4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-25 23:47:22 +08:00
bernard.xiong 280e07dc55 update dm9000a driver.
git-svn-id: https://rt-thread.googlecode.com/svn/trunk@547 bbd45198-f89e-11dd-88c7-29a3b14d5316
2010-03-29 12:26:07 +00:00

772 lines
23 KiB
C

/*
* File : dm9000a.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-07-01 Bernard the first version
*/
#include <rtthread.h>
#include "dm9000a.h"
#include <netif/ethernetif.h>
#include "lwipopts.h"
#include "stm32f10x.h"
#include "stm32f10x_fsmc.h"
// #define DM9000_DEBUG 1
#if DM9000_DEBUG
#define DM9000_TRACE rt_kprintf
#else
#define DM9000_TRACE(...)
#endif
/*
* DM9000 interrupt line is connected to PF7
*/
//--------------------------------------------------------
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define RST_1() GPIO_SetBits(GPIOE,GPIO_Pin_5)
#define RST_0() GPIO_ResetBits(GPIOE,GPIO_Pin_5)
#define MAX_ADDR_LEN 6
enum DM9000_PHY_mode
{
DM9000_10MHD = 0, DM9000_100MHD = 1,
DM9000_10MFD = 4, DM9000_100MFD = 5,
DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10
};
enum DM9000_TYPE
{
TYPE_DM9000E,
TYPE_DM9000A,
TYPE_DM9000B
};
struct rt_dm9000_eth
{
/* inherit from ethernet device */
struct eth_device parent;
enum DM9000_TYPE type;
enum DM9000_PHY_mode mode;
rt_uint8_t imr_all;
rt_uint8_t packet_cnt; /* packet I or II */
rt_uint16_t queue_packet_len; /* queued packet (packet II) */
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_dm9000_eth dm9000_device;
static struct rt_semaphore sem_ack, sem_lock;
void rt_dm9000_isr(void);
static void delay_ms(rt_uint32_t ms)
{
rt_uint32_t len;
for (;ms > 0; ms --)
for (len = 0; len < 100; len++ );
}
/* Read a byte from I/O port */
rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg)
{
DM9000_IO = reg;
return (rt_uint8_t) DM9000_DATA;
}
/* Write a byte to I/O port */
rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value)
{
DM9000_IO = reg;
DM9000_DATA = value;
}
/* Read a word from phyxcer */
rt_inline rt_uint16_t phy_read(rt_uint16_t reg)
{
rt_uint16_t val;
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
delay_ms(100); /* Wait read complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL);
return val;
}
/* Write a word to phyxcer */
rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value)
{
/* Fill the phyxcer register into REG_0C */
dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
dm9000_io_write(DM9000_EPDRL, (value & 0xff));
dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff));
dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
delay_ms(500); /* Wait write complete */
dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
}
/* Set PHY operationg mode */
rt_inline void phy_mode_set(rt_uint32_t media_mode)
{
rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
if (!(media_mode & DM9000_AUTO))
{
switch (media_mode)
{
case DM9000_10MHD:
phy_reg4 = 0x21;
phy_reg0 = 0x0000;
break;
case DM9000_10MFD:
phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9000_100MHD:
phy_reg4 = 0x81;
phy_reg0 = 0x2000;
break;
case DM9000_100MFD:
phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
}
phy_write(4, phy_reg4); /* Set PHY media mode */
phy_write(0, phy_reg0); /* Tmp */
}
dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
}
/* interrupt service routine */
void rt_dm9000_isr()
{
rt_uint16_t int_status;
rt_uint16_t last_io;
last_io = DM9000_IO;
/* Disable all interrupts */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Got DM9000 interrupt status */
int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */
dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */
DM9000_TRACE("dm9000 isr: int status %04x\n", int_status);
/* receive overflow */
if (int_status & ISR_ROS)
{
rt_kprintf("overflow\n");
}
if (int_status & ISR_ROOS)
{
rt_kprintf("overflow counter overflow\n");
}
/* Received the coming packet */
if (int_status & ISR_PRS)
{
/* disable receive interrupt */
dm9000_device.imr_all = IMR_PAR | IMR_PTM;
/* a frame has been received */
eth_device_ready(&(dm9000_device.parent));
}
/* Transmit Interrupt check */
if (int_status & ISR_PTS)
{
/* transmit done */
int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */
if (tx_status & (NSR_TX2END | NSR_TX1END))
{
dm9000_device.packet_cnt --;
if (dm9000_device.packet_cnt > 0)
{
DM9000_TRACE("dm9000 isr: tx second packet\n");
/* transmit packet II */
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
/* One packet sent complete */
rt_sem_release(&sem_ack);
}
}
/* Re-enable interrupt mask */
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
DM9000_IO = last_io;
}
/* RT-Thread Device Interface */
/* initialize the interface */
static rt_err_t rt_dm9000_init(rt_device_t dev)
{
int i, oft, lnk;
rt_uint32_t value;
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
delay_ms(1000); /* delay 1ms */
/* identfy DM9000 */
value = dm9000_io_read(DM9000_VIDL);
value |= dm9000_io_read(DM9000_VIDH) << 8;
value |= dm9000_io_read(DM9000_PIDL) << 16;
value |= dm9000_io_read(DM9000_PIDH) << 24;
if (value == DM9000_ID)
{
rt_kprintf("dm9000 id: 0x%x\n", value);
}
else
{
return -RT_ERROR;
}
/* GPIO0 on pre-activate PHY */
dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */
dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */
/* Set PHY */
phy_mode_set(dm9000_device.mode);
/* Program operating register */
dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */
dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */
dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */
dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */
dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */
/* set mac address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
dm9000_io_write(oft, dm9000_device.dev_addr[i]);
/* set multicast address */
for (i = 0, oft = 0x16; i < 8; i++, oft++)
dm9000_io_write(oft, 0xff);
/* Activate DM9000 */
dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
dm9000_io_write(DM9000_IMR, IMR_PAR);
if (dm9000_device.mode == DM9000_AUTO)
{
while (!(phy_read(1) & 0x20))
{
/* autonegation complete bit */
rt_thread_delay(10);
i++;
if (i == 10000)
{
rt_kprintf("could not establish link\n");
return 0;
}
}
}
/* see what we've got */
lnk = phy_read(17) >> 12;
rt_kprintf("operating at ");
switch (lnk)
{
case 1:
rt_kprintf("10M half duplex ");
break;
case 2:
rt_kprintf("10M full duplex ");
break;
case 4:
rt_kprintf("100M half duplex ");
break;
case 8:
rt_kprintf("100M full duplex ");
break;
default:
rt_kprintf("unknown: %d ", lnk);
break;
}
rt_kprintf("mode\n");
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */
return RT_EOK;
}
static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_dm9000_close(rt_device_t dev)
{
/* RESET devie */
phy_write(0, 0x8000); /* PHY RESET */
dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */
dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */
dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */
return RT_EOK;
}
static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args) rt_memcpy(args, dm9000_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p)
{
DM9000_TRACE("dm9000 tx: %d\n", p->tot_len);
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* disable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, IMR_PAR);
/* Move data to DM9000 TX RAM */
DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD);
{
/* q traverses through linked list of pbuf's
* This list MUST consist of a single packet ONLY */
struct pbuf *q;
rt_uint16_t pbuf_index = 0;
rt_uint8_t word[2], word_index = 0;
q = p;
/* Write data into dm9000a, two bytes at a time
* Handling pbuf's with odd number of bytes correctly
* No attempt to optimize for speed has been made */
while (q)
{
if (pbuf_index < q->len)
{
word[word_index++] = ((u8_t*)q->payload)[pbuf_index++];
if (word_index == 2)
{
DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]);
word_index = 0;
}
}
else
{
q = q->next;
pbuf_index = 0;
}
}
/* One byte could still be unsent */
if (word_index == 1)
{
DM9000_outw(DM9000_DATA_BASE, word[0]);
}
}
if (dm9000_device.packet_cnt == 0)
{
DM9000_TRACE("dm9000 tx: first packet\n");
dm9000_device.packet_cnt ++;
/* Set TX length to DM9000 */
dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff);
dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff);
/* Issue TX polling command */
dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
}
else
{
DM9000_TRACE("dm9000 tx: second packet\n");
dm9000_device.packet_cnt ++;
dm9000_device.queue_packet_len = p->tot_len;
}
/* enable dm9000a interrupt */
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
/* wait ack */
rt_sem_take(&sem_ack, RT_WAITING_FOREVER);
DM9000_TRACE("dm9000 tx done\n");
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_dm9000_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t rxbyte;
/* init p pointer */
p = RT_NULL;
/* lock DM9000 device */
rt_sem_take(&sem_lock, RT_WAITING_FOREVER);
/* Check packet ready or not */
dm9000_io_read(DM9000_MRCMDX); /* Dummy read */
rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */
if (rxbyte)
{
rt_uint16_t rx_status, rx_len;
rt_uint16_t* data;
if (rxbyte > 1)
{
DM9000_TRACE("dm9000 rx: rx error, stop device\n");
dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */
dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */
}
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD);
rx_status = DM9000_inw(DM9000_DATA_BASE);
rx_len = DM9000_inw(DM9000_DATA_BASE);
DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len);
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
rt_int32_t len;
for (q = p; q != RT_NULL; q= q->next)
{
data = (rt_uint16_t*)q->payload;
len = q->len;
while (len > 0)
{
*data = DM9000_inw(DM9000_DATA_BASE);
data ++;
len -= 2;
}
}
DM9000_TRACE("\n");
}
else
{
rt_uint16_t dummy;
rt_int32_t len;
DM9000_TRACE("dm9000 rx: no pbuf\n");
/* no pbuf, discard data from DM9000 */
data = &dummy;
len = rx_len;
while (len > 0)
{
*data = DM9000_inw(DM9000_DATA_BASE);
len -= 2;
}
}
if ((rx_status & 0xbf00) || (rx_len < 0x40)
|| (rx_len > DM9000_PKT_MAX))
{
rt_kprintf("rx error: status %04x\n", rx_status);
if (rx_status & 0x100)
{
rt_kprintf("rx fifo error\n");
}
if (rx_status & 0x200)
{
rt_kprintf("rx crc error\n");
}
if (rx_status & 0x8000)
{
rt_kprintf("rx length error\n");
}
if (rx_len > DM9000_PKT_MAX)
{
rt_kprintf("rx length too big\n");
/* RESET device */
dm9000_io_write(DM9000_NCR, NCR_RST);
rt_thread_delay(1); /* delay 5ms */
}
/* it issues an error, release pbuf */
pbuf_free(p);
p = RT_NULL;
}
}
else
{
/* restore receive interrupt */
dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9000_io_write(DM9000_IMR, dm9000_device.imr_all);
}
/* unlock DM9000 device */
rt_sem_release(&sem_lock);
return p;
}
static void RCC_Configuration(void)
{
/* enable gpiob port clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOE | RCC_APB2Periph_AFIO, ENABLE);
/* enable FSMC clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable the EXTI0 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void GPIO_Configuration()
{
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
/* configure PE5 as eth RST */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_SetBits(GPIOE,GPIO_Pin_5);
//RST_1();
/* configure PE4 as external interrupt */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* Connect DM9000 EXTI Line to GPIOE Pin 4 */
GPIO_EXTILineConfig(GPIO_PortSourceGPIOE, GPIO_PinSource4);
/* Configure DM9000 EXTI Line to generate an interrupt on falling edge */
EXTI_InitStructure.EXTI_Line = EXTI_Line4;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
/* Clear DM9000A EXTI line pending bit */
EXTI_ClearITPendingBit(EXTI_Line4);
}
static void FSMC_Configuration()
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/* SRAM Data lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* SRAM Address lines configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NOE and NWE configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* NE3 NE4 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_12;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/* NBL0, NBL1 configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_AddressSetupTime = 0;
p.FSMC_AddressHoldTime = 0;
p.FSMC_DataSetupTime = 2;
p.FSMC_BusTurnAroundDuration = 0;
p.FSMC_CLKDivision = 0;
p.FSMC_DataLatency = 0;
p.FSMC_AccessMode = FSMC_AccessMode_A;
FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4;
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;
FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);
/* Enable FSMC Bank1_SRAM Bank4 */
FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE);
}
void rt_hw_dm9000_init()
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
FSMC_Configuration();
rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO);
dm9000_device.type = TYPE_DM9000A;
dm9000_device.mode = DM9000_AUTO;
dm9000_device.packet_cnt = 0;
dm9000_device.queue_packet_len = 0;
/*
* SRAM Tx/Rx pointer automatically return to start address,
* Packet Transmitted, Packet Received
*/
dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM;
dm9000_device.dev_addr[0] = 0x00;
dm9000_device.dev_addr[1] = 0x60;
dm9000_device.dev_addr[2] = 0x6E;
dm9000_device.dev_addr[3] = 0x11;
dm9000_device.dev_addr[4] = 0x22;
dm9000_device.dev_addr[5] = 0x33;
dm9000_device.parent.parent.init = rt_dm9000_init;
dm9000_device.parent.parent.open = rt_dm9000_open;
dm9000_device.parent.parent.close = rt_dm9000_close;
dm9000_device.parent.parent.read = rt_dm9000_read;
dm9000_device.parent.parent.write = rt_dm9000_write;
dm9000_device.parent.parent.control = rt_dm9000_control;
dm9000_device.parent.parent.private = RT_NULL;
dm9000_device.parent.eth_rx = rt_dm9000_rx;
dm9000_device.parent.eth_tx = rt_dm9000_tx;
eth_device_init(&(dm9000_device.parent), "e0");
}
void dm9000(void)
{
rt_kprintf("\n");
rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR));
rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR));
rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR));
rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1));
rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2));
rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR));
rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR));
rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR));
rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR));
rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR));
rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR));
rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR));
rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR));
rt_kprintf("\n");
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump);
#endif