rt-thread/bsp/stm32/stm32mp157a-st-ev1/board/ports/drv_nand.c

671 lines
18 KiB
C
Raw Normal View History

2020-09-04 10:52:10 +08:00
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-06-30 thread-liu first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#ifdef BSP_USING_NAND
#define DRV_DEBUG
#define LOG_TAG "drv.nand"
#include <drv_log.h>
#include "drv_nand.h"
#define NAND_RB_PIN GET_PIN(D, 6)
static rt_uint32_t ecc_rdbuf[NAND_MAX_PAGE_SIZE/NAND_ECC_SECTOR_SIZE];
static rt_uint32_t ecc_hdbuf[NAND_MAX_PAGE_SIZE/NAND_ECC_SECTOR_SIZE];
struct rthw_fmc
{
rt_uint32_t id;
struct rt_mutex lock;
};
static struct rthw_fmc _device = {0};
static void rt_hw_nand_gpio_init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
if (IS_ENGINEERING_BOOT_MODE())
{
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FMC;
PeriphClkInit.AdcClockSelection = RCC_FMCCLKSOURCE_ACLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
__HAL_RCC_FMC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/* PD6 R/B */
GPIO_InitStruct.Pin = GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* PG9 NCE */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_FMC;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/* PD0,1,4,5,11,12,14,15 */
GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 |
GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* PE7,8,9,10 */
GPIO_InitStruct.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
}
/* nand delay */
static void rt_hw_nand_delay(volatile uint32_t i)
{
while (i > 0)
{
i--;
}
}
/* read nand flash status */
static rt_err_t rt_hw_nand_read_status(void)
{
rt_err_t result = RT_EOK;
NAND_CMD_AREA = NAND_READSTA;
rt_hw_nand_delay(NAND_TWHR_DELAY);
result = NAND_ADDR_AREA;
return result;
}
/* wait nand flash read */
static rt_err_t rt_hw_nand_wait_ready(void)
{
rt_err_t result = RT_EOK;
static uint32_t time = 0;
while (1)
{
result = rt_hw_nand_read_status();
if (result & NAND_READY)
{
break;
}
time++;
if (time >= 0X1FFFFFFF)
{
return RT_ETIMEOUT;
}
}
return RT_EOK;
}
/* set nand mode */
static rt_err_t rt_hw_nand_set_mode(uint8_t mode)
{
NAND_CMD_AREA = NAND_FEATURE;
NAND_DATA_AREA = 0x01;
NAND_ADDR_AREA = mode;
NAND_ADDR_AREA = 0;
NAND_ADDR_AREA = 0;
NAND_ADDR_AREA = 0;
if (rt_hw_nand_wait_ready() == RT_EOK)
{
return RT_EOK;
}
else
{
return RT_ERROR;
}
}
/* reset nand flash */
static rt_err_t rt_hw_nand_reset(void)
{
NAND_CMD_AREA = NAND_RESET;
if (rt_hw_nand_wait_ready() == RT_EOK)
{
return RT_EOK; /* success */
}
else
{
return RT_ERROR;
}
}
/* read nand flash id */
static rt_err_t _read_id(struct rt_mtd_nand_device *device)
{
RT_ASSERT(device != RT_NULL);
uint8_t deviceid[5];
NAND_CMD_AREA = NAND_READID; /* read id command */
NAND_DATA_AREA = 0x00;
deviceid[0] = NAND_ADDR_AREA; /* Byte 0 */
deviceid[1] = NAND_ADDR_AREA; /* Byte 1 */
deviceid[2] = NAND_ADDR_AREA; /* Byte 2 */
deviceid[3] = NAND_ADDR_AREA; /* Byte 3 */
deviceid[4] = NAND_ADDR_AREA; /* Byte 4 */
_device.id = ((uint32_t)deviceid[4]) << 24 | ((uint32_t)deviceid[3]) << 16 | ((uint32_t)deviceid[2]) << 8 | deviceid[1];
LOG_D("nand id: 0x%08x", _device.id);
return RT_EOK;
}
static rt_uint8_t rt_hw_nand_ecc_check(rt_uint32_t generatedEcc, rt_uint32_t readEcc, rt_uint8_t* data)
{
#define ECC_MASK28 0x0FFFFFFF /* 28 valid ECC parity bits. */
#define ECC_MASK 0x05555555 /* 14 ECC parity bits. */
rt_uint32_t count, bitNum, byteAddr;
rt_uint32_t mask;
rt_uint32_t syndrome;
rt_uint32_t eccP; /* 14 even ECC parity bits. */
rt_uint32_t eccPn; /* 14 odd ECC parity bits. */
syndrome = (generatedEcc ^ readEcc) & ECC_MASK28;
if (syndrome == 0)
{
return (RT_EOK); /* No errors in data. */
}
eccPn = syndrome & ECC_MASK; /* Get 14 odd parity bits. */
eccP = (syndrome >> 1) & ECC_MASK; /* Get 14 even parity bits. */
if ((eccPn ^ eccP) == ECC_MASK) /* 1-bit correctable error ? */
{
bitNum = (eccP & 0x01) |
((eccP >> 1) & 0x02) |
((eccP >> 2) & 0x04);
LOG_D("ECC bit %d\n",bitNum);
byteAddr = ((eccP >> 6) & 0x001) |
((eccP >> 7) & 0x002) |
((eccP >> 8) & 0x004) |
((eccP >> 9) & 0x008) |
((eccP >> 10) & 0x010) |
((eccP >> 11) & 0x020) |
((eccP >> 12) & 0x040) |
((eccP >> 13) & 0x080) |
((eccP >> 14) & 0x100) |
((eccP >> 15) & 0x200) |
((eccP >> 16) & 0x400) ;
data[ byteAddr ] ^= 1 << bitNum;
return RT_EOK;
}
/* Count number of one's in the syndrome. */
count = 0;
mask = 0x00800000;
while (mask)
{
if (syndrome & mask)
count++;
mask >>= 1;
}
if (count == 1) /* Error in the ECC itself. */
return RT_EIO;
return RT_EIO; /* Unable to correct data. */
#undef ECC_MASK
#undef ECC_MASK24
}
static rt_err_t _read_page(struct rt_mtd_nand_device *device,
rt_off_t page,
rt_uint8_t *data,
rt_uint32_t data_len,
rt_uint8_t *spare,
rt_uint32_t spare_len)
{
RT_ASSERT(device != RT_NULL);
rt_uint32_t index, i, tickstart, eccnum;
rt_err_t result;
rt_uint8_t *p = RT_NULL;
page = page + device->block_start * device->pages_per_block;
if (page / device->pages_per_block > device->block_end)
{
return -RT_EIO;
}
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
if (data && data_len)
{
NAND_CMD_AREA = NAND_AREA_A;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)page;
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
NAND_CMD_AREA = NAND_AREA_TRUE1;
rt_hw_nand_delay(10);
/* not an integer multiple of NAND ECC SECTOR SIZE, no ECC checks*/
if (data_len % NAND_ECC_SECTOR_SIZE)
{
for (i = 0; i < data_len; i++)
{
*data++ = NAND_ADDR_AREA;
}
}
else
{
eccnum = data_len/NAND_ECC_SECTOR_SIZE;
p = data;
for (index = 0; index < 4; index++)
{
FMC_Bank3_R->PCR |= 1<<6; /* enable ecc */
for (i = 0; i < NAND_ECC_SECTOR_SIZE; i++)
{
*data++ = NAND_ADDR_AREA;
}
/* Get tick */
tickstart = rt_tick_get();
/* Wait until FIFO is empty */
while ((FMC_Bank3_R->SR & (1 << 6)) == RESET)
{
/* Check for the Timeout */
if ((rt_tick_get() - tickstart) > 10000)
{
result = RT_ETIMEOUT;
goto _exit;
}
}
ecc_hdbuf[index] = FMC_Bank3_R->HECCR; /* read hardware ecc */
FMC_Bank3_R->PCR &= ~(1<<6); /* disable ecc */
}
i = device->page_size + 0x10;
rt_hw_nand_delay(10);
NAND_CMD_AREA = 0x05;
NAND_DATA_AREA = (rt_uint8_t)i;
NAND_DATA_AREA = (rt_uint8_t)(i>>8);
NAND_CMD_AREA = 0xE0;
rt_hw_nand_delay(10);
data =(rt_uint8_t*)&ecc_rdbuf[0];
for (i = 0; i < 4*eccnum; i++)
{
*data++ = NAND_ADDR_AREA;
}
/* check ecc */
for(i = 0; i< eccnum; i++)
{
if(ecc_rdbuf[i] != ecc_hdbuf[i])
{
result = rt_hw_nand_ecc_check(ecc_hdbuf[i], ecc_rdbuf[i], p + NAND_ECC_SECTOR_SIZE*i);
if (result != RT_EOK)
{
goto _exit;
}
}
}
}
}
if (spare && spare_len)
{
NAND_CMD_AREA = NAND_AREA_A;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)page;
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
NAND_CMD_AREA = NAND_AREA_TRUE1;
rt_thread_delay(10);
for (i = 0; i < spare_len; i ++)
{
*spare++ = NAND_ADDR_AREA;
}
}
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = RT_ETIMEOUT;
goto _exit;
}
_exit:
rt_mutex_release(&_device.lock);
return result;
}
static rt_err_t _write_page(struct rt_mtd_nand_device *device,
rt_off_t page,
const rt_uint8_t *data,
rt_uint32_t data_len,
const rt_uint8_t *spare,
rt_uint32_t spare_len)
{
RT_ASSERT(device != RT_NULL);
rt_err_t result = RT_EOK;
rt_uint32_t eccnum;
rt_uint32_t i, index;
rt_uint32_t tickstart = 0;
page = page + device->block_start * device->pages_per_block;
if (page / device->pages_per_block > device->block_end)
{
return -RT_EIO;
}
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
if (data && data_len)
{
NAND_CMD_AREA = NAND_WRITE0;
NAND_DATA_AREA = (rt_uint8_t)0;
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
rt_hw_nand_delay(10);
if (data_len % NAND_ECC_SECTOR_SIZE)
{
/* read nand flash */
for (i = 0; i < data_len; i++)
{
NAND_ADDR_AREA = *data++;
}
}
else
{
eccnum = data_len/NAND_ECC_SECTOR_SIZE;
for (index = 0; index < eccnum; index++)
{
FMC_Bank3_R->PCR |= 1<<6; /* enable ecc */
for (i = 0; i < NAND_ECC_SECTOR_SIZE; i++)
{
NAND_ADDR_AREA = *data++;
}
/* Get tick */
tickstart = rt_tick_get();
/* Wait until FIFO is empty */
while ((FMC_Bank3_R->SR & (1 << 6)) == RESET)
{
/* Check for the Timeout */
if ((rt_tick_get() - tickstart) > 10000)
{
result = RT_ETIMEOUT;
goto _exit;
}
}
ecc_hdbuf[index] = FMC_Bank3_R->HECCR; /* read hardware ecc */
FMC_Bank3_R->PCR &= ~(1<<6); /* disable ecc */
}
i = device->page_size + 0x10;
rt_hw_nand_delay(10);
NAND_CMD_AREA = 0x85;
NAND_DATA_AREA = (rt_uint8_t)i;
NAND_DATA_AREA = (rt_uint8_t)(i>>8);
rt_hw_nand_delay(10);
data = (uint8_t*)&ecc_hdbuf[0];
for (index = 0; index < eccnum; index++)
{
for (i = 0; i < 4; i++)
{
NAND_ADDR_AREA = *data++;
}
}
}
}
NAND_CMD_AREA = NAND_WRITE_TURE1;
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_EIO;
goto _exit;
}
if (spare && spare_len)
{
NAND_CMD_AREA = NAND_WRITE0;
NAND_DATA_AREA = (rt_uint8_t)(4096 & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(4096 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(page >> 16);
for (i = 4; i < spare_len; i++)
{
NAND_ADDR_AREA = spare[i];
}
NAND_CMD_AREA = NAND_WRITE_TURE1;
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_EIO;
goto _exit;
}
}
_exit:
rt_mutex_release(&_device.lock);
return result;
}
/* erase one block */
static rt_err_t _erase_block(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
unsigned int block_num;
rt_err_t result = RT_EOK;
block = block + device->block_start;
block_num = block << 6;
rt_mutex_take(&_device.lock, RT_WAITING_FOREVER);
NAND_CMD_AREA = NAND_ERASE0;
NAND_DATA_AREA = (uint8_t)block_num;
NAND_DATA_AREA = (uint8_t)(block_num >> 8);
NAND_DATA_AREA = (uint8_t)(block_num >> 16);
NAND_CMD_AREA = NAND_ERASE1;
rt_thread_delay(NAND_TBERS_DELAY);
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_ERROR;
}
rt_mutex_release(&_device.lock);
return result;
}
static rt_err_t _page_copy(struct rt_mtd_nand_device *device,
rt_off_t src_page,
rt_off_t dst_page)
{
RT_ASSERT(device != RT_NULL);
rt_err_t result = RT_EOK;
rt_uint32_t source_block = 0, dest_block = 0;
src_page = src_page + device->block_start * device->pages_per_block;
dst_page = dst_page + device->block_start * device->pages_per_block;
source_block = src_page / device->pages_per_block;
dest_block = dst_page / device->pages_per_block;
if ((source_block % 2) != (dest_block % 2))
{
return RT_MTD_ESRC;
}
NAND_CMD_AREA = NAND_MOVEDATA_CMD0;
NAND_DATA_AREA = (rt_uint8_t)(0 & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(0 >> 8);
NAND_DATA_AREA = (rt_uint8_t)(src_page & 0xFF);
NAND_DATA_AREA = (rt_uint8_t)(src_page >> 8);
NAND_DATA_AREA = (rt_uint8_t)(src_page >> 16);
NAND_CMD_AREA = NAND_MOVEDATA_CMD1;
rt_hw_nand_delay(10);
NAND_CMD_AREA = NAND_MOVEDATA_CMD2;
NAND_DATA_AREA = ((rt_uint8_t)(0 & 0xFF));
NAND_DATA_AREA = ((rt_uint8_t)(0 >> 8));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page & 0xFF));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page >> 8));
NAND_DATA_AREA = ((rt_uint8_t)(dst_page >> 16));
NAND_CMD_AREA = (NAND_MOVEDATA_CMD3);
if (rt_hw_nand_wait_ready() != RT_EOK)
{
result = -RT_ERROR;
}
return result;
}
static rt_err_t _check_block(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
return (RT_MTD_EOK);
}
static rt_err_t _mark_bad(struct rt_mtd_nand_device *device, rt_uint32_t block)
{
RT_ASSERT(device != RT_NULL);
return (RT_MTD_EOK);
}
static const struct rt_mtd_nand_driver_ops ops =
{
_read_id,
_read_page,
_write_page,
_page_copy,
_erase_block,
_check_block,
_mark_bad,
};
static struct rt_mtd_nand_device nand_dev;
static rt_err_t nand_init(struct rt_mtd_nand_device *device)
{
RT_ASSERT(device != RT_NULL);
uint32_t tempreg = 0;
rt_hw_nand_gpio_init();
tempreg |= 0 << 1; /* disable Wait feature enable bit */
tempreg |= 0 << 4; /* Data bus width 8*/
tempreg |= 0 << 6; /* disable ECC */
tempreg |= 1 << 17; /* ECC page 512 BYTE */
tempreg |= 5 << 9; /* set TCLR */
tempreg |= 5 << 13; /* set TAR */
FMC_Bank3_R->PCR = tempreg; /* set nand control register */
tempreg &= 0;
tempreg |= 3 << 0; /* set MEMSET */
tempreg |= 5 << 8; /* set MEMWAIT */
tempreg |= 2 << 16; /* set MEMHOLD */
tempreg |= 3 << 24; /* set MEMHIZ */
FMC_Bank3_R->PMEM = tempreg;
FMC_Bank3_R->PATT = 0; /* Attribute memory space timing registers */
FMC_Bank3_R->PCR |= 1 << 2; /* NAND Flash memory bank enable bit */
FMC_Bank1_R->BTCR[0] |= (uint32_t)1 << 31; /* enable fmc */
rt_hw_nand_reset(); /* reset nand flash*/
rt_thread_delay(100);
/* read id */
_read_id(&nand_dev);
if (_device.id != MT29F8G08ABACAH4)
{
LOG_E("nand id 0x%08x not support", _device.id);
return RT_ERROR; /* can't find nand flash */
}
rt_hw_nand_set_mode(4); /* set mode 4, high speed mode*/
return RT_EOK;
}
int rt_hw_nand_init(void)
{
rt_err_t result = RT_EOK;
rt_pin_mode(NAND_RB_PIN, PIN_MODE_INPUT_PULLUP); /* nand flash R/B pin */
result = nand_init(&nand_dev);
if (result != RT_EOK)
{
LOG_D("nand flash init error!");
return RT_ERROR;
}
rt_mutex_init(&_device.lock, "nand", RT_IPC_FLAG_FIFO);
nand_dev.page_size = 4096;
nand_dev.pages_per_block = 224;
nand_dev.plane_num = 2;
nand_dev.oob_size = 64;
nand_dev.oob_free = 64 - ((4096) * 3 / 256);
nand_dev.block_start = 0;
nand_dev.block_end = 4095;
nand_dev.block_total = nand_dev.block_end - nand_dev.block_start;
nand_dev.ops = &ops;
result = rt_mtd_nand_register_device("nand", &nand_dev);
if (result != RT_EOK)
{
rt_device_unregister(&nand_dev.parent);
return RT_ERROR;
}
rt_kprintf("nand flash init success, id: 0x%08x\n", _device.id);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_nand_init);
#endif