4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 09:53:30 +08:00
2017-10-28 10:04:39 +08:00

481 lines
18 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_lpi2c_edma.h"
#include <stdlib.h>
#include <string.h>
/*******************************************************************************
* Definitions
******************************************************************************/
/* @brief Mask to align an address to 32 bytes. */
#define ALIGN_32_MASK (0x1fU)
/*! @brief Common sets of flags used by the driver. */
enum _lpi2c_flag_constants
{
/*! All flags which are cleared by the driver upon starting a transfer. */
kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag |
kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag |
kLPI2C_MasterDataMatchFlag,
/*! IRQ sources enabled by the non-blocking transactional API. */
kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag |
kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag |
kLPI2C_MasterFifoErrFlag,
/*! Errors to check for. */
kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag |
kLPI2C_MasterPinLowTimeoutFlag,
/*! All flags which are cleared by the driver upon starting a transfer. */
kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag |
kLPI2C_SlaveFifoErrFlag,
/*! IRQ sources enabled by the non-blocking transactional API. */
kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag |
kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag |
kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag,
/*! Errors to check for. */
kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag,
};
/* ! @brief LPI2C master fifo commands. */
enum _lpi2c_master_fifo_cmd
{
kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */
kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */
kStopCmd = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */
kStartCmd = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */
};
/*! @brief States for the state machine used by transactional APIs. */
enum _lpi2c_transfer_states
{
kIdleState = 0,
kSendCommandState,
kIssueReadCommandState,
kTransferDataState,
kStopState,
kWaitForCompletionState,
};
/*! @brief Typedef for interrupt handler. */
typedef void (*lpi2c_isr_t)(LPI2C_Type *base, void *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/* Defined in fsl_lpi2c.c. */
extern status_t LPI2C_CheckForBusyBus(LPI2C_Type *base);
/* Defined in fsl_lpi2c.c. */
extern status_t LPI2C_MasterCheckAndClearError(LPI2C_Type *base, uint32_t status);
static uint32_t LPI2C_GenerateCommands(lpi2c_master_edma_handle_t *handle);
static void LPI2C_MasterEDMACallback(edma_handle_t *dmaHandle, void *userData, bool isTransferDone, uint32_t tcds);
/*******************************************************************************
* Code
******************************************************************************/
void LPI2C_MasterCreateEDMAHandle(LPI2C_Type *base,
lpi2c_master_edma_handle_t *handle,
edma_handle_t *rxDmaHandle,
edma_handle_t *txDmaHandle,
lpi2c_master_edma_transfer_callback_t callback,
void *userData)
{
assert(handle);
assert(rxDmaHandle);
assert(txDmaHandle);
/* Clear out the handle. */
memset(handle, 0, sizeof(*handle));
/* Set up the handle. For combined rx/tx DMA requests, the tx channel handle is set to the rx handle */
/* in order to make the transfer API code simpler. */
handle->base = base;
handle->completionCallback = callback;
handle->userData = userData;
handle->rx = rxDmaHandle;
handle->tx = FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base) ? txDmaHandle : rxDmaHandle;
/* Set DMA channel completion callbacks. */
EDMA_SetCallback(handle->rx, LPI2C_MasterEDMACallback, handle);
if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetCallback(handle->tx, LPI2C_MasterEDMACallback, handle);
}
}
/*!
* @brief Prepares the command buffer with the sequence of commands needed to send the requested transaction.
* @param handle Master DMA driver handle.
* @return Number of command words.
*/
static uint32_t LPI2C_GenerateCommands(lpi2c_master_edma_handle_t *handle)
{
lpi2c_master_transfer_t *xfer = &handle->transfer;
uint16_t *cmd = (uint16_t *)&handle->commandBuffer;
uint32_t cmdCount = 0;
/* Handle no start option. */
if (xfer->flags & kLPI2C_TransferNoStartFlag)
{
if (xfer->direction == kLPI2C_Read)
{
/* Need to issue read command first. */
cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
}
}
else
{
/*
* Initial direction depends on whether a subaddress was provided, and of course the actual
* data transfer direction.
*/
lpi2c_direction_t direction = xfer->subaddressSize ? kLPI2C_Write : xfer->direction;
/* Start command. */
cmd[cmdCount++] =
(uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction);
/* Subaddress, MSB first. */
if (xfer->subaddressSize)
{
uint32_t subaddressRemaining = xfer->subaddressSize;
while (subaddressRemaining--)
{
uint8_t subaddressByte = (xfer->subaddress >> (8 * subaddressRemaining)) & 0xff;
cmd[cmdCount++] = subaddressByte;
}
}
/* Reads need special handling because we have to issue a read command and maybe a repeated start. */
if ((xfer->dataSize) && (xfer->direction == kLPI2C_Read))
{
/* Need to send repeated start if switching directions to read. */
if (direction == kLPI2C_Write)
{
cmd[cmdCount++] = (uint16_t)kStartCmd |
(uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read);
}
/* Read command. */
cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1);
}
}
return cmdCount;
}
status_t LPI2C_MasterTransferEDMA(LPI2C_Type *base,
lpi2c_master_edma_handle_t *handle,
lpi2c_master_transfer_t *transfer)
{
status_t result;
assert(handle);
assert(transfer);
assert(transfer->subaddressSize <= sizeof(transfer->subaddress));
/* Return busy if another transaction is in progress. */
if (handle->isBusy)
{
return kStatus_LPI2C_Busy;
}
/* Return an error if the bus is already in use not by us. */
result = LPI2C_CheckForBusyBus(base);
if (result)
{
return result;
}
/* We're now busy. */
handle->isBusy = true;
/* Disable LPI2C IRQ and DMA sources while we configure stuff. */
LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags);
LPI2C_MasterEnableDMA(base, false, false);
/* Clear all flags. */
LPI2C_MasterClearStatusFlags(base, kMasterClearFlags);
/* Save transfer into handle. */
handle->transfer = *transfer;
/* Generate commands to send. */
uint32_t commandCount = LPI2C_GenerateCommands(handle);
/* If the user is transmitting no data with no start or stop, then just go ahead and invoke the callback. */
if ((!commandCount) && (transfer->dataSize == 0))
{
if (handle->completionCallback)
{
handle->completionCallback(base, handle, kStatus_Success, handle->userData);
}
return kStatus_Success;
}
/* Reset DMA channels. */
EDMA_ResetChannel(handle->rx->base, handle->rx->channel);
if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_ResetChannel(handle->tx->base, handle->tx->channel);
}
/* Get a 32-byte aligned TCD pointer. */
edma_tcd_t *tcd = (edma_tcd_t *)((uint32_t)(&handle->tcds[1]) & (~ALIGN_32_MASK));
bool hasSendData = (transfer->direction == kLPI2C_Write) && (transfer->dataSize);
bool hasReceiveData = (transfer->direction == kLPI2C_Read) && (transfer->dataSize);
edma_transfer_config_t transferConfig;
edma_tcd_t *linkTcd = NULL;
/* Set up data transmit. */
if (hasSendData)
{
transferConfig.srcAddr = (uint32_t)transfer->data;
transferConfig.destAddr = (uint32_t)LPI2C_MasterGetTxFifoAddress(base);
transferConfig.srcTransferSize = kEDMA_TransferSize1Bytes;
transferConfig.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfig.srcOffset = sizeof(uint8_t);
transferConfig.destOffset = 0;
transferConfig.minorLoopBytes = sizeof(uint8_t); /* TODO optimize to fill fifo */
transferConfig.majorLoopCounts = transfer->dataSize;
/* Store the initially configured eDMA minor byte transfer count into the LPI2C handle */
handle->nbytes = transferConfig.minorLoopBytes;
if (commandCount)
{
/* Create a software TCD, which will be chained after the commands. */
EDMA_TcdReset(tcd);
EDMA_TcdSetTransferConfig(tcd, &transferConfig, NULL);
EDMA_TcdEnableInterrupts(tcd, kEDMA_MajorInterruptEnable);
linkTcd = tcd;
}
else
{
/* User is only transmitting data with no required commands, so this transfer can stand alone. */
EDMA_SetTransferConfig(handle->tx->base, handle->tx->channel, &transferConfig, NULL);
EDMA_EnableChannelInterrupts(handle->tx->base, handle->tx->channel, kEDMA_MajorInterruptEnable);
}
}
else if (hasReceiveData)
{
/* Set up data receive. */
transferConfig.srcAddr = (uint32_t)LPI2C_MasterGetRxFifoAddress(base);
transferConfig.destAddr = (uint32_t)transfer->data;
transferConfig.srcTransferSize = kEDMA_TransferSize1Bytes;
transferConfig.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfig.srcOffset = 0;
transferConfig.destOffset = sizeof(uint8_t);
transferConfig.minorLoopBytes = sizeof(uint8_t); /* TODO optimize to empty fifo */
transferConfig.majorLoopCounts = transfer->dataSize;
/* Store the initially configured eDMA minor byte transfer count into the LPI2C handle */
handle->nbytes = transferConfig.minorLoopBytes;
if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base) || (!commandCount))
{
/* We can put this receive transfer on its own DMA channel. */
EDMA_SetTransferConfig(handle->rx->base, handle->rx->channel, &transferConfig, NULL);
EDMA_EnableChannelInterrupts(handle->rx->base, handle->rx->channel, kEDMA_MajorInterruptEnable);
}
else
{
/* For shared rx/tx DMA requests when there are commands, create a software TCD which will be */
/* chained onto the commands transfer, notice that in this situation assume tx/rx uses same channel */
EDMA_TcdReset(tcd);
EDMA_TcdSetTransferConfig(tcd, &transferConfig, NULL);
EDMA_TcdEnableInterrupts(tcd, kEDMA_MajorInterruptEnable);
linkTcd = tcd;
}
}
else
{
/* No data to send */
}
/* Set up commands transfer. */
if (commandCount)
{
transferConfig.srcAddr = (uint32_t)handle->commandBuffer;
transferConfig.destAddr = (uint32_t)LPI2C_MasterGetTxFifoAddress(base);
transferConfig.srcTransferSize = kEDMA_TransferSize2Bytes;
transferConfig.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfig.srcOffset = sizeof(uint16_t);
transferConfig.destOffset = 0;
transferConfig.minorLoopBytes = sizeof(uint16_t); /* TODO optimize to fill fifo */
transferConfig.majorLoopCounts = commandCount;
EDMA_SetTransferConfig(handle->tx->base, handle->tx->channel, &transferConfig, linkTcd);
}
/* Start DMA transfer. */
if (hasReceiveData || !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_StartTransfer(handle->rx);
}
if (hasReceiveData && !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_EnableChannelInterrupts(handle->tx->base, handle->tx->channel, kEDMA_MajorInterruptEnable);
}
if ((hasSendData || commandCount) && FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_StartTransfer(handle->tx);
}
/* Enable DMA in both directions. This actually kicks of the transfer. */
LPI2C_MasterEnableDMA(base, true, true);
return result;
}
status_t LPI2C_MasterTransferGetCountEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (!handle->isBusy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
uint32_t remaining = handle->transfer.dataSize;
/* If the DMA is still on a commands transfer that chains to the actual data transfer, */
/* we do nothing and return the number of transferred bytes as zero. */
if (EDMA_GetNextTCDAddress(handle->tx) == 0)
{
if (handle->transfer.direction == kLPI2C_Write)
{
remaining =
(uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->tx->base, handle->tx->channel);
}
else
{
remaining =
(uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->rx->base, handle->rx->channel);
}
}
*count = handle->transfer.dataSize - remaining;
return kStatus_Success;
}
status_t LPI2C_MasterTransferAbortEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle)
{
/* Catch when there is not an active transfer. */
if (!handle->isBusy)
{
return kStatus_LPI2C_Idle;
}
/* Terminate DMA transfers. */
EDMA_AbortTransfer(handle->rx);
if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_AbortTransfer(handle->tx);
}
/* Reset fifos. */
base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK;
/* Send a stop command to finalize the transfer. */
base->MTDR = kStopCmd;
/* Reset handle. */
handle->isBusy = false;
return kStatus_Success;
}
/*!
* @brief DMA completion callback.
* @param dmaHandle DMA channel handle for the channel that completed.
* @param userData User data associated with the channel handle. For this callback, the user data is the
* LPI2C DMA driver handle.
* @param isTransferDone Whether the DMA transfer has completed.
* @param tcds Number of TCDs that completed.
*/
static void LPI2C_MasterEDMACallback(edma_handle_t *dmaHandle, void *userData, bool isTransferDone, uint32_t tcds)
{
lpi2c_master_edma_handle_t *handle = (lpi2c_master_edma_handle_t *)userData;
bool hasReceiveData = (handle->transfer.direction == kLPI2C_Read) && (handle->transfer.dataSize);
if (hasReceiveData && !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (EDMA_GetNextTCDAddress(handle->tx) != 0)
{
LPI2C_MasterEnableDMA(handle->base, false, true);
}
}
if (!handle)
{
return;
}
/* Check for errors. */
status_t result = LPI2C_MasterCheckAndClearError(handle->base, LPI2C_MasterGetStatusFlags(handle->base));
/* Done with this transaction. */
handle->isBusy = false;
if (!(handle->transfer.flags & kLPI2C_TransferNoStopFlag))
{
/* Send a stop command to finalize the transfer. */
handle->base->MTDR = kStopCmd;
}
/* Invoke callback. */
if (handle->completionCallback)
{
handle->completionCallback(handle->base, handle, result, handle->userData);
}
}