4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-20 16:53:30 +08:00
2018-06-11 09:45:07 +08:00

518 lines
13 KiB
C

/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file ck_dmac.c
* @brief CSI Source File for DMAC Driver
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#include <stdbool.h>
#include "ck_dmac.h"
#include "csi_core.h"
#include "drv_dmac.h"
#include "soc.h"
#define ERR_DMA(errno) (CSI_DRV_ERRNO_DMA_BASE | errno)
typedef struct {
uint32_t base;
uint32_t irq;
dma_event_cb_t cb_event;
uint8_t ch_num;
} ck_dma_priv_t;
static ck_dma_priv_t dma_instance[CONFIG_DMAC_NUM];
static const dma_capabilities_t dma_capabilities = {
.unalign_addr = 1, ///< support for unalign address transfer when memory is source
};
static volatile dma_status_e status[CK_DMA_MAXCHANNEL] = {DMA_STATE_FREE, DMA_STATE_FREE};
static volatile uint8_t ch_opened[CK_DMA_MAXCHANNEL] = {0, 0};
static int32_t ck_dma_set_channel(ck_dma_reg_t *addr, uint32_t source, uint32_t dest, uint32_t size)
{
uint32_t temp = addr->CHCTRLA;
temp &= 0xff000fff;
temp |= (size << 12);
addr->SAR = source;
addr->DAR = dest ;
addr->CHCTRLA = temp;
return 0;
}
static int32_t ck_dma_set_transfertype(ck_dma_reg_t *addr, dma_trans_type_e transtype)
{
uint32_t temp = addr->CHCTRLB;
temp &= 0xffffff7f;
if (transtype >= DMA_PERH2PERH) {
return ERR_DMA(EDRV_PARAMETER);
}
if (transtype == DMA_MEM2MEM) {
temp |= (transtype << 7);
} else {
temp |= (1 << 7);
}
addr->CHCTRLB = temp;
return 0;
}
static int32_t ck_dma_set_addrinc(ck_dma_reg_t *addr, enum_addr_state_e src_addrinc, enum_addr_state_e dst_addrinc)
{
if ((src_addrinc != DMA_ADDR_INCREMENT && src_addrinc != DMA_ADDR_DECREMENT && src_addrinc != DMA_ADDR_NOCHANGE) ||
(dst_addrinc != DMA_ADDR_INCREMENT && dst_addrinc != DMA_ADDR_DECREMENT && dst_addrinc != DMA_ADDR_NOCHANGE)) {
return ERR_DMA(EDRV_PARAMETER);
}
uint32_t temp = addr->CHCTRLA;
temp &= 0xffffff0f;
temp |= (src_addrinc << 6);
temp |= (dst_addrinc << 4);
addr->CHCTRLA = temp;
return 0;
}
static int32_t ck_dma_set_transferwidth(ck_dma_reg_t *addr, dma_datawidth_e src_width, dma_datawidth_e dst_width)
{
if ((src_width != DMA_DATAWIDTH_SIZE8 && src_width != DMA_DATAWIDTH_SIZE16 && src_width != DMA_DATAWIDTH_SIZE32) ||
(dst_width != DMA_DATAWIDTH_SIZE8 && dst_width != DMA_DATAWIDTH_SIZE16 && dst_width != DMA_DATAWIDTH_SIZE32)) {
return ERR_DMA(EDRV_PARAMETER);
}
uint32_t temp = addr->CHCTRLA;
temp &= 0xfffffff0;
temp |= (src_width - 1) << 2;
temp |= dst_width - 1;
addr->CHCTRLA = temp;
return 0;
}
static int32_t ck_dma_set_burstlength(ck_dma_reg_t *addr, uint8_t burstlength)
{
uint32_t temp = addr->CHCTRLA;
temp &= 0xfffff0ff;
temp |= (burstlength << 8);
addr->CHCTRLA = temp;
return 0;
}
/**
\brief Set software or hardware handshaking.
\param[in] addr pointer to dma register.
\return error code
*/
static int32_t ck_dma_set_handshaking(ck_dma_reg_t *addr, dma_handshaking_select_e handshaking)
{
uint32_t temp = addr->CHCTRLB;
temp &= 0xfffffeff;
temp |= (handshaking << 8);
addr->CHCTRLB = temp;
return 0;
}
static int ck_dma_assign_hdhs_interface(ck_dma_reg_t *addr, ckenum_dma_device_e device)
{
if (device < 0 || device >= CKENUM_DMA_MEMORY) {
return ERR_DMA(EDRV_PARAMETER);
}
addr->CHCTRLB &= 0xffffe1ff;
addr->CHCTRLB |= (device << 9);
return 0;
}
void ck_dma_irqhandler(int32_t idx)
{
ck_dma_priv_t *dma_priv = &dma_instance[idx];
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base);
/*
* StatusInt_temp contain the information that which types of interrupr are
* requested.
*/
int32_t count = 0;
uint32_t temp = 0;
for (count = 0; count < dma_priv->ch_num; count++) {
addr = (ck_dma_reg_t *)(dma_priv->base + count * 0x30);
temp = addr->CHINTS;
if (temp != 0) {
break;
}
}
/* If Tfr interrupt is requested */
if (temp == CK_DMA_TFR) {
status[count] = DMA_STATE_DONE;
addr->CHINTC = temp;
if (dma_priv->cb_event) {
dma_priv->cb_event(DMA_EVENT_TRANSFER_DONE, count);
}
}
/* If Err interrput is requested */
if (temp == CK_DMA_ERR) {
status[count] = DMA_STATE_ERROR;
addr->CHINTC = temp;
if (dma_priv->cb_event) {
dma_priv->cb_event(DMA_EVENT_TRANSFER_ERROR, count);
}
}
}
int32_t __attribute__((weak)) target_get_dmac_count(void)
{
return 0;
}
int32_t __attribute__((weak)) target_get_dmac(uint32_t idx, uint32_t *base, uint32_t *irq)
{
return NULL;
}
/**
\brief get dma instance count.
\return dma instance count
*/
int32_t csi_dma_get_instance_count(void)
{
return target_get_dmac_count();
}
/**
\brief Initialize DMA Interface. 1. Initializes the resources needed for the DMA interface 2.registers event callback function
\param[in] idx must not exceed return value of csi_dma_get_instance_count()
\return pointer to dma instances
*/
dmac_handle_t csi_dma_initialize(int32_t idx)
{
if (idx < 0 || idx >= CONFIG_DMAC_NUM) {
return NULL;
}
uint32_t base = 0u;
uint32_t irq = 0u;
int32_t real_idx = target_get_dmac(idx, &base, &irq);
if (real_idx != idx) {
return NULL;
}
ck_dma_priv_t *dma_priv = &dma_instance[idx];
dma_priv->base = base;
dma_priv->irq = irq;
dma_priv->ch_num = CK_DMA_MAXCHANNEL;
drv_nvic_enable_irq(dma_priv->irq);
uint8_t count = 0u;
for (count = 0; count < dma_priv->ch_num; count++) {
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base + count * 0x30);
addr->CHINTM = CK_DMA_MASK;
addr->CHINTC = CK_DMA_INTC;
}
return (dmac_handle_t)dma_priv;
}
/**
\brief De-initialize DMA Interface. stops operation and releases the software resources used by the interface
\param[in] handle damc handle to operate.
\return error code
*/
int32_t csi_dma_uninitialize(dmac_handle_t handle)
{
if (handle == NULL) {
return ERR_DMA(EDRV_PARAMETER);
}
ck_dma_priv_t *dma_priv = handle;
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base);
uint8_t count;
for (count = 0; count < dma_priv->ch_num; count++) {
addr = (ck_dma_reg_t *)(dma_priv->base + count * 0x30);
addr->CHINTM = CK_DMA_MASK;
addr->CHINTC = CK_DMA_INTC;
}
drv_nvic_disable_irq(dma_priv->irq);
return 0;
}
/**
\brief Get driver capabilities.
\param[in] handle damc handle to operate.
\return \ref dma_capabilities_t
*/
dma_capabilities_t csi_dma_get_capabilities(dmac_handle_t handle)
{
return dma_capabilities;
}
/**
\brief get one free dma channel
\param[in] handle damc handle to operate.
\param[in] ch channel num. if -1 then allocate a free channal in this dma
\return -1 - no channel can be used, other - channel index
*/
int32_t csi_dma_alloc_channel(dmac_handle_t handle, int32_t ch)
{
ck_dma_priv_t *dma_priv = handle;
if (handle == NULL || ch > dma_priv->ch_num) {
return ERR_DMA(EDRV_PARAMETER);
}
uint8_t ch_num = 0;
ck_dma_reg_t *addr = NULL;
if (ch == -1) { // alloc a free channal
for (ch_num = 0; ch_num < dma_priv->ch_num; ch_num++) {
addr = (ck_dma_reg_t *)(dma_priv->base + ch_num * 0x30);
if (ch_opened[ch_num] != 0x1) {
ch_opened[ch_num] = 1;
break;
}
}
if (ch_num >= dma_priv->ch_num) {
return -1;
}
} else { //alloc a fixed channel
addr = (ck_dma_reg_t *)(dma_priv->base + ch * 0x30);
if (ch_opened[ch] == 0x1) {
return ERR_DMA(EDRV_BUSY);
}
ch_opened[ch] = 1;
ch_num = ch;
}
addr->CHINTC = CK_DMA_INTC;
addr->CHINTM &= ~CK_DMA_MASK;
status[ch_num] = DMA_STATE_READY;
return ch_num;
}
/**
\brief release dma channel and related resources
\param[in] handle damc handle to operate.
\param[in] ch channel num.
\return error code
*/
int32_t csi_dma_release_channel(dmac_handle_t handle, int32_t ch)
{
ck_dma_priv_t *dma_priv = handle;
if (handle == NULL || ch >= dma_priv->ch_num || ch < 0) {
return ERR_DMA(EDRV_PARAMETER);
}
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base + ch * 0x30);
status[ch] = DMA_STATE_FREE;
ch_opened[ch] = 0;
addr->CHINTC = CK_DMA_INTC;
addr->CHINTM = CK_DMA_MASK;
return 0;
}
/**
\brief
\param[in] handle damc handle to operate.
\param[in] ch channel num. if -1 then allocate a free channal in this dma
\param[in] psrcaddr dma transfer source address
\param[in] pstdaddr dma transfer source address
\param[in] length dma transfer length
\param[in] config dma transfer configure
\param[in] cb_event Pointer to \ref dma_event_cb_t
\return error code
*/
int32_t csi_dma_config(dmac_handle_t handle, int32_t ch,
void *psrcaddr, void *pstdaddr,
uint32_t length, dma_config_t *config, dma_event_cb_t cb_event)
{
ck_dma_priv_t *dma_priv = handle;
if (handle == NULL || ch >= dma_priv->ch_num || config == NULL) {
return ERR_DMA(EDRV_PARAMETER);
}
if (ch == -1) { //alloc a free channel
ch = csi_dma_alloc_channel(handle, -1);
if (ch < 0) {
return ERR_DMA(EDRV_BUSY);
}
}
dma_priv->cb_event = cb_event;
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base + ch * 0x30);
/* Initializes corresponding channel registers */
if ((length * config->src_tw) % config->dst_tw != 0) {
return ERR_DMA(EDRV_PARAMETER);
}
int32_t ret = ck_dma_set_transferwidth(addr, config->src_tw, config->dst_tw);
if (ret) {
return ret;
}
int32_t grouplen = ((length * config->src_tw / config->dst_tw) - 1) % 16;
ck_dma_set_burstlength(addr, grouplen);
ret = ck_dma_set_transfertype(addr, config->type);
if (ret < 0) {
return ret;
}
if (config->type == DMA_MEM2MEM) {
ck_dma_set_handshaking(addr, DMA_HANDSHAKING_SOFTWARE);
ret = ck_dma_set_addrinc(addr , config->src_inc, config->dst_inc);
} else if (config->type == DMA_MEM2PERH) {
ck_dma_set_handshaking(addr, DMA_HANDSHAKING_HARDWARE);
ret = ck_dma_set_addrinc(addr , config->src_inc, config->dst_inc);
if (ret) {
return ret;
}
ret = ck_dma_assign_hdhs_interface(addr, config->hs_if);
if (ret) {
return ret;
}
} else if (config->type == DMA_PERH2MEM) {
ck_dma_set_handshaking(addr, DMA_HANDSHAKING_HARDWARE);
ret = ck_dma_set_addrinc(addr , config->src_inc, config->dst_inc);
if (ret) {
return ret;
}
ret = ck_dma_assign_hdhs_interface(addr, config->hs_if);
if (ret) {
return ret;
}
}
ck_dma_set_channel(addr, (uint32_t)psrcaddr, (uint32_t)pstdaddr, length);
status[ch] = DMA_STATE_READY;
return 0;
}
/**
\brief start generate dma signal.
\param[in] handle damc handle to operate.
\param[in] ch channel num.
\return error code
*/
int32_t csi_dma_start(dmac_handle_t handle, int32_t ch)
{
ck_dma_priv_t *dma_priv = handle;
if (handle == NULL || ch >= dma_priv->ch_num || ch < 0) {
return ERR_DMA(EDRV_PARAMETER);
}
status[ch] = DMA_STATE_BUSY;
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base + ch * 0x30);
addr->CHCTRLB |= CK_DMA_INT_EN; // interrupt enable
addr->CHEN |= CK_DMA_CH_EN;
return 0;
}
/**
\brief Stop generate dma signal.
\param[in] handle damc handle to operate.
\param[in] ch channel num.
\return error code
*/
int32_t csi_dma_stop(dmac_handle_t handle, int32_t ch)
{
if (handle == NULL) {
return ERR_DMA(EDRV_PARAMETER);
}
ck_dma_priv_t *dma_priv = handle;
if (ch >= dma_priv->ch_num || ch < 0) {
return ERR_DMA(EDRV_PARAMETER);
}
status[ch] = DMA_STATE_DONE;
ck_dma_reg_t *addr = (ck_dma_reg_t *)(dma_priv->base + ch * 0x30);
addr->CHCTRLB &= ~CK_DMA_INT_EN; // interrupt disable
addr->CHEN &= ~CK_DMA_CH_EN;
return 0;
}
/**
\brief Get DMA status.
\param[in] handle damc handle to operate.
\param[in] ch channel num.
\return DMA status \ref dma_status_t
*/
dma_status_e csi_dma_get_status(dmac_handle_t handle, int32_t ch)
{
if (handle == NULL) {
return ERR_DMA(EDRV_PARAMETER);
}
ck_dma_priv_t *dma_priv = handle;
if (ch >= dma_priv->ch_num || ch < 0) {
return ERR_DMA(EDRV_PARAMETER);
}
return status[ch];
}