rt-thread-official/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_clock.c

1250 lines
37 KiB
C

/*
* Copyright 2018 - 2021 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_clock.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.clock"
#endif
/*******************************************************************************
* Definitions
******************************************************************************/
/* To make full use of CM7 hardware FPU, use double instead of uint64_t in clock driver to
achieve better performance, it is depend on the IDE Floating point settings, if double precision is selected
in IDE, clock_64b_t will switch to double type automatically. only support IAR and MDK here */
#if __FPU_USED
#if (defined(__ICCARM__))
#if (__ARMVFP__ >= __ARMFPV5__) && \
(__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
typedef double clock_64b_t;
#else
typedef uint64_t clock_64b_t;
#endif
#elif (defined(__GNUC__))
#if (__ARM_FP == 0xE) /*0xe implies support for half, single and double precision operations*/
typedef double clock_64b_t;
#else
typedef uint64_t clock_64b_t;
#endif
#elif defined(__CC_ARM) || defined(__ARMCC_VERSION)
#if defined __TARGET_FPU_FPV5_D16
typedef double clock_64b_t;
#else
typedef uint64_t clock_64b_t;
#endif
#else
typedef uint64_t clock_64b_t;
#endif
#else
typedef uint64_t clock_64b_t;
#endif
/*******************************************************************************
* Variables
******************************************************************************/
/* External XTAL (OSC) clock frequency. */
volatile uint32_t g_xtalFreq;
/* External RTC XTAL clock frequency. */
volatile uint32_t g_rtcXtalFreq;
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the periph clock frequency.
*
* @return Periph clock frequency in Hz.
*/
static uint32_t CLOCK_GetPeriphClkFreq(void);
/*!
* @brief Get the frequency of PLL USB1 software clock.
*
* @return The frequency of PLL USB1 software clock.
*/
static uint32_t CLOCK_GetPllUsb1SWFreq(void);
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t CLOCK_GetPeriphClkFreq(void)
{
uint32_t freq;
/* Periph_clk2_clk ---> Periph_clk */
if ((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK_SEL_MASK) != 0UL)
{
switch (CCM->CBCMR & CCM_CBCMR_PERIPH_CLK2_SEL_MASK)
{
/* Pll3_sw_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(0U):
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
break;
/* Osc_clk ---> Periph_clk2_clk ---> Periph_clk */
case CCM_CBCMR_PERIPH_CLK2_SEL(1U):
freq = CLOCK_GetOscFreq();
break;
case CCM_CBCMR_PERIPH_CLK2_SEL(2U):
freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
break;
case CCM_CBCMR_PERIPH_CLK2_SEL(3U):
default:
freq = 0U;
break;
}
freq /= (((CCM->CBCDR & CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >> CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT) + 1U);
}
/* Pre_Periph_clk ---> Periph_clk */
else
{
switch (CCM->CBCMR & CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK)
{
/* PLL2 */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(0U):
freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
break;
/* PLL3 PFD3 */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(1U):
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
break;
/* PLL2 PFD3 */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(2U):
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
break;
/* PLL6 divided(/1) */
case CCM_CBCMR_PRE_PERIPH_CLK_SEL(3U):
freq = 500000000U;
break;
default:
freq = 0U;
break;
}
}
return freq;
}
static uint32_t CLOCK_GetPllUsb1SWFreq(void)
{
uint32_t freq;
switch ((CCM->CCSR & CCM_CCSR_PLL3_SW_CLK_SEL_MASK) >> CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT)
{
case 0:
{
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
break;
}
case 1:
{
freq = 24000000UL;
break;
}
default:
freq = 0UL;
break;
}
return freq;
}
/*!
* brief Initialize the external 24MHz clock.
*
* This function supports two modes:
* 1. Use external crystal oscillator.
* 2. Bypass the external crystal oscillator, using input source clock directly.
*
* After this function, please call ref CLOCK_SetXtal0Freq to inform clock driver
* the external clock frequency.
*
* param bypassXtalOsc Pass in true to bypass the external crystal oscillator.
* note This device does not support bypass external crystal oscillator, so
* the input parameter should always be false.
*/
void CLOCK_InitExternalClk(bool bypassXtalOsc)
{
/* This device does not support bypass XTAL OSC. */
assert(!bypassXtalOsc);
CCM_ANALOG->MISC0_CLR = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power up */
while ((XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_XTALOSC_PWRUP_STAT_MASK) == 0UL)
{
}
CCM_ANALOG->MISC0_SET = (uint32_t)CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK; /* detect freq */
while ((CCM_ANALOG->MISC0 & CCM_ANALOG_MISC0_OSC_XTALOK_MASK) == 0UL)
{
}
CCM_ANALOG->MISC0_CLR = (uint32_t)CCM_ANALOG_MISC0_OSC_XTALOK_EN_MASK;
}
/*!
* brief Deinitialize the external 24MHz clock.
*
* This function disables the external 24MHz clock.
*
* After this function, please call ref CLOCK_SetXtal0Freq to set external clock
* frequency to 0.
*/
void CLOCK_DeinitExternalClk(void)
{
CCM_ANALOG->MISC0_SET = CCM_ANALOG_MISC0_XTAL_24M_PWD_MASK; /* Power down */
}
/*!
* brief Switch the OSC.
*
* This function switches the OSC source for SoC.
*
* param osc OSC source to switch to.
*/
void CLOCK_SwitchOsc(clock_osc_t osc)
{
if (osc == kCLOCK_RcOsc)
{
XTALOSC24M->LOWPWR_CTRL_SET = XTALOSC24M_LOWPWR_CTRL_SET_OSC_SEL_MASK;
}
else
{
XTALOSC24M->LOWPWR_CTRL_CLR = XTALOSC24M_LOWPWR_CTRL_CLR_OSC_SEL_MASK;
}
}
/*!
* brief Initialize the RC oscillator 24MHz clock.
*/
void CLOCK_InitRcOsc24M(void)
{
XTALOSC24M->LOWPWR_CTRL |= XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}
/*!
* brief Power down the RCOSC 24M clock.
*/
void CLOCK_DeinitRcOsc24M(void)
{
XTALOSC24M->LOWPWR_CTRL &= ~XTALOSC24M_LOWPWR_CTRL_RC_OSC_EN_MASK;
}
/*!
* brief Gets the AHB clock frequency.
*
* return The AHB clock frequency value in hertz.
*/
uint32_t CLOCK_GetAhbFreq(void)
{
return CLOCK_GetPeriphClkFreq() / (((CCM->CBCDR & CCM_CBCDR_AHB_PODF_MASK) >> CCM_CBCDR_AHB_PODF_SHIFT) + 1U);
}
/*!
* brief Gets the SEMC clock frequency.
*
* return The SEMC clock frequency value in hertz.
*/
uint32_t CLOCK_GetSemcFreq(void)
{
uint32_t freq;
/* SEMC alternative clock ---> SEMC Clock */
if ((CCM->CBCDR & CCM_CBCDR_SEMC_CLK_SEL_MASK) != 0UL)
{
/* PLL3 PFD1 ---> SEMC alternative clock ---> SEMC Clock */
if ((CCM->CBCDR & CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK) != 0UL)
{
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
}
/* PLL2 PFD2 ---> SEMC alternative clock ---> SEMC Clock */
else
{
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
}
}
/* Periph_clk ---> SEMC Clock */
else
{
freq = CLOCK_GetPeriphClkFreq();
}
freq /= (((CCM->CBCDR & CCM_CBCDR_SEMC_PODF_MASK) >> CCM_CBCDR_SEMC_PODF_SHIFT) + 1U);
return freq;
}
/*!
* brief Gets the IPG clock frequency.
*
* return The IPG clock frequency value in hertz.
*/
uint32_t CLOCK_GetIpgFreq(void)
{
return CLOCK_GetAhbFreq() / (((CCM->CBCDR & CCM_CBCDR_IPG_PODF_MASK) >> CCM_CBCDR_IPG_PODF_SHIFT) + 1U);
}
/*!
* brief Gets the PER clock frequency.
*
* return The PER clock frequency value in hertz.
*/
uint32_t CLOCK_GetPerClkFreq(void)
{
uint32_t freq;
/* Osc_clk ---> PER Clock*/
if ((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_CLK_SEL_MASK) != 0UL)
{
freq = CLOCK_GetOscFreq();
}
/* Periph_clk ---> AHB Clock ---> IPG Clock ---> PER Clock */
else
{
freq = CLOCK_GetIpgFreq();
}
freq /= (((CCM->CSCMR1 & CCM_CSCMR1_PERCLK_PODF_MASK) >> CCM_CSCMR1_PERCLK_PODF_SHIFT) + 1U);
return freq;
}
/*!
* brief Gets the clock frequency for a specific clock name.
*
* This function checks the current clock configurations and then calculates
* the clock frequency for a specific clock name defined in clock_name_t.
*
* param clockName Clock names defined in clock_name_t
* return Clock frequency value in hertz
*/
uint32_t CLOCK_GetFreq(clock_name_t name)
{
uint32_t freq;
switch (name)
{
case kCLOCK_CpuClk:
case kCLOCK_AhbClk:
freq = CLOCK_GetAhbFreq();
break;
case kCLOCK_SemcClk:
freq = CLOCK_GetSemcFreq();
break;
case kCLOCK_IpgClk:
freq = CLOCK_GetIpgFreq();
break;
case kCLOCK_PerClk:
freq = CLOCK_GetPerClkFreq();
break;
case kCLOCK_OscClk:
freq = CLOCK_GetOscFreq();
break;
case kCLOCK_RtcClk:
freq = CLOCK_GetRtcFreq();
break;
case kCLOCK_Usb1PllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
break;
case kCLOCK_Usb1PllPfd0Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd0);
break;
case kCLOCK_Usb1PllPfd1Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd1);
break;
case kCLOCK_Usb1PllPfd2Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
break;
case kCLOCK_Usb1PllPfd3Clk:
freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd3);
break;
case kCLOCK_Usb1SwClk:
freq = CLOCK_GetPllUsb1SWFreq();
break;
case kCLOCK_Usb1Sw60MClk:
freq = CLOCK_GetPllUsb1SWFreq() / 8UL;
break;
case kCLOCK_Usb1Sw80MClk:
freq = CLOCK_GetPllUsb1SWFreq() / 6UL;
break;
case kCLOCK_SysPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
break;
case kCLOCK_SysPllPfd0Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0);
break;
case kCLOCK_SysPllPfd1Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd1);
break;
case kCLOCK_SysPllPfd2Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd2);
break;
case kCLOCK_SysPllPfd3Clk:
freq = CLOCK_GetSysPfdFreq(kCLOCK_Pfd3);
break;
case kCLOCK_EnetPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet);
break;
case kCLOCK_EnetPll25MClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet25M);
break;
case kCLOCK_EnetPll500MClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet500M);
break;
case kCLOCK_AudioPllClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
break;
default:
freq = 0U;
break;
}
return freq;
}
/*!
* brief Gets the frequency of selected clock root.
*
* param clockRoot The clock root used to get the frequency, please refer to @ref clock_root_t.
* return The frequency of selected clock root.
*/
uint32_t CLOCK_GetClockRootFreq(clock_root_t clockRoot)
{
static const clock_name_t clockRootSourceArray[][4] = CLOCK_ROOT_SOUCE;
static const clock_mux_t clockRootMuxTupleArray[] = CLOCK_ROOT_MUX_TUPLE;
static const clock_div_t clockRootDivTupleArray[][2] = CLOCK_ROOT_DIV_TUPLE;
uint32_t freq = 0UL;
clock_mux_t clockRootMuxTuple = clockRootMuxTupleArray[(uint8_t)clockRoot];
clock_div_t clockRootPreDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][0];
clock_div_t clockRootPostDivTuple = clockRootDivTupleArray[(uint8_t)clockRoot][1];
uint32_t clockRootMuxValue = (CCM_TUPLE_REG(CCM, clockRootMuxTuple) & CCM_TUPLE_MASK(clockRootMuxTuple)) >>
CCM_TUPLE_SHIFT(clockRootMuxTuple);
clock_name_t clockSourceName;
clockSourceName = clockRootSourceArray[(uint8_t)clockRoot][clockRootMuxValue];
assert(clockSourceName != kCLOCK_NoneName);
freq = CLOCK_GetFreq(clockSourceName);
if (clockRootPreDivTuple != kCLOCK_NonePreDiv)
{
freq /= ((CCM_TUPLE_REG(CCM, clockRootPreDivTuple) & CCM_TUPLE_MASK(clockRootPreDivTuple)) >>
CCM_TUPLE_SHIFT(clockRootPreDivTuple)) +
1UL;
}
freq /= ((CCM_TUPLE_REG(CCM, clockRootPostDivTuple) & CCM_TUPLE_MASK(clockRootPostDivTuple)) >>
CCM_TUPLE_SHIFT(clockRootPostDivTuple)) +
1UL;
return freq;
}
/*! brief Enable USB HS clock.
*
* This function only enables the access to USB HS prepheral, upper layer
* should first call the ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY
* clock to use USB HS.
*
* param src USB HS does not care about the clock source, here must be ref kCLOCK_UsbSrcUnused.
* param freq USB HS does not care about the clock source, so this parameter is ignored.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq)
{
uint32_t i;
CCM->CCGR6 |= CCM_CCGR6_CG0_MASK;
USB->USBCMD |= USBHS_USBCMD_RST_MASK;
/* Add a delay between RST and RS so make sure there is a DP pullup sequence*/
for (i = 0; i < 400000UL; i++)
{
__ASM("nop");
}
PMU->REG_3P0 = (PMU->REG_3P0 & (~PMU_REG_3P0_OUTPUT_TRG_MASK)) |
(PMU_REG_3P0_OUTPUT_TRG(0x17) | PMU_REG_3P0_ENABLE_LINREG_MASK);
return true;
}
/*! brief Enable USB HS PHY PLL clock.
*
* This function enables the internal 480MHz USB PHY PLL clock.
*
* param src USB HS PHY PLL clock source.
* param freq The frequency specified by src.
* retval true The clock is set successfully.
* retval false The clock source is invalid to get proper USB HS clock.
*/
bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq)
{
static const clock_usb_pll_config_t g_ccmConfigUsbPll = {.loopDivider = 0U};
if ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_ENABLE_MASK) != 0UL)
{
CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
}
else
{
CLOCK_InitUsb1Pll(&g_ccmConfigUsbPll);
}
USBPHY->CTRL &= ~USBPHY_CTRL_SFTRST_MASK; /* release PHY from reset */
USBPHY->CTRL &= ~USBPHY_CTRL_CLKGATE_MASK;
USBPHY->PWD = 0;
USBPHY->CTRL |= USBPHY_CTRL_ENAUTOCLR_PHY_PWD_MASK | USBPHY_CTRL_ENAUTOCLR_CLKGATE_MASK |
USBPHY_CTRL_ENUTMILEVEL2_MASK | USBPHY_CTRL_ENUTMILEVEL3_MASK;
return true;
}
/*! brief Disable USB HS PHY PLL clock.
*
* This function disables USB HS PHY PLL clock.
*/
void CLOCK_DisableUsbhs0PhyPllClock(void)
{
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK;
USBPHY->CTRL |= USBPHY_CTRL_CLKGATE_MASK; /* Set to 1U to gate clocks */
}
/*!
* brief Initialize the System PLL.
*
* This function initializes the System PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitSysPll(const clock_sys_pll_config_t *config)
{
/* Bypass PLL first */
CCM_ANALOG->PLL_SYS = (CCM_ANALOG->PLL_SYS & (~CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC_MASK)) |
CCM_ANALOG_PLL_SYS_BYPASS_MASK | CCM_ANALOG_PLL_SYS_BYPASS_CLK_SRC(config->src);
CCM_ANALOG->PLL_SYS =
(CCM_ANALOG->PLL_SYS & (~(CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK | CCM_ANALOG_PLL_SYS_POWERDOWN_MASK))) |
CCM_ANALOG_PLL_SYS_ENABLE_MASK | CCM_ANALOG_PLL_SYS_DIV_SELECT(config->loopDivider);
/* Initialize the fractional mode */
CCM_ANALOG->PLL_SYS_NUM = CCM_ANALOG_PLL_SYS_NUM_A(config->numerator);
CCM_ANALOG->PLL_SYS_DENOM = CCM_ANALOG_PLL_SYS_DENOM_B(config->denominator);
/* Initialize the spread spectrum mode */
CCM_ANALOG->PLL_SYS_SS = CCM_ANALOG_PLL_SYS_SS_STEP(config->ss_step) |
CCM_ANALOG_PLL_SYS_SS_ENABLE(config->ss_enable) |
CCM_ANALOG_PLL_SYS_SS_STOP(config->ss_stop);
while ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_LOCK_MASK) == 0UL)
{
}
/* Disable Bypass */
CCM_ANALOG->PLL_SYS &= ~CCM_ANALOG_PLL_SYS_BYPASS_MASK;
}
/*!
* brief De-initialize the System PLL.
*/
void CLOCK_DeinitSysPll(void)
{
CCM_ANALOG->PLL_SYS = CCM_ANALOG_PLL_SYS_POWERDOWN_MASK;
}
/*!
* brief Initialize the USB1 PLL.
*
* This function initializes the USB1 PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config)
{
/* Bypass PLL first */
CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC_MASK)) |
CCM_ANALOG_PLL_USB1_BYPASS_MASK | CCM_ANALOG_PLL_USB1_BYPASS_CLK_SRC(config->src);
CCM_ANALOG->PLL_USB1 = (CCM_ANALOG->PLL_USB1 & (~CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK)) |
CCM_ANALOG_PLL_USB1_ENABLE_MASK | CCM_ANALOG_PLL_USB1_POWER_MASK |
CCM_ANALOG_PLL_USB1_EN_USB_CLKS_MASK | CCM_ANALOG_PLL_USB1_DIV_SELECT(config->loopDivider);
while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0UL)
{
}
/* Disable Bypass */
CCM_ANALOG->PLL_USB1 &= ~CCM_ANALOG_PLL_USB1_BYPASS_MASK;
}
/*!
* brief Deinitialize the USB1 PLL.
*/
void CLOCK_DeinitUsb1Pll(void)
{
CCM_ANALOG->PLL_USB1 = 0U;
}
/*!
* brief Initializes the Audio PLL.
*
* This function initializes the Audio PLL with specific settings
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config)
{
uint32_t pllAudio;
uint32_t misc2 = 0;
/* Bypass PLL first */
CCM_ANALOG->PLL_AUDIO = (CCM_ANALOG->PLL_AUDIO & (~CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC_MASK)) |
CCM_ANALOG_PLL_AUDIO_BYPASS_MASK | CCM_ANALOG_PLL_AUDIO_BYPASS_CLK_SRC(config->src);
CCM_ANALOG->PLL_AUDIO_NUM = CCM_ANALOG_PLL_AUDIO_NUM_A(config->numerator);
CCM_ANALOG->PLL_AUDIO_DENOM = CCM_ANALOG_PLL_AUDIO_DENOM_B(config->denominator);
/*
* Set post divider:
*
* ------------------------------------------------------------------------
* | config->postDivider | PLL_AUDIO[POST_DIV_SELECT] | MISC2[AUDIO_DIV] |
* ------------------------------------------------------------------------
* | 1 | 2 | 0 |
* ------------------------------------------------------------------------
* | 2 | 1 | 0 |
* ------------------------------------------------------------------------
* | 4 | 2 | 3 |
* ------------------------------------------------------------------------
* | 8 | 1 | 3 |
* ------------------------------------------------------------------------
* | 16 | 0 | 3 |
* ------------------------------------------------------------------------
*/
pllAudio =
(CCM_ANALOG->PLL_AUDIO & (~(CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK | CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK))) |
CCM_ANALOG_PLL_AUDIO_ENABLE_MASK | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(config->loopDivider);
switch (config->postDivider)
{
case 16:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 8:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 4:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
misc2 = CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK;
break;
case 2:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1);
break;
default:
pllAudio |= CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2);
break;
}
CCM_ANALOG->MISC2 =
(CCM_ANALOG->MISC2 & ~(CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK)) | misc2;
CCM_ANALOG->PLL_AUDIO = pllAudio;
while ((CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK_MASK) == 0UL)
{
}
/* Disable Bypass */
CCM_ANALOG->PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS_MASK;
}
/*!
* brief De-initialize the Audio PLL.
*/
void CLOCK_DeinitAudioPll(void)
{
CCM_ANALOG->PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_POWERDOWN_MASK;
}
/*!
* brief Initialize the ENET PLL.
*
* This function initializes the ENET PLL with specific settings.
*
* param config Configuration to set to PLL.
*/
void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config)
{
uint32_t enet_pll = CCM_ANALOG_PLL_ENET_DIV_SELECT(config->loopDivider);
CCM_ANALOG->PLL_ENET = (CCM_ANALOG->PLL_ENET & (~CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK)) |
CCM_ANALOG_PLL_ENET_BYPASS_MASK | CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(config->src);
if (config->enableClkOutput)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENABLE_MASK;
}
if (config->enableClkOutput25M)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_MASK;
}
if (config->enableClkOutput500M)
{
enet_pll |= CCM_ANALOG_PLL_ENET_ENET_500M_REF_EN_MASK;
}
CCM_ANALOG->PLL_ENET =
(CCM_ANALOG->PLL_ENET & (~(CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK))) |
enet_pll;
/* Wait for stable */
while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0UL)
{
}
/* Disable Bypass */
CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
}
/*!
* brief Deinitialize the ENET PLL.
*
* This function disables the ENET PLL.
*/
void CLOCK_DeinitEnetPll(void)
{
CCM_ANALOG->PLL_ENET = CCM_ANALOG_PLL_ENET_POWERDOWN_MASK;
}
/*!
* brief Get current PLL output frequency.
*
* This function get current output frequency of specific PLL
*
* param pll pll name to get frequency.
* return The PLL output frequency in hertz.
*/
uint32_t CLOCK_GetPllFreq(clock_pll_t pll)
{
uint32_t freq;
uint32_t divSelect;
clock_64b_t freqTmp;
static const uint32_t enetRefClkFreq[] = {
25000000U, /* 25M */
50000000U, /* 50M */
100000000U, /* 100M */
125000000U /* 125M */
};
/* check if PLL is enabled */
if (!CLOCK_IsPllEnabled(CCM_ANALOG, pll))
{
return 0U;
}
/* get pll reference clock */
freq = CLOCK_GetPllBypassRefClk(CCM_ANALOG, pll);
/* check if pll is bypassed */
if (CLOCK_IsPllBypassed(CCM_ANALOG, pll))
{
return freq;
}
switch (pll)
{
case kCLOCK_PllSys:
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_SYS_NUM)));
freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_SYS_DENOM));
if ((CCM_ANALOG->PLL_SYS & CCM_ANALOG_PLL_SYS_DIV_SELECT_MASK) != 0UL)
{
freq *= 22U;
}
else
{
freq *= 20U;
}
freq += (uint32_t)freqTmp;
break;
case kCLOCK_PllUsb1:
freq = (freq * (((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_DIV_SELECT_MASK) != 0UL) ? 22U : 20U));
break;
case kCLOCK_PllAudio:
/* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM). */
divSelect =
(CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_AUDIO_DIV_SELECT_SHIFT;
freqTmp = ((clock_64b_t)freq * ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_NUM)));
freqTmp /= ((clock_64b_t)(CCM_ANALOG->PLL_AUDIO_DENOM));
freq = freq * divSelect + (uint32_t)freqTmp;
/* AUDIO PLL output = PLL output frequency / POSTDIV. */
/*
* Post divider:
*
* PLL_AUDIO[POST_DIV_SELECT]:
* 0x00: 4
* 0x01: 2
* 0x02: 1
*
* MISC2[AUDO_DIV]:
* 0x00: 1
* 0x01: 2
* 0x02: 1
* 0x03: 4
*/
switch (CCM_ANALOG->PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT_MASK)
{
case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(0U):
freq = freq >> 2U;
break;
case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(1U):
freq = freq >> 1U;
break;
case CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2U):
freq = freq >> 0U;
break;
default:
assert(false);
break;
}
switch (CCM_ANALOG->MISC2 & (CCM_ANALOG_MISC2_AUDIO_DIV_MSB_MASK | CCM_ANALOG_MISC2_AUDIO_DIV_LSB_MASK))
{
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
freq >>= 2U;
break;
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(1):
freq >>= 1U;
break;
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(0) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
case CCM_ANALOG_MISC2_AUDIO_DIV_MSB(1) | CCM_ANALOG_MISC2_AUDIO_DIV_LSB(0):
freq >>= 0U;
break;
default:
assert(false);
break;
}
break;
case kCLOCK_PllEnet:
divSelect =
(CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK) >> CCM_ANALOG_PLL_ENET_DIV_SELECT_SHIFT;
freq = enetRefClkFreq[divSelect];
break;
case kCLOCK_PllEnet25M:
/* ref_enetpll1 if fixed at 25MHz. */
freq = 25000000UL;
break;
case kCLOCK_PllEnet500M:
/* PLL6 is fixed at 25MHz. */
freq = 500000000UL;
break;
default:
freq = 0U;
break;
}
return freq;
}
/*!
* brief Initialize the System PLL PFD.
*
* This function initializes the System PLL PFD. During new value setting,
* the clock output is disabled to prevent glitch.
*
* param pfd Which PFD clock to enable.
* param pfdFrac The PFD FRAC value.
* note It is recommended that PFD settings are kept between 12-35.
*/
void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
uint32_t pfdIndex = (uint32_t)pfd;
uint32_t pfd528;
pfd528 = CCM_ANALOG->PFD_528 &
~(((uint32_t)((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK | (uint32_t)CCM_ANALOG_PFD_528_PFD0_FRAC_MASK)
<< (8UL * pfdIndex)));
/* Disable the clock output first. */
CCM_ANALOG->PFD_528 = pfd528 | ((uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
/* Set the new value and enable output. */
CCM_ANALOG->PFD_528 = pfd528 | (CCM_ANALOG_PFD_528_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
}
/*!
* brief De-initialize the System PLL PFD.
*
* This function disables the System PLL PFD.
*
* param pfd Which PFD clock to disable.
*/
void CLOCK_DeinitSysPfd(clock_pfd_t pfd)
{
CCM_ANALOG->PFD_528 |= (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * (uint32_t)pfd);
}
/*!
* brief Check if Sys PFD is enabled
*
* param pfd PFD control name
* return PFD bypass status.
* - true: power on.
* - false: power off.
*/
bool CLOCK_IsSysPfdEnabled(clock_pfd_t pfd)
{
return ((CCM_ANALOG->PFD_528 & (uint32_t)CCM_ANALOG_PFD_528_PFD0_CLKGATE_MASK << (8UL * (uint32_t)pfd)) == 0U);
}
/*!
* brief Initialize the USB1 PLL PFD.
*
* This function initializes the USB1 PLL PFD. During new value setting,
* the clock output is disabled to prevent glitch.
*
* param pfd Which PFD clock to enable.
* param pfdFrac The PFD FRAC value.
* note It is recommended that PFD settings are kept between 12-35.
*/
void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac)
{
uint32_t pfdIndex = (uint32_t)pfd;
uint32_t pfd480;
pfd480 = CCM_ANALOG->PFD_480 &
~((uint32_t)((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK | (uint32_t)CCM_ANALOG_PFD_480_PFD0_FRAC_MASK)
<< (8UL * pfdIndex));
/* Disable the clock output first. */
CCM_ANALOG->PFD_480 = pfd480 | ((uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * pfdIndex));
/* Set the new value and enable output. */
CCM_ANALOG->PFD_480 = pfd480 | (CCM_ANALOG_PFD_480_PFD0_FRAC(pfdFrac) << (8UL * pfdIndex));
}
/*!
* brief De-initialize the USB1 PLL PFD.
*
* This function disables the USB1 PLL PFD.
*
* param pfd Which PFD clock to disable.
*/
void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd)
{
CCM_ANALOG->PFD_480 |= (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint32_t)pfd);
}
/*!
* brief Check if Usb1 PFD is enabled
*
* param pfd PFD control name.
* return PFD bypass status.
* - true: power on.
* - false: power off.
*/
bool CLOCK_IsUsb1PfdEnabled(clock_pfd_t pfd)
{
return ((CCM_ANALOG->PFD_480 & (uint32_t)CCM_ANALOG_PFD_480_PFD0_CLKGATE_MASK << (8UL * (uint32_t)pfd)) == 0U);
}
/*!
* brief Get current System PLL PFD output frequency.
*
* This function get current output frequency of specific System PLL PFD
*
* param pfd pfd name to get frequency.
* return The PFD output frequency in hertz.
*/
uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd)
{
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllSys);
switch (pfd)
{
case kCLOCK_Pfd0:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD0_FRAC_SHIFT);
break;
case kCLOCK_Pfd1:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD1_FRAC_SHIFT);
break;
case kCLOCK_Pfd2:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD2_FRAC_SHIFT);
break;
case kCLOCK_Pfd3:
freq /= ((CCM_ANALOG->PFD_528 & CCM_ANALOG_PFD_528_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_528_PFD3_FRAC_SHIFT);
break;
default:
freq = 0U;
break;
}
freq *= 18U;
return freq;
}
/*!
* brief Get current USB1 PLL PFD output frequency.
*
* This function get current output frequency of specific USB1 PLL PFD
*
* param pfd pfd name to get frequency.
* return The PFD output frequency in hertz.
*/
uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd)
{
uint32_t freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
switch (pfd)
{
case kCLOCK_Pfd0:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD0_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD0_FRAC_SHIFT);
break;
case kCLOCK_Pfd1:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD1_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD1_FRAC_SHIFT);
break;
case kCLOCK_Pfd2:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD2_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD2_FRAC_SHIFT);
break;
case kCLOCK_Pfd3:
freq /= ((CCM_ANALOG->PFD_480 & CCM_ANALOG_PFD_480_PFD3_FRAC_MASK) >> CCM_ANALOG_PFD_480_PFD3_FRAC_SHIFT);
break;
default:
freq = 0U;
break;
}
freq *= 18U;
return freq;
}
/*!
* brief Set the clock source and the divider of the clock output1.
*
* param selection The clock source to be output, please refer to clock_output1_selection_t.
* param divider The divider of the output clock signal, please refer to clock_output_divider_t.
*/
void CLOCK_SetClockOutput1(clock_output1_selection_t selection, clock_output_divider_t divider)
{
uint32_t tmp32;
tmp32 = CCM->CCOSR;
if (selection == kCLOCK_DisableClockOutput1)
{
tmp32 &= ~CCM_CCOSR_CLKO1_EN_MASK;
}
else
{
tmp32 |= CCM_CCOSR_CLKO1_EN_MASK;
tmp32 &= ~(CCM_CCOSR_CLKO1_SEL_MASK | CCM_CCOSR_CLKO1_DIV_MASK);
tmp32 |= CCM_CCOSR_CLKO1_SEL(selection) | CCM_CCOSR_CLKO1_DIV(divider);
}
CCM->CCOSR = tmp32;
}
/*!
* brief Set the clock source and the divider of the clock output2.
*
* param selection The clock source to be output, please refer to clock_output2_selection_t.
* param divider The divider of the output clock signal, please refer to clock_output_divider_t.
*/
void CLOCK_SetClockOutput2(clock_output2_selection_t selection, clock_output_divider_t divider)
{
uint32_t tmp32;
tmp32 = CCM->CCOSR;
if (selection == kCLOCK_DisableClockOutput2)
{
tmp32 &= CCM_CCOSR_CLKO2_EN_MASK;
}
else
{
tmp32 |= CCM_CCOSR_CLKO2_EN_MASK;
tmp32 &= ~(CCM_CCOSR_CLKO2_SEL_MASK | CCM_CCOSR_CLKO2_DIV_MASK);
tmp32 |= CCM_CCOSR_CLKO2_SEL(selection) | CCM_CCOSR_CLKO2_DIV(divider);
}
CCM->CCOSR = tmp32;
}
/*!
* brief Get the frequency of clock output1 clock signal.
*
* return The frequency of clock output1 clock signal.
*/
uint32_t CLOCK_GetClockOutCLKO1Freq(void)
{
uint32_t freq = 0U;
uint32_t tmp32;
tmp32 = CCM->CCOSR;
if ((tmp32 & CCM_CCOSR_CLKO1_EN_MASK) != 0UL)
{
switch ((tmp32 & CCM_CCOSR_CLKO1_SEL_MASK) >> CCM_CCOSR_CLKO1_SEL_SHIFT)
{
case (uint32_t)kCLOCK_OutputPllUsb1Sw:
freq = CLOCK_GetPllUsb1SWFreq() / 2UL;
break;
case (uint32_t)kCLOCK_OutputPllSys:
freq = CLOCK_GetPllFreq(kCLOCK_PllSys) / 2UL;
break;
case (uint32_t)kCLOCK_OutputPllENET500M:
freq = CLOCK_GetPllFreq(kCLOCK_PllEnet500M) / 2UL;
break;
case (uint32_t)kCLOCK_OutputSemcClk:
freq = CLOCK_GetSemcFreq();
break;
case (uint32_t)kCLOCK_OutputAhbClk:
freq = CLOCK_GetAhbFreq();
break;
case (uint32_t)kCLOCK_OutputIpgClk:
freq = CLOCK_GetIpgFreq();
break;
case (uint32_t)kCLOCK_OutputPerClk:
freq = CLOCK_GetPerClkFreq();
break;
case (uint32_t)kCLOCK_OutputPll4MainClk:
freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
break;
default:
/* This branch should never be hit. */
break;
}
freq /= (((tmp32 & CCM_CCOSR_CLKO1_DIV_MASK) >> CCM_CCOSR_CLKO1_DIV_SHIFT) + 1U);
}
else
{
freq = 0UL;
}
return freq;
}
/*!
* brief Get the frequency of clock output2 clock signal.
*
* return The frequency of clock output2 clock signal.
*/
uint32_t CLOCK_GetClockOutClkO2Freq(void)
{
uint32_t freq = 0U;
uint32_t tmp32;
tmp32 = CCM->CCOSR;
if ((tmp32 & CCM_CCOSR_CLKO2_EN_MASK) != 0UL)
{
switch ((tmp32 & CCM_CCOSR_CLKO2_SEL_MASK) >> CCM_CCOSR_CLKO2_SEL_SHIFT)
{
case (uint32_t)kCLOCK_OutputUsdhc1Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc1ClkRoot);
break;
case (uint32_t)kCLOCK_OutputLpi2cClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Lpi2cClkRoot);
break;
case (uint32_t)kCLOCK_OutputOscClk:
freq = CLOCK_GetOscFreq();
break;
case (uint32_t)kCLOCK_OutputLpspiClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_LpspiClkRoot);
break;
case (uint32_t)kCLOCK_OutputUsdhc2Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Usdhc2ClkRoot);
break;
case (uint32_t)kCLOCK_OutputSai1Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Sai1ClkRoot);
break;
case (uint32_t)kCLOCK_OutputSai2Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Sai2ClkRoot);
break;
case (uint32_t)kCLOCK_OutputSai3Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_Sai3ClkRoot);
break;
case (uint32_t)kCLOCK_OutputTraceClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_TraceClkRoot);
break;
case (uint32_t)kCLOCK_OutputCanClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_CanClkRoot);
break;
case (uint32_t)kCLOCK_OutputFlexspiClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_FlexspiClkRoot);
break;
case (uint32_t)kCLOCK_OutputUartClk:
freq = CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot);
break;
case (uint32_t)kCLOCK_OutputSpdif0Clk:
freq = CLOCK_GetClockRootFreq(kCLOCK_SpdifClkRoot);
break;
default:
/* This branch should never be hit. */
break;
}
freq /= (((tmp32 & CCM_CCOSR_CLKO2_DIV_MASK) >> CCM_CCOSR_CLKO2_DIV_SHIFT) + 1U);
}
else
{
freq = 0UL;
}
return freq;
}