rt-thread-official/components/net/lwip/port/sys_arch.c

759 lines
17 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2012-12-8 Bernard add file header
* export bsd socket symbol for RT-Thread Application Module
* 2013-05-25 Bernard port to v1.4.1
* 2017-03-26 HuangXiHans port to v2.0.2
* 2017-11-15 Bernard add lock for init_done callback
* 2018-11-02 MurphyZhao port to v2.1.0
* 2020-06-20 liuxianliang port to v2.1.2
* 2021-06-25 liuxianliang port to v2.0.3
* 2022-01-18 Meco Man remove v2.0.2
* 2022-02-20 Meco Man integrate v1.4.1 v2.0.3 and v2.1.2 porting layer
*/
#include <rtthread.h>
#include <rthw.h>
#include <arch/sys_arch.h>
#include <lwip/sys.h>
#include <lwip/opt.h>
#include <lwip/stats.h>
#include <lwip/err.h>
#include <lwip/debug.h>
#include <lwip/netif.h>
#include <lwip/netifapi.h>
#include <lwip/tcpip.h>
#include <lwip/sio.h>
#include <lwip/init.h>
#include <lwip/dhcp.h>
#include <lwip/inet.h>
#include <netif/ethernetif.h>
#include <netif/etharp.h>
/*
* Initialize the ethernetif layer and set network interface device up
*/
static void tcpip_init_done_callback(void *arg)
{
rt_sem_release((rt_sem_t)arg);
}
/**
* LwIP system initialization
*/
int lwip_system_init(void)
{
rt_err_t rc;
struct rt_semaphore done_sem;
static rt_bool_t init_ok = RT_FALSE;
if (init_ok)
{
rt_kprintf("lwip system already init.\n");
return 0;
}
extern int eth_system_device_init_private(void);
eth_system_device_init_private();
/* set default netif to NULL */
netif_default = RT_NULL;
rc = rt_sem_init(&done_sem, "done", 0, RT_IPC_FLAG_FIFO);
if (rc != RT_EOK)
{
LWIP_ASSERT("Failed to create semaphore", 0);
return -1;
}
tcpip_init(tcpip_init_done_callback, (void *)&done_sem);
/* waiting for initialization done */
if (rt_sem_take(&done_sem, RT_WAITING_FOREVER) != RT_EOK)
{
rt_sem_detach(&done_sem);
return -1;
}
rt_sem_detach(&done_sem);
rt_kprintf("lwIP-%d.%d.%d initialized!\n", LWIP_VERSION_MAJOR, LWIP_VERSION_MINOR, LWIP_VERSION_REVISION);
init_ok = RT_TRUE;
return 0;
}
INIT_PREV_EXPORT(lwip_system_init);
void sys_init(void)
{
/* nothing on RT-Thread porting */
}
void lwip_sys_init(void)
{
lwip_system_init();
}
/*
* Create a new semaphore
*
* @return the operation status, ERR_OK on OK; others on error
*/
err_t sys_sem_new(sys_sem_t *sem, u8_t count)
{
static unsigned short counter = 0;
char tname[RT_NAME_MAX];
sys_sem_t tmpsem;
RT_DEBUG_NOT_IN_INTERRUPT;
rt_snprintf(tname, RT_NAME_MAX, "%s%d", SYS_LWIP_SEM_NAME, counter);
counter ++;
tmpsem = rt_sem_create(tname, count, RT_IPC_FLAG_FIFO);
if (tmpsem == RT_NULL)
{
return ERR_MEM;
}
else
{
*sem = tmpsem;
return ERR_OK;
}
}
/*
* Deallocate a semaphore
*/
void sys_sem_free(sys_sem_t *sem)
{
RT_DEBUG_NOT_IN_INTERRUPT;
rt_sem_delete(*sem);
}
/*
* Signal a semaphore
*/
void sys_sem_signal(sys_sem_t *sem)
{
rt_sem_release(*sem);
}
/*
* Block the thread while waiting for the semaphore to be signaled
*
* @return If the timeout argument is non-zero, it will return the number of milliseconds
* spent waiting for the semaphore to be signaled; If the semaphore isn't signaled
* within the specified time, it will return SYS_ARCH_TIMEOUT; If the thread doesn't
* wait for the semaphore, it will return zero
*/
u32_t sys_arch_sem_wait(sys_sem_t *sem, u32_t timeout)
{
rt_err_t ret;
s32_t t;
u32_t tick;
RT_DEBUG_NOT_IN_INTERRUPT;
/* get the begin tick */
tick = rt_tick_get();
if (timeout == 0)
{
t = RT_WAITING_FOREVER;
}
else
{
/* convert msecond to os tick */
if (timeout < (1000 / RT_TICK_PER_SECOND))
t = 1;
else
t = timeout / (1000 / RT_TICK_PER_SECOND);
}
ret = rt_sem_take(*sem, t);
if (ret == -RT_ETIMEOUT)
{
return SYS_ARCH_TIMEOUT;
}
else
{
if (ret == RT_EOK)
ret = 1;
}
/* get elapse msecond */
tick = rt_tick_get() - tick;
/* convert tick to msecond */
tick = tick * (1000 / RT_TICK_PER_SECOND);
if (tick == 0)
tick = 1;
return tick;
}
#ifndef sys_sem_valid
/** Check if a semaphore is valid/allocated:
* return 1 for valid, 0 for invalid
*/
int sys_sem_valid(sys_sem_t *sem)
{
int ret = 0;
if (*sem) ret = 1;
return ret;
}
#endif
#ifndef sys_sem_set_invalid
/** Set a semaphore invalid so that sys_sem_valid returns 0
*/
void sys_sem_set_invalid(sys_sem_t *sem)
{
*sem = RT_NULL;
}
#endif
/* ====================== Mutex ====================== */
/** Create a new mutex
* @param mutex pointer to the mutex to create
* @return a new mutex
*/
err_t sys_mutex_new(sys_mutex_t *mutex)
{
static unsigned short counter = 0;
char tname[RT_NAME_MAX];
sys_mutex_t tmpmutex;
RT_DEBUG_NOT_IN_INTERRUPT;
rt_snprintf(tname, RT_NAME_MAX, "%s%d", SYS_LWIP_MUTEX_NAME, counter);
counter ++;
tmpmutex = rt_mutex_create(tname, RT_IPC_FLAG_PRIO);
if (tmpmutex == RT_NULL)
{
return ERR_MEM;
}
else
{
*mutex = tmpmutex;
return ERR_OK;
}
}
/** Lock a mutex
* @param mutex the mutex to lock
*/
void sys_mutex_lock(sys_mutex_t *mutex)
{
RT_DEBUG_NOT_IN_INTERRUPT;
rt_mutex_take(*mutex, RT_WAITING_FOREVER);
return;
}
/** Unlock a mutex
* @param mutex the mutex to unlock
*/
void sys_mutex_unlock(sys_mutex_t *mutex)
{
rt_mutex_release(*mutex);
}
/** Delete a semaphore
* @param mutex the mutex to delete
*/
void sys_mutex_free(sys_mutex_t *mutex)
{
RT_DEBUG_NOT_IN_INTERRUPT;
rt_mutex_delete(*mutex);
}
#ifndef sys_mutex_valid
/** Check if a mutex is valid/allocated:
* return 1 for valid, 0 for invalid
*/
int sys_mutex_valid(sys_mutex_t *mutex)
{
int ret = 0;
if (*mutex) ret = 1;
return ret;
}
#endif
#ifndef sys_mutex_set_invalid
/** Set a mutex invalid so that sys_mutex_valid returns 0
*/
void sys_mutex_set_invalid(sys_mutex_t *mutex)
{
*mutex = RT_NULL;
}
#endif
/* ====================== Mailbox ====================== */
/*
* Create an empty mailbox for maximum "size" elements
*
* @return the operation status, ERR_OK on OK; others on error
*/
err_t sys_mbox_new(sys_mbox_t *mbox, int size)
{
static unsigned short counter = 0;
char tname[RT_NAME_MAX];
sys_mbox_t tmpmbox;
RT_DEBUG_NOT_IN_INTERRUPT;
rt_snprintf(tname, RT_NAME_MAX, "%s%d", SYS_LWIP_MBOX_NAME, counter);
counter ++;
tmpmbox = rt_mb_create(tname, size, RT_IPC_FLAG_FIFO);
if (tmpmbox != RT_NULL)
{
*mbox = tmpmbox;
return ERR_OK;
}
return ERR_MEM;
}
/*
* Deallocate a mailbox
*/
void sys_mbox_free(sys_mbox_t *mbox)
{
RT_DEBUG_NOT_IN_INTERRUPT;
rt_mb_delete(*mbox);
return;
}
/** Post a message to an mbox - may not fail
* -> blocks if full, only used from tasks not from ISR
* @param mbox mbox to posts the message
* @param msg message to post (ATTENTION: can be NULL)
*/
void sys_mbox_post(sys_mbox_t *mbox, void *msg)
{
RT_DEBUG_NOT_IN_INTERRUPT;
rt_mb_send_wait(*mbox, (rt_ubase_t)msg, RT_WAITING_FOREVER);
return;
}
/*
* Try to post the "msg" to the mailbox
*
* @return return ERR_OK if the "msg" is posted, ERR_MEM if the mailbox is full
*/
err_t sys_mbox_trypost(sys_mbox_t *mbox, void *msg)
{
if (rt_mb_send(*mbox, (rt_ubase_t)msg) == RT_EOK)
{
return ERR_OK;
}
return ERR_MEM;
}
#if (LWIP_VERSION_MAJOR * 100 + LWIP_VERSION_MINOR) >= 201 /* >= v2.1.0 */
err_t sys_mbox_trypost_fromisr(sys_mbox_t *q, void *msg)
{
return sys_mbox_trypost(q, msg);
}
#endif /* (LWIP_VERSION_MAJOR * 100 + LWIP_VERSION_MINOR) >= 201 */
/** Wait for a new message to arrive in the mbox
* @param mbox mbox to get a message from
* @param msg pointer where the message is stored
* @param timeout maximum time (in milliseconds) to wait for a message
* @return time (in milliseconds) waited for a message, may be 0 if not waited
or SYS_ARCH_TIMEOUT on timeout
* The returned time has to be accurate to prevent timer jitter!
*/
u32_t sys_arch_mbox_fetch(sys_mbox_t *mbox, void **msg, u32_t timeout)
{
rt_err_t ret;
s32_t t;
u32_t tick;
RT_DEBUG_NOT_IN_INTERRUPT;
/* get the begin tick */
tick = rt_tick_get();
if(timeout == 0)
{
t = RT_WAITING_FOREVER;
}
else
{
/* convirt msecond to os tick */
if (timeout < (1000 / RT_TICK_PER_SECOND))
t = 1;
else
t = timeout / (1000 / RT_TICK_PER_SECOND);
}
ret = rt_mb_recv(*mbox, (rt_ubase_t *)msg, t);
if(ret != RT_EOK)
{
return SYS_ARCH_TIMEOUT;
}
/* get elapse msecond */
tick = rt_tick_get() - tick;
/* convert tick to msecond */
tick = tick * (1000 / RT_TICK_PER_SECOND);
if (tick == 0)
tick = 1;
return tick;
}
/**
* @ingroup sys_mbox
* This is similar to sys_arch_mbox_fetch, however if a message is not
* present in the mailbox, it immediately returns with the code
* SYS_MBOX_EMPTY. On success 0 is returned.
* To allow for efficient implementations, this can be defined as a
* function-like macro in sys_arch.h instead of a normal function. For
* example, a naive implementation could be:
* \#define sys_arch_mbox_tryfetch(mbox,msg) sys_arch_mbox_fetch(mbox,msg,1)
* although this would introduce unnecessary delays.
*
* @param mbox mbox to get a message from
* @param msg pointer where the message is stored
* @return 0 (milliseconds) if a message has been received
* or SYS_MBOX_EMPTY if the mailbox is empty
*/
u32_t sys_arch_mbox_tryfetch(sys_mbox_t *mbox, void **msg)
{
int ret;
ret = rt_mb_recv(*mbox, (rt_ubase_t *)msg, 0);
if(ret == -RT_ETIMEOUT)
{
return SYS_ARCH_TIMEOUT;
}
else
{
if (ret == RT_EOK)
ret = 0;
}
return ret;
}
#ifndef sys_mbox_valid
/** Check if an mbox is valid/allocated:
* return 1 for valid, 0 for invalid
*/
int sys_mbox_valid(sys_mbox_t *mbox)
{
int ret = 0;
if (*mbox) ret = 1;
return ret;
}
#endif
#ifndef sys_mbox_set_invalid
/** Set an mbox invalid so that sys_mbox_valid returns 0
*/
void sys_mbox_set_invalid(sys_mbox_t *mbox)
{
*mbox = RT_NULL;
}
#endif
/* ====================== System ====================== */
/*
* Start a new thread named "name" with priority "prio" that will begin
* its execution in the function "thread()". The "arg" argument will be
* passed as an argument to the thread() function
*/
sys_thread_t sys_thread_new(const char *name,
lwip_thread_fn thread,
void *arg,
int stacksize,
int prio)
{
rt_thread_t t;
RT_DEBUG_NOT_IN_INTERRUPT;
/* create thread */
t = rt_thread_create(name, thread, arg, stacksize, prio, 20);
RT_ASSERT(t != RT_NULL);
/* startup thread */
rt_thread_startup(t);
return t;
}
sys_prot_t sys_arch_protect(void)
{
rt_base_t level;
level = rt_hw_interrupt_disable(); /* disable interrupt */
return level;
}
void sys_arch_unprotect(sys_prot_t pval)
{
rt_hw_interrupt_enable(pval); /* enable interrupt */
}
void sys_arch_assert(const char *file, int line)
{
rt_kprintf("\nAssertion: %d in %s, thread %s\n",
line, file, rt_thread_self()->parent.name);
RT_ASSERT(0);
}
u32_t sys_jiffies(void)
{
return rt_tick_get();
}
u32_t sys_now(void)
{
return rt_tick_get_millisecond();
}
rt_weak void mem_init(void)
{
}
void *mem_calloc(mem_size_t count, mem_size_t size)
{
return rt_calloc(count, size);
}
void *mem_trim(void *mem, mem_size_t size)
{
// return rt_realloc(mem, size);
/* not support trim yet */
return mem;
}
void *mem_malloc(mem_size_t size)
{
return rt_malloc(size);
}
void mem_free(void *mem)
{
rt_free(mem);
}
#ifdef RT_LWIP_PPP
u32_t sio_read(sio_fd_t fd, u8_t *buf, u32_t size)
{
u32_t len;
RT_ASSERT(fd != RT_NULL);
len = rt_device_read((rt_device_t)fd, 0, buf, size);
if (len <= 0)
return 0;
return len;
}
u32_t sio_write(sio_fd_t fd, u8_t *buf, u32_t size)
{
RT_ASSERT(fd != RT_NULL);
return rt_device_write((rt_device_t)fd, 0, buf, size);
}
void sio_read_abort(sio_fd_t fd)
{
rt_kprintf("read_abort\n");
}
void ppp_trace(int level, const char *format, ...)
{
va_list args;
rt_size_t length;
static char rt_log_buf[RT_CONSOLEBUF_SIZE];
va_start(args, format);
length = rt_vsprintf(rt_log_buf, format, args);
rt_device_write((rt_device_t)rt_console_get_device(), 0, rt_log_buf, length);
va_end(args);
}
#endif /* RT_LWIP_PPP */
#if LWIP_VERSION_MAJOR >= 2 /* >= v2.x */
#if MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK
/**
* Check if a mep element was victim of an overflow or underflow
* (e.g. the restricted area after/before it has been altered)
*
* @param p the mem element to check
* @param size allocated size of the element
* @param descr1 description of the element source shown on error
* @param descr2 description of the element source shown on error
*/
void mem_overflow_check_raw(void *p, size_t size, const char *descr1, const char *descr2)
{
#if MEM_SANITY_REGION_AFTER_ALIGNED || MEM_SANITY_REGION_BEFORE_ALIGNED
u16_t k;
u8_t *m;
#if MEM_SANITY_REGION_AFTER_ALIGNED > 0
m = (u8_t *)p + size;
for (k = 0; k < MEM_SANITY_REGION_AFTER_ALIGNED; k++) {
if (m[k] != 0xcd) {
char errstr[128];
rt_snprintf(errstr, sizeof(errstr), "detected mem overflow in %s%s", descr1, descr2);
LWIP_ASSERT(errstr, 0);
}
}
#endif /* MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
for (k = 0; k < MEM_SANITY_REGION_BEFORE_ALIGNED; k++) {
if (m[k] != 0xcd) {
char errstr[128];
rt_snprintf(errstr, sizeof(errstr), "detected mem underflow in %s%s", descr1, descr2);
LWIP_ASSERT(errstr, 0);
}
}
#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 */
#else
LWIP_UNUSED_ARG(p);
LWIP_UNUSED_ARG(descr1);
LWIP_UNUSED_ARG(descr2);
#endif /* MEM_SANITY_REGION_AFTER_ALIGNED || MEM_SANITY_REGION_BEFORE_ALIGNED */
}
/**
* Initialize the restricted area of a mem element.
*/
void mem_overflow_init_raw(void *p, size_t size)
{
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0
u8_t *m;
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
rt_memset(m, 0xcd, MEM_SANITY_REGION_BEFORE_ALIGNED);
#endif
#if MEM_SANITY_REGION_AFTER_ALIGNED > 0
m = (u8_t *)p + size;
rt_memset(m, 0xcd, MEM_SANITY_REGION_AFTER_ALIGNED);
#endif
#else /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
LWIP_UNUSED_ARG(p);
LWIP_UNUSED_ARG(size);
#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
}
#endif /* MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK */
#ifdef LWIP_HOOK_IP4_ROUTE_SRC
struct netif *lwip_ip4_route_src(const ip4_addr_t *dest, const ip4_addr_t *src)
{
struct netif *netif;
/* iterate through netifs */
for (netif = netif_list; netif != NULL; netif = netif->next)
{
/* is the netif up, does it have a link and a valid address? */
if (netif_is_up(netif) && netif_is_link_up(netif) && !ip4_addr_isany_val(*netif_ip4_addr(netif)))
{
/* gateway matches on a non broadcast interface? (i.e. peer in a point to point interface) */
if (src != NULL)
{
if (ip4_addr_cmp(src, netif_ip4_addr(netif)))
{
return netif;
}
}
}
}
netif = netif_default;
return netif;
}
#endif /* LWIP_HOOK_IP4_ROUTE_SRC */
#endif /*LWIP_VERSION_MAJOR >= 2 */
#if LWIP_SOCKET
#include <lwip/sockets.h>
RTM_EXPORT(lwip_accept);
RTM_EXPORT(lwip_bind);
RTM_EXPORT(lwip_shutdown);
RTM_EXPORT(lwip_getpeername);
RTM_EXPORT(lwip_getsockname);
RTM_EXPORT(lwip_getsockopt);
RTM_EXPORT(lwip_setsockopt);
RTM_EXPORT(lwip_close);
RTM_EXPORT(lwip_connect);
RTM_EXPORT(lwip_listen);
RTM_EXPORT(lwip_recv);
RTM_EXPORT(lwip_read);
RTM_EXPORT(lwip_recvfrom);
RTM_EXPORT(lwip_send);
RTM_EXPORT(lwip_sendto);
RTM_EXPORT(lwip_socket);
RTM_EXPORT(lwip_write);
RTM_EXPORT(lwip_select);
RTM_EXPORT(lwip_ioctl);
RTM_EXPORT(lwip_fcntl);
RTM_EXPORT(lwip_htons);
RTM_EXPORT(lwip_htonl);
#if LWIP_DNS
#include <lwip/netdb.h>
RTM_EXPORT(lwip_gethostbyname);
RTM_EXPORT(lwip_gethostbyname_r);
RTM_EXPORT(lwip_freeaddrinfo);
RTM_EXPORT(lwip_getaddrinfo);
#endif /* LWIP_DNS */
#endif /* LWIP_SOCKET */
#if LWIP_DHCP
#include <lwip/dhcp.h>
RTM_EXPORT(dhcp_start);
RTM_EXPORT(dhcp_renew);
RTM_EXPORT(dhcp_stop);
#endif /* LWIP_DHCP */
#if LWIP_NETIF_API
#include <lwip/netifapi.h>
RTM_EXPORT(netifapi_netif_set_addr);
#endif /* LWIP_NETIF_API */
#if LWIP_NETIF_LINK_CALLBACK
RTM_EXPORT(netif_set_link_callback);
#endif /* LWIP_NETIF_LINK_CALLBACK */
#if LWIP_NETIF_STATUS_CALLBACK
RTM_EXPORT(netif_set_status_callback);
#endif /* LWIP_NETIF_STATUS_CALLBACK */
RTM_EXPORT(netif_find);
RTM_EXPORT(netif_set_addr);
RTM_EXPORT(netif_set_ipaddr);
RTM_EXPORT(netif_set_gw);
RTM_EXPORT(netif_set_netmask);