
{
status = dcp_hash_update(base, ctxInternal, message, fullBlocksSize);
if (kStatus_Success != status)
{
return status;
}
message += fullBlocksSize;
messageSize -= fullBlocksSize;
}
/* copy last incomplete message bytes into internal block */
dcp_memcpy(&ctxInternal->blk.b[0], message, messageSize);
ctxInternal->blksz = messageSize;
return status;
}
/*!
* @brief Finalize the running hash to make digest.
*
* This function empties the internal buffer, adds padding bits, and generates final digest.
*
* @param base SHA peripheral base address.
* @param ctxInternal Internal context.
* @return kStatus_Success.
*/
static status_t dcp_hash_finalize(DCP_Type *base, dcp_hash_ctx_internal_t *ctxInternal)
{
status_t status;
ctxInternal->ctrl0 |= kDCP_CONTROL0_HASH_TERM;
status = dcp_hash_update(base, ctxInternal, &ctxInternal->blk.b[0], ctxInternal->blksz);
return status;
}
static void dcp_hash_save_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
uint32_t *srcAddr = NULL;
switch (ctxInternal->handle->channel)
{
case kDCP_Channel0:
srcAddr = &s_dcpContextSwitchingBuffer.x[43];
break;
case kDCP_Channel1:
srcAddr = &s_dcpContextSwitchingBuffer.x[30];
break;
case kDCP_Channel2:
srcAddr = &s_dcpContextSwitchingBuffer.x[17];
break;
case kDCP_Channel3:
srcAddr = &s_dcpContextSwitchingBuffer.x[4];
break;
default:
break;
}
if (srcAddr)
{
dcp_memcpy(ctxInternal->runningHash, srcAddr, sizeof(ctxInternal->runningHash));
}
}
static void dcp_hash_restore_running_hash(dcp_hash_ctx_internal_t *ctxInternal)
{
uint32_t *destAddr = NULL;
switch (ctxInternal->handle->channel)
{
case kDCP_Channel0:
destAddr = &s_dcpContextSwitchingBuffer.x[43];
break;
case kDCP_Channel1:
destAddr = &s_dcpContextSwitchingBuffer.x[30];
break;
case kDCP_Channel2:
destAddr = &s_dcpContextSwitchingBuffer.x[17];
break;
case kDCP_Channel3:
destAddr = &s_dcpContextSwitchingBuffer.x[4];
break;
default:
break;
}
if (destAddr)
{
dcp_memcpy(destAddr, ctxInternal->runningHash, sizeof(ctxInternal->runningHash));
}
}
status_t DCP_HASH_Init(DCP_Type *base, dcp_handle_t *handle, dcp_hash_ctx_t *ctx, dcp_hash_algo_t algo)
{
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
/* compile time check for the correct structure size */
BUILD_ASSURE(sizeof(dcp_hash_ctx_t) >= sizeof(dcp_hash_ctx_internal_t), dcp_hash_ctx_t_size);
uint32_t i;
status = dcp_hash_check_input_args(base, ctx, algo);
if (status != kStatus_Success)
{
return status;
}
/* set algorithm in context struct for later use */
ctxInternal = (dcp_hash_ctx_internal_t *)ctx;
ctxInternal->algo = algo;
ctxInternal->blksz = 0u;
for (i = 0; i < sizeof(ctxInternal->blk.w) / sizeof(ctxInternal->blk.w[0]); i++)
{
ctxInternal->blk.w[0] = 0u;
}
ctxInternal->state = kDCP_StateHashInit;
ctxInternal->fullMessageSize = 0;
ctxInternal->handle = handle;
return status;
}
status_t DCP_HASH_Update(DCP_Type *base, dcp_hash_ctx_t *ctx, const uint8_t *input, size_t inputSize)
{
bool isUpdateState;
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
size_t blockSize;
if (inputSize == 0)
{
return kStatus_Success;
}
ctxInternal = (dcp_hash_ctx_internal_t *)ctx;
status = dcp_hash_check_context(ctxInternal, input);
if (kStatus_Success != status)
{
return status;
}
ctxInternal->fullMessageSize += inputSize;
blockSize = DCP_HASH_BLOCK_SIZE;
/* if we are still less than DCP_HASH_BLOCK_SIZE bytes, keep only in context */
if ((ctxInternal->blksz + inputSize) <= blockSize)
{
dcp_memcpy((&ctxInternal->blk.b[0]) + ctxInternal->blksz, input, inputSize);
ctxInternal->blksz += inputSize;
return status;
}
else
{
isUpdateState = ctxInternal->state == kDCP_StateHashUpdate;
if (!isUpdateState)
{
/* start NEW hash */
status = dcp_hash_engine_init(base, ctxInternal);
if (status != kStatus_Success)
{
return status;
}
ctxInternal->state = kDCP_StateHashUpdate;
}
else
{
dcp_hash_restore_running_hash(ctxInternal);
}
}
/* process input data */
status = dcp_hash_process_message_data(base, ctxInternal, input, inputSize);
dcp_hash_save_running_hash(ctxInternal);
return status;
}
status_t DCP_HASH_Finish(DCP_Type *base, dcp_hash_ctx_t *ctx, uint8_t *output, size_t *outputSize)
{
size_t algOutSize = 0;
status_t status;
dcp_hash_ctx_internal_t *ctxInternal;
ctxInternal = (dcp_hash_ctx_internal_t *)ctx;
status = dcp_hash_check_context(ctxInternal, output);
if (kStatus_Success != status)
{
return status;
}
if (ctxInternal->state == kDCP_StateHashInit)
{
status = dcp_hash_engine_init(base, ctxInternal);
if (status != kStatus_Success)
{
return status;
}
}
else
{
dcp_hash_restore_running_hash(ctxInternal);
}
size_t outSize = 0u;
/* compute algorithm output length */
switch (ctxInternal->algo)
{
case kDCP_Sha256:
outSize = kDCP_OutLenSha256;
break;
case kDCP_Sha1:
outSize = kDCP_OutLenSha1;
break;
case kDCP_Crc32:
outSize = kDCP_OutLenCrc32;
break;
default:
break;
}
algOutSize = outSize;
#if defined(DCP_HASH_CAVP_COMPATIBLE)
if (ctxInternal->fullMessageSize == 0)
{
switch (ctxInternal->algo)
{
case kDCP_Sha256:
dcp_memcpy(&output[0], &s_nullSha256, 32);
break;
case kDCP_Sha1:
dcp_memcpy(&output[0], &s_nullSha1, 20);
break;
default:
break;
}
return kStatus_Success;
}
#endif /* DCP_HASH_CAVP_COMPATIBLE */
/* flush message last incomplete block, if there is any, and add padding bits */
status = dcp_hash_finalize(base, ctxInternal);
if (outputSize)
{
if (algOutSize < *outputSize)
{
*outputSize = algOutSize;
}
else
{
algOutSize = *outputSize;
}
}
/* Reverse and copy result to output[] */
dcp_reverse_and_copy((uint8_t *)ctxInternal->runningHash, &output[0], algOutSize);
memset(ctx, 0, sizeof(dcp_hash_ctx_t));
return status;
}
status_t DCP_HASH(DCP_Type *base,
dcp_handle_t *handle,
dcp_hash_algo_t algo,
const uint8_t *input,
size_t inputSize,
uint8_t *output,
size_t *outputSize)
{
dcp_hash_ctx_t hashCtx;
status_t status;
status = DCP_HASH_Init(base, handle, &hashCtx, algo);
if (status != kStatus_Success)
{
return status;
}
status = DCP_HASH_Update(base, &hashCtx, input, inputSize);
if (status != kStatus_Success)
{
return status;
}
status = DCP_HASH_Finish(base, &hashCtx, output, outputSize);
return status;
}