mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-26 18:57:24 +08:00
320 lines
9.4 KiB
C
320 lines
9.4 KiB
C
/*
|
|
* File : fsl_phy_fire.c
|
|
* This file is part of RT-Thread RTOS
|
|
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2018-05-21 zylx first version
|
|
*/
|
|
|
|
#include "fsl_phy_fire.h"
|
|
#include <rtthread.h>
|
|
|
|
#define DBG_ENABLE
|
|
#define DBG_SECTION_NAME "PHY"
|
|
#define DBG_COLOR
|
|
#define DBG_LEVEL DBG_LOG
|
|
#include <rtdbg.h>
|
|
|
|
#define PHY_TIMEOUT_COUNT 0x3FFFFFFU
|
|
|
|
extern uint32_t ENET_GetInstance(ENET_Type *base);
|
|
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/*! @brief Pointers to enet clocks for each instance. */
|
|
extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT];
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/*******************************************************************************
|
|
* Code
|
|
******************************************************************************/
|
|
|
|
status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz)
|
|
{
|
|
uint32_t bssReg;
|
|
uint32_t i;
|
|
uint32_t counter = PHY_TIMEOUT_COUNT;
|
|
uint32_t idReg = 0;
|
|
status_t result = kStatus_Success;
|
|
uint32_t instance = ENET_GetInstance(base);
|
|
uint32_t timeDelay;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Set SMI first. */
|
|
CLOCK_EnableClock(s_enetClock[instance]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
ENET_SetSMI(base, srcClock_Hz, false);
|
|
|
|
/* Initialization after PHY stars to work. */
|
|
while ((idReg != PHY_CONTROL_ID1) && (counter != 0))
|
|
{
|
|
PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg);
|
|
counter --;
|
|
}
|
|
|
|
if (!counter)
|
|
{
|
|
return kStatus_Fail;
|
|
}
|
|
|
|
/* Reset PHY. */
|
|
counter = PHY_TIMEOUT_COUNT;
|
|
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK);
|
|
if (result == kStatus_Success)
|
|
{
|
|
for (i = 0x10000; i > 0; i--)
|
|
{
|
|
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &bssReg);
|
|
if (!(bssReg & PHY_BCTL_POWER_DOWN_MASK))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i != 0)
|
|
{
|
|
/* Set the negotiation. */
|
|
result = PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG,
|
|
(PHY_100BASETX_FULLDUPLEX_MASK | PHY_100BASETX_HALFDUPLEX_MASK |
|
|
PHY_10BASETX_FULLDUPLEX_MASK | PHY_10BASETX_HALFDUPLEX_MASK | 0x1U));
|
|
if (result == kStatus_Success)
|
|
{
|
|
result = PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG,
|
|
(PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK));
|
|
if (result == kStatus_Success)
|
|
{
|
|
/* Check auto negotiation complete. */
|
|
while (counter --)
|
|
{
|
|
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &bssReg);
|
|
if (result == kStatus_Success)
|
|
{
|
|
if (((bssReg & PHY_BSTATUS_AUTONEGCOMP_MASK) != 0))
|
|
{
|
|
rt_thread_delay(1);
|
|
}
|
|
else
|
|
{
|
|
dbg_log(DBG_LOG, "auto negotiation complete success\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!counter)
|
|
{
|
|
dbg_log(DBG_LOG, "auto negotiation complete falied\n");
|
|
return kStatus_PHY_AutoNegotiateFail;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
|
|
{
|
|
uint32_t counter;
|
|
|
|
/* Clear the SMI interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
/* Starts a SMI write command. */
|
|
ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data);
|
|
|
|
/* Wait for SMI complete. */
|
|
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
|
|
{
|
|
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for timeout. */
|
|
if (!counter)
|
|
{
|
|
return kStatus_PHY_SMIVisitTimeout;
|
|
}
|
|
|
|
/* Clear MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr)
|
|
{
|
|
assert(dataPtr);
|
|
|
|
uint32_t counter;
|
|
|
|
/* Clear the MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
/* Starts a SMI read command operation. */
|
|
ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame);
|
|
|
|
/* Wait for MII complete. */
|
|
for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--)
|
|
{
|
|
if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check for timeout. */
|
|
if (!counter)
|
|
{
|
|
return kStatus_PHY_SMIVisitTimeout;
|
|
}
|
|
|
|
/* Get data from MII register. */
|
|
*dataPtr = ENET_ReadSMIData(base);
|
|
|
|
/* Clear MII interrupt event. */
|
|
ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK);
|
|
|
|
return kStatus_Success;
|
|
}
|
|
|
|
status_t PHY_EnableLoopback(ENET_Type *base, uint32_t phyAddr, phy_loop_t mode, phy_speed_t speed, bool enable)
|
|
{
|
|
status_t result;
|
|
uint32_t data = 0;
|
|
|
|
/* Set the loop mode. */
|
|
if (enable)
|
|
{
|
|
if (mode == kPHY_LocalLoop)
|
|
{
|
|
if (speed == kPHY_Speed100M)
|
|
{
|
|
data = PHY_BCTL_SPEED_100M_MASK | PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
|
|
}
|
|
else
|
|
{
|
|
data = PHY_BCTL_DUPLEX_MASK | PHY_BCTL_LOOP_MASK;
|
|
}
|
|
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, data);
|
|
}
|
|
else
|
|
{
|
|
/* First read the current status in control register. */
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data | PHY_CTL2_REMOTELOOP_MASK));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Disable the loop mode. */
|
|
if (mode == kPHY_LocalLoop)
|
|
{
|
|
/* First read the current status in control register. */
|
|
result = PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
data &= ~PHY_BCTL_LOOP_MASK;
|
|
return PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (data | PHY_BCTL_RESTART_AUTONEG_MASK));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* First read the current status in control one register. */
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
return PHY_Write(base, phyAddr, PHY_CONTROL2_REG, (data & ~PHY_CTL2_REMOTELOOP_MASK));
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status)
|
|
{
|
|
assert(status);
|
|
|
|
status_t result = kStatus_Success;
|
|
uint32_t data;
|
|
|
|
/* Read the basic status register. */
|
|
result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, &data);
|
|
if (result == kStatus_Success)
|
|
{
|
|
if (!(PHY_BSTATUS_LINKSTATUS_MASK & data))
|
|
{
|
|
/* link down. */
|
|
*status = false;
|
|
}
|
|
else
|
|
{
|
|
/* link up. */
|
|
*status = true;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex)
|
|
{
|
|
assert(duplex);
|
|
|
|
status_t result = kStatus_Success;
|
|
uint32_t data, ctlReg;
|
|
|
|
/* Read the control two register. */
|
|
result = PHY_Read(base, phyAddr, PHY_CONTROL2_REG, &ctlReg);
|
|
if (result == kStatus_Success)
|
|
{
|
|
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
|
|
if ((PHY_CTL1_10FULLDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
|
|
{
|
|
/* Full duplex. */
|
|
*duplex = kPHY_FullDuplex;
|
|
}
|
|
else
|
|
{
|
|
/* Half duplex. */
|
|
*duplex = kPHY_HalfDuplex;
|
|
}
|
|
|
|
data = ctlReg & PHY_CTL1_SPEEDUPLX_MASK;
|
|
if ((PHY_CTL1_100HALFDUPLEX_MASK == data) || (PHY_CTL1_100FULLDUPLEX_MASK == data))
|
|
{
|
|
/* 100M speed. */
|
|
*speed = kPHY_Speed100M;
|
|
}
|
|
else
|
|
{
|
|
/* 10M speed. */
|
|
*speed = kPHY_Speed10M;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|