864 lines
30 KiB
C
Raw Normal View History

/*
* Copyright : (C) 2022 Phytium Information Technology, Inc.
* All Rights Reserved.
*
* This program is OPEN SOURCE software: you can redistribute it and/or modify it
* under the terms of the Phytium Public License as published by the Phytium Technology Co.,Ltd,
* either version 1.0 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the Phytium Public License for more details.
*
*
* FilePath: fpcie.c
* Date: 2022-02-10 14:55:11
* LastEditTime: 2022-02-18 08:59:28
* Description:  This files is for
*
* Modify History:
* Ver   Who        Date         Changes
* ----- ------     --------    --------------------------------------
*/
/***************************** Include Files *********************************/
#include "fpcie.h"
#include "fpcie_hw.h"
#include "fpcie_common.h"
#include "fparameters.h"
#include "fkernel.h"
#include <stdio.h>
#include <string.h>
#include "fdebug.h"
#define CONFIG_SYS_PCI_CACHE_LINE_SIZE 8
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
/***************** Macros (Inline Functions) Definitions *********************/
#define FPCIE_DEBUG_TAG "FPCIE"
#define FPCIE_ERROR(format, ...) FT_DEBUG_PRINT_E(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_I(format, ...) FT_DEBUG_PRINT_I(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_W(format, ...) FT_DEBUG_PRINT_W(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
#define FPCIE_DEBUG_E(format, ...) FT_DEBUG_PRINT_E(FPCIE_DEBUG_TAG, format, ##__VA_ARGS__)
/************************** Constant Definitions *****************************/
/**************************** Type Definitions *******************************/
/************************** Variable Definitions *****************************/
extern int FPcieEpCleanBar(FPcie *instance_p, u32 peu_num, u32 bar_num) ;
static void FPcieShowRegion(const char *name, struct FPcieRegion *region)
{
FPCIE_DEBUG_I("PCI Autoconfig: Bus %s region: [%llx-%llx],\n"
"\t\tPhysical Memory [%llx-%llx]", name,
(unsigned long long)region->bus_start,
(unsigned long long)(region->bus_start + region->size - 1),
(unsigned long long)region->phys_start,
(unsigned long long)(region->phys_start + region->size - 1));
FPCIE_DEBUG_I("bus_lower is %llx ", (unsigned long long)region->bus_lower) ;
}
/**
* @name: FPcieRegionConfigInit
* @msg: PEU
* @param {FPcie} *instance_p is a pointer to the FPcie instance.
* @param {FPcieRegion} *regs
* @param {u32} regs_num regs
*/
//用于资源初始化到instance_p中
static void FPcieRegionConfigInit(FPcie *instance_p, struct FPcieRegion *regs, u32 regs_num)
{
u32 i ;
for (i = 0; i < regs_num; i++)
{
switch (regs[i].flags)
{
case FPCIE_REGION_IO:
memset(&instance_p->mem_io, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem_io, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem_io.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem_io.bus_lower = instance_p->mem_io.phys_start;
FPcieShowRegion("I/O", &instance_p->mem_io);
break;
case FPCIE_REGION_MEM:
memset(&instance_p->mem, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem.bus_lower = instance_p->mem.phys_start;
FPcieShowRegion("Memory", &instance_p->mem);
break;
case (PCI_REGION_PREFETCH|FPCIE_REGION_MEM):
memset(&instance_p->mem_prefetch, 0, sizeof(struct FPcieRegion)) ;
memcpy(&instance_p->mem_prefetch, regs, sizeof(struct FPcieRegion)) ;
instance_p->mem_prefetch.exist_flg = FPCIE_REGION_EXIST_FLG ;
instance_p->mem_prefetch.bus_lower = instance_p->mem_prefetch.phys_start;
FPcieShowRegion("Prefetchable Mem", &instance_p->mem_prefetch);
break;
default:
break;
}
}
}
/**
* @name: FPcieCfgInitialize
* @msg: This function initializes the config space and PCIe bridge.
* @param {FPcie} *instance_p is a pointer to the FPcie instance.
* @param {FPcieConfig} *config_p pointer to FPcieConfig instrance Pointer.
* @return FError
*/
FError FPcieCfgInitialize(FPcie *instance_p, FPcieConfig *config_p) //用于从全局配置数据中获取数据初始化instance_p
{
fsize_t i;
struct FPcieRegion mem_region = {0} ;
struct FPcieRegion prefetch_region = {0} ;
struct FPcieRegion io_region = {0} ;
/* Assert arguments */
FASSERT(instance_p != NULL);
FASSERT(config_p != NULL);
/* Clear instance memory and make copy of configuration */
memset(instance_p, 0, sizeof(FPcie));
memcpy(&instance_p->config, config_p, sizeof(FPcieConfig));
/* 为枚举过程中,涉及的配置空间提供地址划分 */
/* mem32 地址 */ //使用获取到的硬件信息来初始化mem32
mem_region.phys_start = instance_p->config.npmem_base_addr ;
mem_region.bus_start = instance_p->config.npmem_base_addr ;
mem_region.size = instance_p->config.npmem_size ;
mem_region.flags = FPCIE_REGION_MEM ;
/* mem64 地址 */ //使用获取到的硬件信息来初始化mem64
prefetch_region.phys_start = instance_p->config.pmem_base_addr ;
prefetch_region.bus_start = instance_p->config.pmem_base_addr ;
prefetch_region.size = instance_p->config.pmem_size ;
prefetch_region.flags = (PCI_REGION_PREFETCH | FPCIE_REGION_MEM);
/* memio 地址 */ //使用获取到的硬件信息来初始化io
io_region.phys_start = instance_p->config.io_base_addr ;
io_region.bus_start = instance_p->config.io_base_addr ;
io_region.size = instance_p->config.io_size ;
io_region.flags = FPCIE_REGION_IO;
/* scaned bdf array clean */
instance_p->scaned_bdf_count = 0;
FPcieRegionConfigInit(instance_p, &mem_region, 1) ;
#if defined(__aarch64__)
FPcieRegionConfigInit(instance_p, &prefetch_region, 1) ;
#endif
FPcieRegionConfigInit(instance_p, &io_region, 1) ;
instance_p->is_ready = FT_COMPONENT_IS_READY;
/* 关闭当前所有misc 中断 */
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU0_C0);
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU0_C1);
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU0_C2);
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU1_C0);
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU1_C1);
// FPcieMiscIrqDisable(instance_p, FPCIE_PEU1_C2);
/* 清空ep模式下所有配置地址 */
// for (i = 0; i <= FPCIE_PEU1_C2; i++)
// {
// /* code */
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_0);
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_1);
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_2);
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_3);
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_4);
// FPcieEpCleanBar(instance_p, i, FPCIE_BAR_5);
// }
return (FT_SUCCESS);
}
u32 FPcieFindCapability(FPcie *instance_p, u32 bdf, u32 cid_type, u32 cid, u32 *cid_offset)
{
u32 reg_value;
u32 next_cap_offset;
//u32 ret;
if (cid_type == PCIE_CAP)
{
/* Serach in PCIe configuration space */
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, FPCIE_CAPABILITY_LIST, &reg_value);
if (reg_value == 0xffffffff)
return -1;
next_cap_offset = (reg_value & 0xff);
while (next_cap_offset)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, next_cap_offset, &reg_value);
if ((reg_value & 0xff) == cid)
{
*cid_offset = next_cap_offset;
return 0;
}
next_cap_offset = ((reg_value >> 8) & 0xff);
}
}
else if (cid_type == PCIE_ECAP)
{
/* Serach in PCIe extended configuration space */
next_cap_offset = FPCIE_ECAP_START;
while (next_cap_offset)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, next_cap_offset, &reg_value);
if ((reg_value & 0xffff) == cid)
{
*cid_offset = next_cap_offset;
return 0;
}
next_cap_offset = ((reg_value >> 20) & 0xfff);
}
}
/* The capability was not found */
return -1;
}
const char *FPcieClassStr(u8 class)
{
switch (class)
{
case FPCI_CLASS_NOT_DEFINED:
return "Build before PCI Rev2.0";
break;
case FPCI_BASE_CLASS_STORAGE:
return "Mass storage controller";
break;
case FPCI_BASE_CLASS_NETWORK:
return "Network controller";
break;
case FPCI_BASE_CLASS_DISPLAY:
return "Display controller";
break;
case FPCI_BASE_CLASS_MULTIMEDIA:
return "Multimedia device";
break;
case FPCI_BASE_CLASS_MEMORY:
return "Memory controller";
break;
case FPCI_BASE_CLASS_BRIDGE:
return "Bridge device";
break;
case FPCI_BASE_CLASS_COMMUNICATION:
return "Simple comm. controller";
break;
case FPCI_BASE_CLASS_SYSTEM:
return "Base system peripheral";
break;
case FPCI_BASE_CLASS_INPUT:
return "Input device";
break;
case FPCI_BASE_CLASS_DOCKING:
return "Docking station";
break;
case FPCI_BASE_CLASS_PROCESSOR:
return "Processor";
break;
case FPCI_BASE_CLASS_SERIAL:
return "Serial bus controller";
break;
case FPCI_BASE_CLASS_INTELLIGENT:
return "Intelligent controller";
break;
case FPCI_BASE_CLASS_SATELLITE:
return "Satellite controller";
break;
case FPCI_BASE_CLASS_CRYPT:
return "Cryptographic device";
break;
case FPCI_BASE_CLASS_SIGNAL_PROCESSING:
return "DSP";
break;
case FPCI_CLASS_OTHERS:
return "Does not fit any class";
break;
default:
return "???";
break;
};
}
void FPcieAutoRegionAlign(struct FPcieRegion *res, pci_size_t size)
{
res->bus_lower = ((res->bus_lower - 1) | (size - 1)) + 1;
}
int FPcieAutoRegionAllocate(struct FPcieRegion *res, pci_size_t size,
pci_addr_t *bar, bool supports_64bit)
{
pci_addr_t addr;
if (!res)
{
printf("No resource\n");
goto error;
}
addr = ((res->bus_lower - 1) | (size - 1)) + 1;
if (addr - res->bus_start + size > res->size)
{
printf("No room in resource");
goto error;
}
if (upper_32_bits(addr) && !supports_64bit)
{
printf("Cannot assign 64-bit address to 32-bit-only resource\n");
goto error;
}
res->bus_lower = addr + size;
//printf("address=0x%llx bus_lower=0x%llx\n", (unsigned long long)addr,
// (unsigned long long)res->bus_lower);
*bar = addr;
return 0;
error:
*bar = (pci_addr_t) -1;
return -1;
}
void FPcieAutoSetupDevice(FPcie *instance_p, u32 bdf, int bars_num,
struct FPcieRegion *mem,
struct FPcieRegion *prefetch, struct FPcieRegion *io,
bool enum_only)
{
u32 bar_response;
pci_size_t bar_size;
u16 cmdstat = 0;
int bar, bar_nr = 0;
u8 header_type;
int rom_addr;
pci_addr_t bar_value;
struct FPcieRegion *bar_res = NULL;
int found_mem64 = 0;
u16 class;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, &cmdstat);
cmdstat = (cmdstat & ~(FPCIE_COMMAND_IO | FPCIE_COMMAND_MEMORY)) |
FPCIE_COMMAND_MASTER;
for (bar = FPCIE_BASE_ADDRESS_0;
bar < FPCIE_BASE_ADDRESS_0 + (bars_num * 4); bar += 4)
{
/* Tickle the BAR and get the response */
if (!enum_only)
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, 0xffffffff);
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, bar, &bar_response);
/* If BAR is not implemented go to the next BAR */
if (!bar_response)
continue;
found_mem64 = 0;
/* Check the BAR type and set our address mask */
if (bar_response & FPCIE_BASE_ADDRESS_SPACE)
{
bar_size = ((~(bar_response & FPCIE_BASE_ADDRESS_IO_MASK))
& 0xffff) + 1;
if (!enum_only)
bar_res = io;
//printf("PCI Autoconfig: BAR %d, I/O, size=0x%llx, ",
// bar_nr, (unsigned long long)bar_size);
}
else
{
if ((bar_response & FPCIE_BASE_ADDRESS_MEM_TYPE_MASK) ==
FPCIE_BASE_ADDRESS_MEM_TYPE_64)
{
u32 bar_response_upper;
u64 bar64;
if (!enum_only)
{
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar + 4, 0xffffffff);
}
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, bar + 4, &bar_response_upper);
bar64 = ((u64)bar_response_upper << 32) |
bar_response;
bar_size = ~(bar64 & FPCIE_BASE_ADDRESS_MEM_MASK)
+ 1;
if (!enum_only)
found_mem64 = 1;
}
else
{
bar_size = (u32)(~(bar_response &
FPCIE_BASE_ADDRESS_MEM_MASK) + 1);
}
if (!enum_only)
{
if ((prefetch->exist_flg & FPCIE_REGION_EXIST_FLG) & (bar_response &
FPCIE_BASE_ADDRESS_MEM_PREFETCH))
{
bar_res = prefetch;
}
else
{
bar_res = mem;
}
}
//printf("PCI Autoconfig: BAR %d, %s, size=0x%llx, ",
// bar_nr, bar_res == prefetch ? "Prf" : "Mem",
// (unsigned long long)bar_size);
}
if (!enum_only && FPcieAutoRegionAllocate(bar_res, bar_size,
&bar_value,
found_mem64) == 0)
{
/* Write it out and update our limit */
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, (u32)bar_value);
if (found_mem64)
{
bar += 4;
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, (u32)(bar_value >> 32));
#else
/*
* If we are a 64-bit decoder then increment to
* the upper 32 bits of the bar and force it to
* locate in the lower 4GB of memory.
*/
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, bar, 0x00000000);
#endif
}
}
cmdstat |= (bar_response & FPCIE_BASE_ADDRESS_SPACE) ?
FPCIE_COMMAND_IO : FPCIE_COMMAND_MEMORY;
//printf("\n");
bar_nr++;
}
if (!enum_only)
{
/* Configure the expansion ROM address */
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_HEADER_TYPE_REG, &header_type);
header_type &= 0x7f;
if (header_type != FPCIE_HEADER_TYPE_CARDBUS)
{
rom_addr = (header_type == FPCIE_HEADER_TYPE_NORMAL) ?
FPCIE_ROM_ADDRESS : FPCIE_ROM_ADDRESS1;
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, rom_addr, 0xfffffffe);
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, rom_addr, &bar_response);
if (bar_response)
{
bar_size = -(bar_response & ~1);
//printf("PCI Autoconfig: ROM, size=%#x, ",
// (unsigned int)bar_size);
if (FPcieAutoRegionAllocate(mem, bar_size,
&bar_value,
false) == 0)
{
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, rom_addr, bar_value);
}
cmdstat |= FPCIE_COMMAND_MEMORY;
//printf("\n");
}
}
}
/* PCI_COMMAND_IO must be set for VGA device */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCI_CLASS_DEVICE_REG, &class);
if (class == FPCI_CLASS_DISPLAY_VGA)
cmdstat |= FPCIE_COMMAND_IO;
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, cmdstat);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_CACHE_LINE_SIZE_REG,
CONFIG_SYS_PCI_CACHE_LINE_SIZE);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_LATENCY_TIMER_REG, 0x80);
}
void FPcieAutoPrescanSetupBridge(FPcie *instance_p, u32 bdf, int sub_bus)
{
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
u16 cmdstat, prefechable_64;
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, &cmdstat) ;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG, &prefechable_64) ;
prefechable_64 &= FPCIE_PREF_RANGE_TYPE_MASK;
/* Configure bus number registers *///暂时只有一个pcie配置空间的做法如果多个pci配置空间则需当前bus减去该配置空间对应设备的起始bus号
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_PRIMARY_BUS_REG, FPCIE_BUS(bdf));
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SECONDARY_BUS_REG, sub_bus);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SUBORDINATE_BUS_REG, 0xff);
if (pci_mem->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_mem, 0x100000);
/*
* Set up memory and I/O filter limits, assume 32-bit
* I/O space
*/
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_MEMORY_BASE_REG,
(pci_mem->bus_lower & 0xfff00000) >> 16);
cmdstat |= FPCIE_COMMAND_MEMORY;
}
if (pci_prefetch->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_prefetch, 0x100000);
/*
* Set up memory and I/O filter limits, assume 32-bit
* I/O space
*/
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG,
(pci_prefetch->bus_lower & 0xfff00000) >> 16);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG,
pci_prefetch->bus_lower >> 32);
#else
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG,
0x0);
#endif
cmdstat |= FPCIE_COMMAND_MEMORY;
}
else
{
/* We don't support prefetchable memory for now, so disable */
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_BASE_REG, 0x1000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, 0x0);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
{
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_BASE_UPPER32_REG, 0x0);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG, 0x0);
}
}
if (pci_io->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round I/O allocator to 4KB boundary */
FPcieAutoRegionAlign(pci_io, 0x1000);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_IO_BASE_REG,
(pci_io->bus_lower & 0x0000f000) >> 8);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_IO_BASE_UPPER16_REG,
(pci_io->bus_lower & 0xffff0000) >> 16);
cmdstat |= FPCIE_COMMAND_IO;
}
/* Enable memory and I/O accesses, enable bus master */
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_COMMAND_REG, cmdstat | FPCIE_COMMAND_MASTER);
}
void FPcieAutoPostscanSetupBridge(FPcie *instance_p, u32 bdf, int sub_bus)
{
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
/* Configure bus number registers */
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_SUBORDINATE_BUS_REG, sub_bus);//配置一下subordinate-bus可能在固件下不一定必须用
if (pci_mem->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_mem, 0x100000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_MEMORY_LIMIT_REG, (pci_mem->bus_lower - 1) >> 16);
}
if (pci_prefetch->exist_flg & FPCIE_REGION_EXIST_FLG)
{
u16 prefechable_64;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, &prefechable_64);
prefechable_64 &= FPCIE_PREF_RANGE_TYPE_MASK;
/* Round memory allocator to 1MB boundary */
FPcieAutoRegionAlign(pci_prefetch, 0x100000);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_PREF_MEMORY_LIMIT_REG, (pci_prefetch->bus_lower - 1) >> 16);
if (prefechable_64 == FPCIE_PREF_RANGE_TYPE_64)
#ifdef CONFIG_SYS_PCI_64BIT
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG,
(pci_prefetch->bus_lower - 1) >> 32);
#else
FPcieEcamWriteConfig32bit(instance_p->config.ecam, bdf, FPCIE_PREF_LIMIT_UPPER32_REG, 0x0);
#endif
}
if (pci_io->exist_flg & FPCIE_REGION_EXIST_FLG)
{
/* Round I/O allocator to 4KB boundary */
FPcieAutoRegionAlign(pci_io, 0x1000);
FPcieEcamWriteConfig8bit(instance_p->config.ecam, bdf, FPCIE_IO_LIMIT_REG,
((pci_io->bus_lower - 1) & 0x0000f000) >> 8);
FPcieEcamWriteConfig16bit(instance_p->config.ecam, bdf, FPCIE_IO_LIMIT_UPPER16_REG,
((pci_io->bus_lower - 1) & 0xffff0000) >> 16);
}
}
int FPcieHoseProbeBus(FPcie *instance_p, u32 bdf)
{
int sub_bus;
int ret;
instance_p->bus_max = instance_p->bus_max + 1;
sub_bus = instance_p->bus_max;
FPcieAutoPrescanSetupBridge(instance_p, bdf, sub_bus);
FPcieScanBus(instance_p, sub_bus, bdf);
sub_bus = instance_p->bus_max;
FPcieAutoPostscanSetupBridge(instance_p, bdf, sub_bus);
return sub_bus;
}
/*
* HJF: Changed this to return int. I think this is required
* to get the correct result when scanning bridges
*/
int FPcieAutoConfigDevice(FPcie *instance_p, u32 bdf)
{
u16 class = 0;
struct FPcieRegion *pci_mem;
struct FPcieRegion *pci_prefetch;
struct FPcieRegion *pci_io;
bool enum_only = false;
int n;
#ifdef CONFIG_PCI_ENUM_ONLY
enum_only = true;
#endif
pci_mem = &(instance_p->mem);
pci_prefetch = &(instance_p->mem_prefetch);
pci_io = &(instance_p->mem_io);
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_CLASS_DEVICE_REG, &class) ;//读取classcode编号
switch (class)
{
case FPCI_CLASS_BRIDGE_PCI:
FPcieAutoSetupDevice(instance_p, bdf, 2, pci_mem, pci_prefetch, pci_io,
enum_only);
n = FPcieHoseProbeBus(instance_p, bdf);
if (n < 0)
return n;
break;
case FPCI_CLASS_BRIDGE_CARDBUS:
/*
* just do a minimal setup of the bridge,
* let the OS take care of the rest
*/
FPcieAutoSetupDevice(instance_p, bdf, 0, pci_mem, pci_prefetch, pci_io,
enum_only);
printf("PCI Autoconfig: Found P2CardBus bridge, device %d\n", FPCIE_DEV(bdf));
break;
case FPCI_CLASS_PROCESSOR_POWERPC: /* an agent or end-point */
printf("PCI AutoConfig: Found PowerPC device\n");
/* fall through */
default:
FPcieAutoSetupDevice(instance_p, bdf, 6, pci_mem, pci_prefetch, pci_io,
enum_only);
break;
}
return FT_SUCCESS;
}
FError FPcieBindBusDevices(FPcie *instance_p, u32 bus_num, u32 parent_bdf, struct FPcieBus *bus)
{
int dev_count = 0;
u16 vendor, device;
u8 header_type;
s32 bdf, end;
bool found_multi;
FError ret;
u8 class_show;
u32 dev_exp_cap, bus_exp_cap, dev_ext_ari_cap;
u32 data;
char buf_bdf_print[20];
found_multi = false;
end = FPCIE_BDF(bus_num, FT_PCIE_CFG_MAX_NUM_OF_DEV - 1,
FT_PCIE_CFG_MAX_NUM_OF_FUN - 1);
for (bdf = FPCIE_BDF(bus_num, 0, 0); bdf <= end; //使用bus的seq成员来进行扫描其实相当于secondory_bus号
bdf += FPCIE_BDF(0, 0, 1))
{
u32 class;
/* phytium old pci ip version, need skip in some bus */
if (instance_p->config.need_skip)
{
if (FPcieSkipDevice(instance_p->config.ecam, parent_bdf) == FPCIE_NEED_SKIP)
{
continue;
}
}
if (!FPCIE_FUNC(bdf))
found_multi = false;
if (FPCIE_FUNC(bdf) && !found_multi)
continue;
/* Check only the first access, we don't expect problems */
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_VENDOR_REG, &vendor) ;
if (vendor == 0xffff || vendor == 0x0000)
continue;
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_HEADER_TYPE_REG, &header_type) ;
if (!FPCIE_FUNC(bdf))
found_multi = header_type & 0x80;
FPcieEcamReadConfig16bit(instance_p->config.ecam, bdf, FPCIE_DEVICE_ID_REG, &device) ; //读取deviceid
FPcieEcamReadConfig32bit(instance_p->config.ecam, bdf, FPCI_CLASS_REVISION, &class) ; //读取classcode
class >>= 8;
FPcieEcamReadConfig8bit(instance_p->config.ecam, bdf, FPCIE_CLASS_CODE_REG, &class_show) ;
if (parent_bdf == 0xffffffff)
{
strcpy(buf_bdf_print, "root-controller");
}
else
{
sprintf(buf_bdf_print, "pci_%x:%x:%x",
FPCIE_BUS(parent_bdf), FPCIE_DEV(parent_bdf), FPCIE_FUNC(parent_bdf));
}
printf(" %02x:%02x.%02x - %04lx:%04lx %s",
FPCIE_BUS(bdf), FPCIE_DEV(bdf), FPCIE_FUNC(bdf), vendor, device,
buf_bdf_print);
printf(" 0x%.2x (%s)\n", (int)class_show, FPcieClassStr(class_show));
/* ARI function handle */
/* step 1: detect if PCI Express Device */
ret = FPcieFindCapability(instance_p, bdf, PCIE_CAP, FPCI_CAP_ID_EXP, &dev_exp_cap);
if (ret == 0 && dev_exp_cap > 0)
{
/* step2: check if the device is an ARI device */
ret = FPcieFindCapability(instance_p, bdf, PCIE_ECAP, FPCI_EXT_CAP_ID_ARI, &dev_ext_ari_cap);
if (ret == 0 && dev_ext_ari_cap > 0)
{
/* step3: check if its parent supports ARI forwarding */
ret = FPcieFindCapability(instance_p, parent_bdf, PCIE_CAP, FPCI_CAP_ID_EXP, &bus_exp_cap);
/* config bus ARI forwarding */
if (ret == 0 && bus_exp_cap > 0)
{
FPcieEcamReadConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CAPABILITIES_2_OFFSET, &data);
if ((data & FPCIE_CAPABILITY_DEVICE_CAPABILITIES_2_ARI_FORWARDING) != 0)
{
/* step4: ARI forwarding support in bridge, so enable it */
FPcieEcamReadConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, &data);
if (data & FPCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING == 0)
{
data |= FPCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING;
FPcieEcamWriteConfig32bit(instance_p->config.ecam, parent_bdf,
bus_exp_cap + FPCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET, data);
}
}
}
}
}
bus->ChildN[dev_count] = bdf;
dev_count++;
//这里可以将当前的device保存到全局变量中供别的驱动来查询。
instance_p->scaned_bdf_array[instance_p->scaned_bdf_count] = bdf;
(instance_p->scaned_bdf_count)++;
}
bus->ChildCount = dev_count;
return FT_SUCCESS;
}
FError FPcieScanBus(FPcie *instance_p, u32 bus_num, u32 parent_bdf)
{
int i = 0;
s32 bdf;
struct FPcieBus bus;
bus.ChildCount = 0;
/* scan bus 0 device */
FPcieBindBusDevices(instance_p, bus_num, parent_bdf, &bus);
if (bus.ChildCount > 0)
{
for (i = 0; i < bus.ChildCount; i++)
{
bdf = bus.ChildN[i];
FPcieAutoConfigDevice(instance_p, bdf);
}
}
instance_p->is_scaned = 1; //表示已经扫描完成
}