4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-19 06:53:29 +08:00

791 lines
19 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* File : sdcard.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, 2007, RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2007-12-02 Yi.Qiu the first version
* 2010-01-01 Bernard Modify for mini2440
* 2010-10-13 Wangmeng Added sep4020 support
*/
#include "sdcard.h"
#include <dfs_config.h>
volatile rt_int32_t RCA;
#ifdef RT_USING_DFS
/* RT-Thread Device Driver Interface */
#include <rtthread.h>
#include <dfs_fs.h>
/*GLOBAL SD DEVICE PONITER*/
static struct sd_device *ptr_sddev;
static rt_uint8_t gsec_buf[SECTOR_SIZE];
#define USE_TIMEOUT
/*This file is to power on/off the SEP4020 SDC*/
/**
* This function will power on/off the SEP4020 SDC
*
* @param sd_ctl: 0/power on; 1/power off
* @return none
*
*/
static void sd_pwr(int sd_ctl)
{
if (sd_ctl)
{
*(RP)GPIO_PORTA_SEL |= 0x0200;
*(RP)GPIO_PORTA_DIR &= (~0x0200);
*(RP)GPIO_PORTA_DATA |= 0x0200;
}
else
{
*(RP)GPIO_PORTA_SEL |= 0x0200;
*(RP)GPIO_PORTA_DIR &= (~0x0200);
*(RP)GPIO_PORTA_DATA &= (~0x0200);
}
}
/*a nop operation to delay*/
static void delay (U32 j)
{
U32 i;
for (i=0;i<j;i++)
{};
}
/*
* Send the command to set the data transfer mode
* @param cmd:the command to sent
* @param arg:the argument of the command
* @param mode:SDC transfer mode
* @param blk_len:the block size of each data
* @param num:number of blocks
* @param mask:sdc interrupt mask
*/
static rt_err_t cmd_data(U16 cmd,U32 arg,U16 mode,U16 blk_len,U16 num,U16 mask)
{
U32 i;
#ifdef USE_TIMEOUT
U32 to = 10000;
#endif
*(RP)SDC_CLOCK_CONTROL = 0Xff00; //配置SD时钟512分频,关闭SD 时钟
*(RP)SDC_CLOCK_CONTROL = 0Xff04; //打开SD时钟512分频,开启SD 时钟
*(RP)SDC_INTERRUPT_STATUS_MASK = mask; //中断状态屏蔽寄存器赋值
*(RP)SDC_TRANSFER_MODE = mode; //传输模式选择寄存器赋值
*(RP)SDC_BLOCK_SIZE = blk_len; //数据块长度寄存器赋值
*(RP)SDC_BLOCK_COUNT = num; //数据块数目寄存器赋值
*(RP)SDC_ARGUMENT = arg; //命令参数寄存器赋值
*(RP)SDC_COMMAND = cmd; //命令控制寄存器赋值
delay(10);
i = *(RP)SDC_INTERRUPT_STATUS & 0x1000;
while(i != 0x1000) //判断:是否命令发送完毕,并且收到响应
{
i = *(RP)SDC_INTERRUPT_STATUS & 0x1000;
#ifdef USE_TIMEOUT
to --;
if(!to)
{
EOUT("%s TIMEOUT\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
}
delay(160);
#ifdef USE_TIMEOUT
//DBOUT("cmd_data TO is %d\n",to);
#endif
return *(RP)SDC_RESPONSE0; //返回命令反馈信息
}
static rt_err_t cmd_response(U16 Cmd,U32 Arg,U16 TransMode,U16 BlkLen,U16 Nob,U16 IntMask)
{
U32 i;
#ifdef USE_TIMEOUT
U32 to = 50000;
#endif
*(RP)SDC_CLOCK_CONTROL=0Xff00; //配置SD时钟
*(RP)SDC_CLOCK_CONTROL=0Xff04; //打开SD时钟
*(RP)SDC_INTERRUPT_STATUS_MASK=IntMask; //中断状态屏蔽寄存器赋值
*(RP)SDC_TRANSFER_MODE=TransMode; //传输模式选择寄存器赋值
*(RP)SDC_BLOCK_SIZE=BlkLen; //数据块长度寄存器赋值
*(RP)SDC_BLOCK_COUNT=Nob; //数据块数目寄存器赋值
*(RP)SDC_ARGUMENT=Arg; //命令参数寄存器赋值
*(RP)SDC_COMMAND=Cmd; //命令控制寄存器赋值
delay(10);
i = *(RP)SDC_INTERRUPT_STATUS & 0x1040;
while(i != 0x1040) //判断:命令发送完毕,并且收到响应,数据传输完毕。这三项是否已经都完成。
{
i = *(RP)SDC_INTERRUPT_STATUS & 0x1040;
#ifdef USE_TIMEOUT
to--;
if(!to)
{
EOUT("%s Timeout\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
}
//DBOUT("cmd_response TO is %d\n",to);
delay(100);
return RT_EOK; //返回命令反馈信息
}
static rt_err_t cmd_wait(U16 Cmd,U32 Arg,U16 IntMask )
{
int i;
#ifdef USE_TIMEOUT
U32 to=200000;
#endif
*(RP)SDC_CLOCK_CONTROL=0Xff00; //配置SD时钟
*(RP)SDC_CLOCK_CONTROL=0Xff04; //打开SD时钟
*(RP)SDC_COMMAND=Cmd; //命令控制寄存器赋值
*(RP)SDC_INTERRUPT_STATUS_MASK=IntMask; //中断状态屏蔽寄存器赋值
*(RP)SDC_ARGUMENT=Arg; //命令参数寄存器赋值
i = *(RP)SDC_INTERRUPT_STATUS & 0x1000;
while(i != 0x1000) //判断:是否命令发送完毕,并且收到响应
{
i = *(RP)SDC_INTERRUPT_STATUS & 0x1000;
#ifdef USE_TIMEOUT
to--;
if(!to)
{
EOUT("%s Timeout\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
}
//DBOUT("cmd_wait TO is %d\n",to);
delay(10);
return RT_EOK; //返回命令反馈信息以及数值1
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t sd_init(void)
{
rt_err_t err;
#ifdef USE_TIMEOUT
rt_uint32_t to=1000;
#endif
sd_pwr(1);
*(RP)SDC_SOFTWARE_RESET=0x0; //触发软复位,对其写0是进行reset
delay(200);
*(RP)SDC_SOFTWARE_RESET=0x1; //不触发软复位
delay(200);
cmd_wait(0x08,0x0,0xfff); //CMD0命令发送使能
do
{
err = cmd_wait(0x6ea,0x0,0xfff); //CMD55,以切换到ACMD命令
#ifdef USE_TIMEOUT
if(err != RT_EOK)
{
EOUT("cmd_wait err in %s\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
delay(3);
err = cmd_wait(0x52a,0x80ff8000,0xfff); //ACMD41向SD控制器发送命令等待SD控制器确认收到命令
if(err != RT_EOK)
{
EOUT("cmd_wait err in %s\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#ifdef USE_TIMEOUT
to--;
if(!to)
{
EOUT("%s timeout\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
}while(*(RP)SDC_RESPONSE0<0X80008000);
#ifdef USE_TIMEOUT
//DBOUT("%s TO is %d\n",__FUNCTION__,to);
#endif
cmd_data(0x49,0X0,0X0,0x0,0x0,0Xfff);//CMD2发送CID
cmd_data(0x6a,0X0,0X0,0x0,0x0,0Xfff);//CMD3询问卡片发出新的相关地址
RCA = *(RP)SDC_RESPONSE0;
cmd_data(0xea,RCA,0X0,0x0,0x0,0Xfff);//CMD7设置选择性的相关参数
return RT_EOK;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t sd_readblock(rt_uint32_t address, rt_uint8_t* buf)
{
U32 complete,i;
rt_uint8_t temp;
rt_err_t err;
UNUSED rt_uint32_t discard;
#ifdef USE_TIMEOUT
rt_uint32_t to = 10;
#endif
//rt_kprintf("in readblock:%x\n",address);
//Clear all the errors & interrups
*(RP)DMAC_INTINTERRCLR |= 0x1;
*(RP)DMAC_INTINTERRCLR &= ~0x1;
*(RP)DMAC_INTTCCLEAR |= 0x1;
*(RP)DMAC_INTTCCLEAR &= ~0x1;
/*Clear read fifo*/
*(RP)(SDC_INTERRUPT_STATUS_MASK) = ~(0x1<<9); //don't mask fifo empty
while((*(RP)SDC_INTERRUPT_STATUS)&0x200 != 0x200)
discard = *(RP)SDC_READ_BUFER_ACCESS;
/*DMAC2,word,size=0x80*/
*(RP)DMAC_C2SRCADDR = SDC_READ_BUFER_ACCESS;
*(RP)DMAC_C2DESTADDR = (rt_uint32_t)buf;
*(RP)DMAC_C2CONTROL =0x20249b;
*(RP)DMAC_C2CONFIGURATION = 0x38d;
err = cmd_wait(0x6ea,RCA,0xfff);
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
err = cmd_wait(0xca,0x2,0xfff);
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
err = cmd_response(0x22e,address,0X1,0x0200,0x1,0Xfff); //CMD17 4bit mode
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
complete = *(RP)SDC_INTERRUPT_STATUS;
/*CRC*/
if((complete |0xfffffffd) !=0xfffffffd)
{
rt_kprintf("CRC ERROR!!!\n");
complete = *(RP)SDC_INTERRUPT_STATUS;
}
while(((*(RP)( DMAC_INTTCSTATUS)) & 0x4) != 0x4 )
{
delay(10);
#ifdef USE_TIMEOUT
to--;
if(!to)
{
EOUT("%s TIMEOUT\n",__FUNCTION__);
return RT_ETIMEOUT;
}
#endif
}
#ifdef USE_TIMEOUT
//DBOUT("%s timeout is %d\n",__FUNCTION__,to);
#endif
/*for the buf is big-endian we must reverse it*/
for(i = 0;i<0x80;i++)
{
temp = buf[0];
buf[0] = buf[3];
buf[3] = temp;
temp = buf[1];
buf[1] = buf[2];
buf[2] = temp;
buf += 4;
}
return RT_EOK;
}
static rt_uint8_t sd_readmultiblock(rt_uint32_t address, rt_uint8_t* buf,rt_uint32_t size)
{
rt_int32_t index;
rt_uint8_t status=RT_EOK;
for(index = 0;index < size;index++)
{
status = sd_readblock(address+index*SECTOR_SIZE,buf+index*SECTOR_SIZE);
if(status!=RT_EOK)
break;
}
return status;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_uint8_t sd_writeblock(rt_uint32_t address, rt_uint8_t* buf)
{
U32 complete;
rt_uint8_t temp;
rt_uint8_t *ptr = buf;
rt_err_t err;
#ifdef USE_TIMEOUT
rt_uint32_t to = 10;
#endif
int i;
rt_kprintf("in writeblock:%x\n",address);
/*for the buf is big-endian we must reverse it*/
for(i = 0;i<0x80;i++)
{
temp = ptr[0];
ptr[0] = ptr[3];
ptr[3] = temp;
temp = ptr[1];
ptr[1] = ptr[2];
ptr[2] = temp;
ptr += 4;
}
//Clear all the errors & interrups
*(RP)DMAC_INTINTERRCLR |= 0x1;
*(RP)DMAC_INTINTERRCLR &= ~0x1;
*(RP)DMAC_INTTCCLEAR |= 0x1;
*(RP)DMAC_INTTCCLEAR &= ~0x1;
//***********************配置DMA2进行四位写*************************
*(RP)DMAC_C2SRCADDR = (U32)buf; //DMAC道2源地址赋为0x30200000
*(RP)DMAC_C2DESTADDR = SDC_WRITE_BUFER_ACCESS; //DMAC道2目的地址赋为发送FIFO的地址
*(RP)DMAC_C2CONTROL = 0x20149b; //传输尺寸0x080,源地址增加目的地址不增加传输宽度32bit传输的数目4
*(RP)DMAC_C2CONFIGURATION = 0x380b; //不屏蔽传输中断,屏蔽错误中断,通道使能,传输类型:存储器到外设
err = cmd_wait(0x6ea,RCA,0xfff); //CMD55以切换到ACMD命令
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
err = cmd_wait(0xca,0x2,0xfff); //ACMD6定义数据线宽度48 位短反馈,无数据传输
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
err = cmd_response(0x30e,address,0X3,0x0200,0x1,0Xfff); //CMD24 1bit mode
if(err != RT_EOK)
{
rt_set_errno(err);
return err;
}
complete = *(RP)SDC_INTERRUPT_STATUS;
if((complete |0xfffffffe) !=0xfffffffe) //响应超时错误
{
//printf("CRC ERROR");
complete = *(RP)SDC_INTERRUPT_STATUS;
}
while(((*(RP)( DMAC_INTTCSTATUS)) & 0x4) != 0x4 )
{
delay(10);
#ifdef USE_TIMEOUT
to--;
if(!to)
{
EOUT("%s TIMEOUT\n",__FUNCTION__);
}
#endif
}
#ifdef USE_TIMEOUT
//DBOUT("%s timeout is %d\n",__FUNCTION__,to);
#endif
return RT_EOK;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t rt_sdcard_init(rt_device_t dev)
{
return 0;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t rt_sdcard_open(rt_device_t dev, rt_uint16_t oflag)
{
return 0;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t rt_sdcard_close(rt_device_t dev)
{
return 0;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_err_t rt_sdcard_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
rt_kprintf("cmd = %d\n",cmd);
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
if (geometry == RT_NULL) return -RT_ERROR;
geometry->bytes_per_sector = 512;
geometry->block_size = 0x200000;
//if (CardType == SDIO_HIGH_CAPACITY_SD_CARD)
// geometry->sector_count = (SDCardInfo.SD_csd.DeviceSize + 1) * 1024;
//else
geometry->sector_count = 0x200000;//SDCardInfo.CardCapacity/SDCardInfo.CardBlockSize;
}
return RT_EOK;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_size_t rt_sdcard_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint32_t retry = 3;
rt_uint8_t status;
rt_uint32_t index;
///*take the semaphore
struct dfs_partition *part = (struct dfs_partition *)dev->user_data;
rt_sem_take(part->lock, RT_WAITING_FOREVER);
while(retry--)
{
if (((rt_uint32_t)buffer % 4 != 0) ||
((rt_uint32_t)buffer > 0x20080000))
{
for(index = 0;index < size;index++)
{
status = sd_readblock((part->offset + pos) * SECTOR_SIZE,ptr_sddev->sec_buf);
if(status != RT_EOK)
break;
rt_memcpy((rt_uint8_t *)buffer + (index * SECTOR_SIZE),ptr_sddev->sec_buf,SECTOR_SIZE);
}
}
else
{
for(index = 0;index<size;index++)
{
status = sd_readblock((pos) * SECTOR_SIZE,(rt_uint8_t*)buffer + index * SECTOR_SIZE);
if(status != RT_EOK)
break;
}
}
}
rt_sem_release(part->lock);
if (status == RT_EOK)
return size;
rt_kprintf("read failed: %d, buffer 0x%08x\n", status, buffer);
return 0;
}
/**
* This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function
*/
static rt_size_t rt_sdcard_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
int i;
rt_uint8_t status;
struct dfs_partition *part = (struct dfs_partition *)dev->user_data;
if ( dev == RT_NULL )
{
rt_set_errno(-DFS_STATUS_EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
if (((rt_uint32_t)buffer % 4 != 0) ||
((rt_uint32_t)buffer > 0x20080000))
{
rt_uint32_t index;
for(index=0;index<size;index++)
{
rt_memcpy(ptr_sddev->sec_buf, ((rt_uint8_t*)buffer + index * SECTOR_SIZE), SECTOR_SIZE);
status = sd_writeblock((part->offset + index + pos)*SECTOR_SIZE,ptr_sddev->sec_buf);
}
}
else
{
for(i=0;i<size;i++)
{
status = sd_writeblock((part->offset + i + pos)*SECTOR_SIZE,
(rt_uint8_t*)((rt_uint8_t*)buffer + i * SECTOR_SIZE));
if (status != RT_EOK) break;
}
}
rt_sem_release(part->lock);
if (status == RT_EOK)
return size;
rt_kprintf("read failed: %d, buffer 0x%08x\n", status, buffer);
return 0;
}
rt_err_t rt_hw_sdcard_exit()
{
if(ptr_sddev->device != RT_NULL)
rt_free(ptr_sddev->device);
if(ptr_sddev->part != RT_NULL)
rt_free(ptr_sddev->part);
if(ptr_sddev != RT_NULL)
rt_free(ptr_sddev);
return RT_EOK;
}
/**
* This function will init sd card
*
* @param void
*/
rt_err_t rt_hw_sdcard_init()
{
/*For test*/
rt_err_t err;
rt_int32_t i;
char dname[4];
char sname[8];
/*Initialize structure*/
ptr_sddev = (struct sd_device*)rt_malloc(sizeof(struct sd_device));
if(ptr_sddev == RT_NULL)
{
EOUT("Failed to allocate sdcard device structure\n");
return RT_ENOMEM;
}
/*sdcard intialize*/
err = sd_init();
if(err != RT_EOK)
goto FAIL2;
/*set sector buffer*/
ptr_sddev->sec_buf = gsec_buf;
ptr_sddev->buf_size = SECTOR_SIZE;
ptr_sddev->sdc = (struct sd_c*)SD_BASE;
//DBOUT("allocate partition sector buffer OK!");
err = sd_readblock(0,ptr_sddev->sec_buf);
if(err != RT_EOK)
{
EOUT("read first block error\n");
goto FAIL2;
}
/*sdcard driver initialize*/
ptr_sddev->part = (struct dfs_partition*)rt_malloc(4 * sizeof(struct dfs_partition));
if(ptr_sddev->part == RT_NULL)
{
EOUT("allocate partition failed\n");
err = RT_ENOMEM;
goto FAIL2;
}
/*alloc device buffer*/
ptr_sddev->device = (struct rt_device*)rt_malloc(4 * sizeof(struct rt_device));
if(ptr_sddev->device == RT_NULL)
{
EOUT("allocate device failed\n");
err = RT_ENOMEM;
goto FAIL1;
}
ptr_sddev->part_num = 0;
err = sd_readblock(0,ptr_sddev->sec_buf);
if(err != RT_EOK)
{
EOUT("Read block 0 to initialize ERROR\n");
goto FAIL1;
}
for(i=0; i<4; i++)
{
/* get the first partition */
err = dfs_filesystem_get_partition(&(ptr_sddev->part[i]), ptr_sddev->sec_buf, i);
if (err == RT_EOK)
{
rt_snprintf(dname, 4, "sd%d", i);
rt_snprintf(sname, 8, "sem_sd%d", i);
ptr_sddev->part[i].lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register sdcard device */
ptr_sddev->device[i].init = rt_sdcard_init;
ptr_sddev->device[i].open = rt_sdcard_open;
ptr_sddev->device[i].close = rt_sdcard_close;
ptr_sddev->device[i].read = rt_sdcard_read;
ptr_sddev->device[i].write = rt_sdcard_write;
ptr_sddev->device[i].control = rt_sdcard_control;
ptr_sddev->device[i].user_data= &ptr_sddev->part[i];
err = rt_device_register(&ptr_sddev->device[i], dname,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
if(err == RT_EOK)
ptr_sddev->part_num++;
}
else
{
if(i == 0)
{
/* there is no partition table */
ptr_sddev->part[0].offset = 0;
ptr_sddev->part[0].size = 0;
ptr_sddev->part[0].lock = rt_sem_create("sem_sd0", 1, RT_IPC_FLAG_FIFO);
/* register sdcard device */
ptr_sddev->device[0].init = rt_sdcard_init;
ptr_sddev->device[0].open = rt_sdcard_open;
ptr_sddev->device[0].close = rt_sdcard_close;
ptr_sddev->device[0].read = rt_sdcard_read;
ptr_sddev->device[0].write = rt_sdcard_write;
ptr_sddev->device[0].control = rt_sdcard_control;
ptr_sddev->device[0].user_data= &ptr_sddev->part[0];
err = rt_device_register(&ptr_sddev->device[0], "sd0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
if(err == RT_EOK)
ptr_sddev->part_num++;
break;
}
}
}
if(ptr_sddev->part_num == 0)
goto FAIL0;
return err;
FAIL0:
rt_free(ptr_sddev->device);
ptr_sddev->device = RT_NULL;
FAIL1:
rt_free(ptr_sddev->part);
ptr_sddev->part = RT_NULL;
FAIL2:
rt_free(ptr_sddev);
ptr_sddev = RT_NULL;
return err;
}
#endif